Содержание:
- калькулятор координаты тела при равномерном прямолинейном движении
- формула координаты тела при равномерном прямолинейном движении
Прямолинейное равномерное движение является наиболее простым и понятным типом механического движения. Подробнее узнать про этот вид движения можно здесь.
Для нахождения координаты тела при равномерном прямолинейном движении используется довольно простая формула:
Формула координаты тела при равномерном прямолинейном движении
x=x_0+ V cdot t
x0 – начальная координата тела
V – скорость тела
t – время движения
x – координата тела в текущий момент времени (в момент времени t)
Таким образом, для того, чтобы найти координату тела при равномерном прямолинейном движении необходимо знать только начальную координату тела, его скорость и время в пути. Вы можете подставить эти значения в наш онлайн калькулятор и получить результат.
Уравнение координаты — зависимость координаты тела от времени:
x = x(t)
Уравнение координаты при равноускоренном прямолинейном движении:
x0 — координата тела в начальный момент времени, v0x —проекция начальной скорости на ось ОХ, ax —проекция ускорения на ось ОХ, x — координата тела в момент времени t
Зная уравнение координаты, можно определить координату тела в любой момент времени.
Пример №1. Движение автомобиля задано уравнением:
Определить начальное положение автомобиля относительно тела отсчета, его начальную скорость и ускорение. Также найти положение тела относительно тела отсчета в момент времени t = 10 c.
Уравнение координаты — это многочлен. В уравнении выше оно включает в себя только 2 многочлена. Первый — 15 — соответствует начальной координате тела. Поэтому x0 = 15. Коэффициент перед квадратом времени второго многочлена соответствует ускорению тела. Поэтому a = 5 м/с2. Второй многочлен отсутствует. Это значит, что коэффициент перед t равен 0. Поэтому начальная скорость тела равна нулю: v0 = 0 м/с.
В момент времени t = 10 c координата автомобиля равна:
Совместное движение двух тел
Иногда в одной системе отсчета рассматривается движение сразу двух тел. В этом случае движение каждого тела задается своим уравнением. Эти уравнения используются для нахождения различных параметров движения этих тел. Такой способ решения задач называется аналитическим.
Аналитический способ решения задачи на совместное движение тел
Чтобы найти место встречи двух тел, нужно:
- Построить уравнения зависимости x(t) обоих тел: x1(t) и x2(t).
- Построить уравнение вида x1 = x2.
- Найти время встречи двух тел tвстр.
- Подставить найденной время в любое из уравнений x1(t) или x2(t), чтобы вычислить координату xвстрч.
Пример №2. По одному направлению из одной точки начали двигаться два тела. Первое тело движется прямолинейно и равномерно со скоростью 3 м/с. Второе тело — равноускорено с ускорением 1 м/с2 без начальной скорости. Определите, через какое время второе тело догонит первое. Вычислите, на каком расстоянии от тела отсчета это произойдет.
Составим уравнения для движения каждого из тел:
Приравняем правые части этих уравнений и найдем время t:
Отсюда t1 = 0 с, а t2 = 6 с. Первый корень нам не подходит — из условия задачи уже было понятно, что тела начали движение одновременно. Снова они встрется, когда пройдет 6 секунд.
Чтобы найти, какое расстояние они пройдут за это время, подставим известное время в любое из уравнений:
x = 3t = 3∙6 = 18 (м).
Графический способ решения задачи на совместное движение тел
Существует графический способ решения данной задачи. Для этого нужно:
- Построить графики x1(t) и x2(t).
- Найти точку пересечения графиков.
- Пустить перпендикуляр из этой точки к оси ОХ.
- Значение точки пересечения — координата места пересечения двух тел.
Таким способом можно определить, в какое время произойдет встреча двух тел. Нужно лишь провести перпендикуляр к оси времени после построения графиков перемещений.
Графический способ решения задач требует высокой точности построения графиков. Поэтому он применяется редко!
Если в одной системе описывается движение двух тел, и одно тело начинает движение с опозданием tзапазд, то его уравнение координаты принимает вид:
Пример №3. Мальчики соревнуются в беге. По команде «Старт!» Миша побежал с ускорением 1 м/с2 и через 4 секунды достиг максимальной скорости, с которой дальше продолжил движение. Саша отреагировал с опозданием и начал движение спустя 1 с после команды с ускорением 1,5 м/с2, достигнув максимальной скорости через 3 секунды. Найти время, через которое Саша догонит Мишу.
Если Саша догонит Мишу до того, как мальчики станут двигаться с равномерной скоростью, уравнение движения с равномерной скоростью можно игнорировать. Если это так, то корнем уравнения будет время, не превышающее 4 с (через столько времени оба мальчика начнут двигаться равномерно).
В таком случае составим уравнения только для тех участков пути, на которых мальчики двигались равноускорено:
Приравняем правые части уравнений и вычислим t:
В результате получаем два корня: t1 = 0,6 с, а t2 = 3,4 с. Первый корень не подходит, так как в это время Саша еще не начал движение. Второй корень подходит, так как он меньше 4 с. Значит, Саша догонит Мишу через 3,4 с после того, как Миша начнет движение.
Задание EF18609
Материальная точка движется прямолинейно с постоянным ускорением. График зависимости её координаты от времени x=x(t) изображён на рисунке.
В момент времени t=0 проекции её скорости υx и ускорения ax на ось Ох удовлетворяют соотношениям:
а)
б)
в)
г)
Алгоритм решения
- Определить характер движения материальной точки.
- Записать уравнение координаты материальной точки.
- С помощью графика зависимости координаты от времени и уравнения координаты определить проекции искомых величин.
Решение
Графиком зависимости координаты от времени является парабола. Такой график соответствует равноускоренному прямолинейному движению. Уравнение координаты при равноускоренном прямолинейном движении имеет вид:
Ветви параболы смотрят вверх. Это значит, что коэффициент перед квадратом переменной величины (времени) стоит положительный коэффициент. Следовательно, ax>0. Поэтому варианты «б» и «г» исключаются. Остается выяснить, чему равна скорость: она равна нулю (как в ответе «а») или меньше нуля (как в ответе «в»)?
Моменту времени t=0 соответствует точка, являющая вершиной параболы. Когда ветви параболы смотрят вверх, в ее вершине скорость тела всегда равна нулю, так как эта точка лежит на границе между отрицательной и положительной скоростью. Отсюда делаем вывод, что верный ответ «а».Ответ: а
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17682
Мимо остановки по прямой улице с постоянной скоростью проезжает грузовик. Через 5 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с ускорением 3 м/с2, и догоняет грузовик на расстоянии 150 м от остановки. Чему равна скорость грузовика?
Алгоритм решения
- Записать исходные данные.
- Записать уравнение движения грузовика и преобразовать его с учетом условий задачи.
- Выразить скорость грузовика из уравнения его движения.
- Записать уравнение движения мотоциклиста.
- Найти время встречи мотоциклиста и грузовика из уравнения движения мотоциклиста.
- Подставить время в формулу скорости грузовика и вычислить ее.
Решение
Исходные данные:
- Координата встречи грузовика и мотоциклиста: x = 150 м.
- Время запаздывания мотоциклиста: tзапазд = 5 с.
- Ускорение, с которым мотоциклист начал движение: a = 3 м/с2.
Запишем уравнение движения грузовика:
Так как начальная координата равна нулю, это уравнение примет вид:
Отсюда скорость движения грузовика равна:
Запишем уравнение движения мотоциклиста:
Так как начальная координата равна нулю, начальная скорость тоже нулевая, и мотоциклист начал движение позже грузовика, это уравнение примет вид:
Найдем время, через которое грузовик и мотоциклист встретились:
Подставим найденное время встречи в формулу для вычисления проекции скорости грузовика:
Ответ: 10
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 14.7k
Простейшим видом движения точечного тела является движение вдоль прямой. Такое движение называют прямолинейным.
Рассмотрим достаточно простой пример прямолинейного движения. Представим себе, что на столе лежит ученическая линейка. В том месте, где у линейки находится нулевая отметка, лежит крупинка сахара. Муравей, схватив крупинку сахара в тот момент, когда мы включили секундомер, начинает бежать вдоль края линейки в сторону увеличения значений ее сантиметровых делений (рис. 7, а).
Перед нами стоит задача: описать механическое движение этого муравья. Поскольку механическое движение по определению есть изменение положения тела относительно другого тела с течением времени, то для описания изменения положения муравья мы должны выбрать тело отсчета и связать с ним координатную ось. Пусть таким телом будет стол. За начало отсчета примем точку, в которой муравей взял крупинку сахара (нулевое деление на линейке). Ось координат X направим параллельно краю линейки в сторону движения муравья. За единицу длины выберем 1 см. Для отсчета времени будем использовать секундомер.
В результате мы получили то, что называют системой отсчета. В этой системе отсчета муравей движется вдоль прямой линии — края линейки, т. е. мы имеем дело с прямолинейным движением.
Включим секундомер в момент старта муравья и будем фиксировать по линейке координаты муравья xм в разные моменты времени, изображенные на рис. 7. Используя эти данные, составим таблицу.
В первой строке таблицы приведены значения моментов времени, в которые нам известны положения муравья относительно начала отсчета. Во второй строке приведены соответствующие им координаты муравья.
Такой способ описания механического движения носит название табличного. Ясно, что чем больше указано в таблице моментов времени, тем точнее описано движение тела. Например, в нашем случае, глядя на таблицу, можно только предполагать, где находился муравей, когда секундомер показывал t = 2 с или t = 6 с.
Табличный метод является достаточно простым и наглядным. Поэтому он часто используется на практике. Например, если вы посмотрите на расписание движения электропоездов по станциям или рейсовых автобусов по остановкам, то поймете, что это и есть табличный способ описания движения этих тел.
Наряду с табличным способом задания зависимости одной величины от другой часто используют графический способ. В нашем случае для построения графика зависимости координаты муравья от времени, в течение которого он двигался, мы должны построить прямоугольную систему координат, в которой начало координат будет началом отсчета и времени, и координаты движущегося тела. Пусть при этом ось абсцисс будет осью времени t, а ось ординат — осью координат X.
Из математики известно, что любая точка в прямоугольной системе координат задается упорядоченной парой чисел, которые называют координатами точки. Первое число задает координату точки по оси абсцисс, второе — по оси ординат. Таким образом, положение движущегося вдоль оси X тела в определенный момент времени надо задавать парой чисел: моментом времени t на оси времени (ось абсцисс) и соответствующим ему значением координаты x на оси координат (ось ординат).
Нанесем на оси единицы величины: по оси времени — секунда (с), по оси координат — сантиметр (см). Для построения графика движения следует перенести данные из таблицы на координатную плоскость.
Поскольку мы знаем координаты муравья только в четыре момента времени (t = 0, 1, 5 и 8 с), то график будет состоять только из четырех точек (рис. 8). Ясно, что если бы нам было известно, где находился муравей в другие моменты времени (например, в моменты t = 2, 3, 4, 6 с и т. д.), то точек на графике было бы больше. В идеальном случае, если бы нам были известны координаты муравья в любой момент времени его движения, наш график превратился бы в некоторую линию (например, в прямую, как на рис. 9). При этом мы получили бы описание движения тела для любого момента времени.
Посмотрим, как можно воспользоваться таким графиком. Для этого обратимся к рис. 10, на котором изображен график движения муравья. Пусть нам нужно определить, где находится муравей в тот момент, когда секундомер показывал время t = 4 с. Для этого найдем на оси времени точку с координатой t = 4 с и проведем вертикальную пунктирную линию до пересечения с графиком движения. От полученной точки проведем горизонтальную пунктирную линию до пересечения с осью X координат муравья. Легко видеть, что это точка на оси X имеет координату xм = 8 см.
Можно решить и обратную задачу: задать координату муравья и определить, в какой момент времени он находился в выбранной точке пространства. В этом случае, отмечая на оси X точку с выбранной нами координатой, например xм = 12 см, мы должны провести через нее горизонтальную линию до пересечения с графиком движения. Далее от точки пересечения следует провести вертикальную линию вниз и найти интересующее нас значение времени: t = 6 с.
Таким образом, мы убедились, что если график движения тела представляет собой непрерывную линию, то мы можем ответить на оба вопроса механики — где и когда находилось, находится или будет находиться тело. В этом случае говорят, что движение тела описано полностью.
Разобранный нами пример графического способа описания механического движения часто используют на практике. Для иллюстрации сказанного рассмотрим движение муравья, используя график, приведенный на рис. 11.
Из данного графика видно, что в течение первых трех секунд координата муравья непрерывно увеличивалась. Следовательно, он двигался в положительном направлении оси X. Кроме того, за каждую из первых трех секунд он увеличивал свою координату на 1 см. Далее мы видим, что с момента t3 = 3 с до момента t5 = 5 с координата муравья оставалась равной x3 = 3 см. Это означает, что положение муравья в выбранной системе отсчета не изменялось. Проще говоря, муравей не двигался. По-видимому, он устал и отдыхал. Начиная с момента времени t5 = 5 с координата муравья опять изменялась. За шестую секунду она увеличилась от x5 = 3 см до x6 = 5 см, т. е. на два сантиметра. На ту же самую величину увеличилась координата муравья и за седьмую секунду движения. Значит, отдохнув, муравей в течение шестой и седьмой секунд двигался быстрее, чем до отдыха. Отметим, что, так как в течение шестой и седьмой секунд движения координата муравья увеличивалась, мы можем сделать вывод, что муравей опять двигался в положительном направлении оси X.
Вы, наверное, уже догадались, что, если на каком-либо графике, описывающем движение тела, координата тела с течением времени уменьшается, это означает, что тело движется в отрицательном направлении оси X.
Итоги
Прямолинейное движение тела — это движение, при котором тело движется по прямой линии в данной системе отсчета.
Чтобы описать прямолинейное движение в выбранной системе отсчета, необходимо в момент начала движения включить часы и измерять координату тела в различные моменты времени.
Результаты измерений представляют в виде таблицы (табличный способ описания движения) или графика движения в осях: время — координата (графический способ описания движения).
Если известна графическая зависимость координаты тела от времени в виде непрерывной линии, то движение тела описано полностью, т. е. можно:
- Определить координату тела в любой момент времени движения (ответить на вопрос «где?»).
- Определить момент времени, в который тело имело заданную координату (ответить на вопрос «когда?»).
- Охарактеризовать движение тела (указать, покоилось ли тело, двигалось ли в положительном или отрицательном направлении координатной оси, как быстро изменялась его координата с течением времени).
2.2.1 Как перевести из км/ч в м/с и т. д?
В задачах часто необходимо переводить из одних единиц измерения в другие:
1 км/ч = (1000 м)/(3600 с) = 5/18 м/с,
1 м/с = 18/5 км/ч,
1 км/с = 1000 м/с,
1 см/с = 0,01 м/с,
1 м/мин = 1/60 м/с.
Например, если то для того, чтобы перевести в м/с, нужно умножить на 5/18:
2.2.2 Как найти скорость тела, если известен закон движения?
Закон равномерного движения имеет вид:
Видим, что в этой формуле скорость стоит коэффициентом перед временем. Поэтому, если в условии задачи дан закон движения, необходимо посмотреть на коэффициент перед t — это и есть скорость.
Например, пусть закон движения имеет вид: В данном случае коэффициент перед t равен 5, следовательно,
2.2.3 Как определить скорость по графику координаты от времени?
Закон равномерного движения имеет вид:
Графиком этого закона является прямая линия. Так как — коэффициент перед t, то является угловым коэффициентом прямой.
Для графика 1:
То, что график 1 «поднимается вверх», означает — тело едет в положительном направлении оси Ox.
Для графика 2:
То, что график 2 «опускается вниз», означает — тело едет в отрицательном направлении оси Ox.
Для определения и выбираем такие точки на графике, в которых можно точно определить значения, как правило, это точки, находящиеся в вершинах клеток.
2.2.4 Как найти закон движения, если известны координаты тела в моменты времени и ?
Пусть в момент времени тело находилось в точке с координатой а в момент времени тело находилось в точке с координатой
Для времени имеем:
Для времени имеем:
Решая систему уравнений (2.19) и (2.20), получим
2.2.5 Как найти графически момент и координату встречи двух тел?
Пусть даны законы движения двух тел: и Согласно пункту 2.5 графиками обоих законов являются прямые линии. Необходимо на одном графике построить оба закона.
Графики пересекаются в одной точке. Координаты этой точки и являются временем и местом встречи.
2.2.6 Как аналитически найти координату и время встречи двух тел?
Пусть даны законы движения двух тел: и В момент встречи тела оказываются в одной координате, то есть и необходимо решить уравнение:
Решение уравнения имеет вид:
Для нахождения координаты достаточно подставить вместо t найденное значение в любой из законов движения:
или
2.2.7 Как найти среднюю скорость, если тело половину пути проехало со скоростью а вторую половину пути
По определению (2.8):
В нашем случае, так как на каждой половине пути тело едет с постоянной скоростью, то
Получаем
В общем случае, если весь путь разбить на n равных участков, на каждом из которых тело едет с постоянной скоростью, то
Формула справедлива только если весь путь разбит на равные участки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.
2.2.8 Как найти среднюю скорость, если тело половину времени проехало со скоростью а вторую половину времени
По определению (2.8):
В нашем случае, так как каждую половину времени тело едет с постоянной скоростью, то
Получаем
В общем случае, если все время разбито на n равных промежутков, на каждом из которых тело едет с постоянной скоростью, то
Формула справедлива только если все время разбито на равные промежутки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.
2.2.9 Как найти скорость, с которой движется моторная лодка по течению реки?
Согласно формуле скорость тела относительно неподвижной системы отсчета (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета (в нашем случае — собственная скорость лодки).
При движении по течению вектора и направлены в одну сторону, следовательно, получаем сложение двух векторов, направленных в одну сторону — используем формулу (1.15):
Таким образом, при движении любого тела по течению его скорость определяется формулой
2.2.10 Как найти скорость, с которой движется моторная лодка против течения реки?
Согласно формуле скорость тела относительно неподвижной системы отсчета (в нашем случае земли) равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета (в нашем случае — собственная скорость лодки).
Перепишем формулу в виде:
Вектора и направлены в одну сторону, следовательно, получаем вычитание двух векторов, направленных в одну сторону — используем формулу :
2.2.11 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена перпендикулярно течению реки?
Согласно формуле скорость тела относительно неподвижной системы отсчета (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета (в нашем случае — собственная скорость лодки).
В данном случае вектора и направлены перпендикулярно, следовательно, получаем задачу о сложении взаимно перпендикулярных векторов — используем формулу :
2.2.12 Как найти расстояние, на которое снесет лодку, если ее скорость направлена перпендикулярно скорости реки?
В результате сложения скоростей по формуле скорость тела относительно земли равна и направлена по прямой OD. В результате, когда тело окажется на противоположном берегу, оно попадет в точке D, и его снесет на длину
Треугольник OAB подобен треугольнику OCD:
2.2.13 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена под углом φ к скорости течения реки?
Согласно формуле скорость тела относительно неподвижной системы отсчета (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета (в нашем случае — собственная скорость лодки).
В результате сложения скоростей по формуле скорость тела относительно земли равна и направлена по прямой OB. Как видим, получили треугольник, в котором известен один из углов — Тогда по теореме косинусов:
2.2.14 Как найти расстояние, на которое снесет лодку, если ее скорость направлена под углом к скорости течения реки?
В результате сложения скоростей по формуле скорость тела относительно земли равна и направлена по прямой OB. В результате, когда тело окажется на противоположном берегу, оно попадет в точке В, и его снесет на длину
В задачах, когда движение происходит в плоскости, то есть и вдоль оси Ox, и вдоль оси Oy, необходимо введение системы координат для того, чтобы упростить рассмотрение задачи.
Проекция
Проекция
Формулы и не просто результат математической операции нахождения проекции, и имеют физический смысл: со скоростью тело плывет вдоль оси Ox, то есть по течению; со скоростью тело переплывает реку. Например, время, за которое тело переплывет реку, можно найти просто поделив ширину реки на
Тогда
2.2.15 Под каким углом α нужно направить собственную скорость лодки, чтобы за минимальное время переплыть реку?
Согласно формуле скорость, с которой лодка переплывает реку, равна:
Очевидно, что время будет минимальным, если будет максимальным, то есть
2.2.16 С какой скоростью машина обгоняет вторую машину, если они движутся в одну сторону?
Пусть 1-ая машина движется вправо со скоростью а 2-ая машина также движется вправо со скоростью Скорость обгона — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой :
Так как и направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула :
Заметим, что при обгоне, естественно поэтому
2.2.17 За какое время проедут мимо друг друга два поезда, двигающиеся в одном направлении?
Пусть длина 1-го поезда а скорость 2-го поезда Скорость обгона определяется формулой Тогда
2.2.18 С какой скоростью машина едет навстречу вторую машину, если они движутся в противоположных направлениях?
Пусть 1-ая машина движется вправо со скоростью а 2-ая машина движется влево со скоростью Скорость движения навстречу — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой :
Перепишем эту формулу в виде:
Так как и направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула :
2.2.19 За какое время проедут мимо друг друга два поезда, двигающиеся в противоположных направлениях?
Пусть длина 1-го поезда а скорость 2-го поезда Скорость обгона определяется формулой Тогда
2.2.20 Как найти относительную скорость, если тела движутся по взаимно перпендикулярным направлениям?
Пусть 1-ая машина движется вправо со скоростью а 2-ая машина движется перпендикулярно первой со скоростью Относительная скорость определяется формулой :
Так как вектора и перпендикулярны, то воспользуемся формулой :
Конспект по физике для 8 класса «Перемещение и описание движения». Как определить координаты тела, движущегося равномерно и прямолинейно. Что такое уравнение движения.
Конспекты по физике Учебник физики Тесты по физике
Перемещение и описание движения
Система отсчёта используется для того, чтобы определить положение тела в пространстве в некоторый момент времени. В случае когда тело движется, возникает задача вычисления его координат в некоторые моменты времени.
ПРОЕКЦИИ ПЕРЕМЕЩЕНИЯ НА КООРДИНАТНЫЕ ОСИ
Если известен вектор перемещения тела, то при расчетах, как правило, используют не координаты вектора, как такового, а его проекции на оси координат. Если опустить перпендикуляры из начала и конца вектора перемещения s на координатную ось X, то получится отрезок sx, который называют проекцией перемещения. При этом проекция вектора на ось считается положительной, если координата конца вектора перемещения оказывается больше координаты его начала. В противном случае проекция считается отрицательной.
Если вектор и ось параллельны, то длина вектора равна его проекции на эту ось.
При решении многих задач необходимо уметь находить проекции вектора перемещения на координатные оси. Если (х0; у0) и (х; у) — координаты начала и конца вектора, то его проекции на оси абсцисс и ординат будут равны соответственно
sx = x – x0, (1)
sy = y – y0
Зная проекции вектора перемещения, можно найти его длину (модуль) по теореме Пифагора:
ОПРЕДЕЛЕНИЕ КООРДИНАТ ДВИЖУЩЕГОСЯ ТЕЛА И ЕГО ПЕРЕМЕЩЕНИЯ
Если тело движется прямолинейно, то траектория его движения совпадает с перемещением. При этом пройденный телом путь равен значению модуля вектора перемещения.
А как описать движение тела в более сложном случае? На рисунке представлен график движения самолёта. Сначала он набирал высоту, двигаясь из точки А в точку В, затем двигался на одной и той же высоте (до точки С) и, наконец, приземлился в точке D. На какой высоте проходил полёт? Высоте полёта соответствуют координаты по оси OY, значит, в точке В самолёт набрал высоту 3 км.
Теперь ответим на вопрос: какой путь проделал самолёт на этой высоте? Проекция перемещения s2x = 80 — 20 = 60 км.
Так как всё это время самолёт двигался параллельно оси ОХ, длина вектора перемещения равна его проекции на эту ось. Следовательно, модуль перемещения самолёта из точки В в точку С равен 60 км. Этому же значению равен и путь самолёта из точки В в точку С.
И наконец, определим дальность полёта самолёта. Для этого нам надо найти модуль перемещения самолёта из точки А в точку D: |s| = sx = 100 — 0 = 100 км.
Таким образом, при помощи перемещения и его проекций мы описали сложное движение самолёта.
ПЕРЕМЕЩЕНИЕ И СКОРОСТЬ ПРИ РАВНОМЕРНОМ ПРЯМОЛИНЕЙНОМ ДВИЖЕНИИ
Так как при прямолинейном движении пройденный телом путь равен значению модуля вектора перемещения, мы можем сказать, что скоростью равномерного прямолинейного движения называют векторную величину, равную отношению перемещения тела ко времени, за которое это перемещение произошло. При равномерном прямолинейном движении векторы скорости и перемещения направлены в одну сторону. Зная скорость равномерного движения, можно найти перемещение тела за любой промежуток времени:
Поскольку скорость υ является векторной величиной, её тоже можно изобразить графически. Обозначим её проекцию на координатную ось υx. Если направление координатной оси совпадает с направлением движения тела, то для расчёта перемещения тела можно использовать формулу
УРАВНЕНИЕ ДВИЖЕНИЯ
Уравнение зависимости координаты тела от времени называют уравнением движения.
Пусть тело совершило перемещение s. Направим координатную ось X по направлению перемещения тела. Обозначим начальную координату тела х0, а конечную координату тела х. Тогда по формуле (1) sx = х – х0.
Но по формуле (3) sx = υxt. Следовательно,
Таким образом, координату тела при равномерном прямолинейном движении в любой момент времени можно определить, если известны его начальная координата и проекция скорости движения на ось X.
Ранее при решении задач мы использовали формулу s = υt без стрелочек. Почему? Символом s здесь обозначался путь, пройденный телом, а символом и — модуль скорости. Теперь нам известно, что при равномерном прямолинейном движении путь равен модулю перемещения. Поэтому если нас не интересует направление движения тела, а необходимо только найти его путь, то эта формула поможет нам найти решение.
Вы смотрели Конспект по физике для 8 класса «Перемещение и описание движения».
Вернуться к Списку конспектов по физике (Оглавление).
Просмотров: 13 165