Как найти момент жесткой заделки

Пример решения задачи по расчету реакций опоры в жесткой (глухой) заделке стальной балки, нагруженной поперечной силой F, сосредоточенным моментом m и равномерно распределенной нагрузкой q.

Задача

Рассчитать величину и направление опорных реакций в жесткой заделке консольной балки нагруженной заданной системой внешних нагрузок.

Другие примеры решений >
Помощь с решением задач >

Пример решения

Покажем значения нагрузок и продольные размеры балки, обозначим ее характерные сечения буквами A, B и C.

В случае плоского поперечного изгиба в жесткой заделке консольной балки могут иметь место только две опорные реакции:

  1. Поперечная сила R
  2. Изгибающий момент M

На данном этапе решения задачи эти реакции можно направить в любую сторону.

Короткое видео о реакциях в заделках:

Другие видео

Определим величину, а заодно и истинное направление опорных реакций.

Зададим систему координат y-z.

Для нахождения двух реакций нам понадобятся два уравнения равновесия.

Балка не перемещается вверх-вниз, поэтому сумма проекций всех сил на ось y должна равняться нулю.

Проецируя все силы на ось y получаем первое уравнение:

∑F(y)=0=-R-q∙1+F

Правило знаков для проекций сил.

Откуда находим величину реакции R

R=-q∙1+F=-100∙1+40=-60кН

Знак «-» в ответе говорит о том, что реальное направление реакции R противоположно выбранному вначале.

Поэтому изменим направление силы и соответственно ее знак на противоположные.

Второе уравнение статики получим из условия, что балка не вращается, так как сумма моментов приложенных к ней тоже равнв нулю.

Запишем уравнение суммы моментов, например, относительно точки A:

∑mA=0=M-m+q∙1∙(0,5+0,5)-F(0,5+1)

Правило знаков для моментов.

Отсюда находим опорный момент M

M=m-q+F∙1,5=70-100+40∙1,5=30кНм

Положительный результат показывает, что выбранное наугад направление момента М оказалось верным, то есть перенаправлять его не нужно.

Полученные значения опорных реакций можно легко проверить.

Для этого запишем уравнение суммы моментов относительно точки B или C:

∑mB=M+R∙0,5-m+q∙1∙0,5-F∙1

и подставив в него полученные значения, мы должны получить сумму равную нулю

∑mB=30+60∙0,5-70+100∙1∙0,5-40∙1=0

Так и есть! Значит опорные реакции определены верно.

Расчет реакций в опорах простой двухопорной балки >
Другие примеры решения задач >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Определить опорные реакции в балке с жесткой заделкой.2016-11-20-12-04-33-skrinshot-ekrana

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и опорный момент. Так как  горизонтальные нагрузки отсутствуют, горизонтальная реакция равна 0. Обозначим опору (жесткую заделку) буквой В. Задаемся (произвольно) направлениями вертикальной реакции В и реактивного момента МВ в заделке.

2016-11-20-12-20-14-skrinshot-ekrana

Составляем два уравнения статики:

2016-11-20-12-28-18-skrinshot-ekrana (1),

откуда

2016-11-20-12-23-30-skrinshot-ekrana

Далее определяем опорный момент в заделке

2016-11-20-12-29-47-skrinshot-ekrana(2),

откуда

2016-11-20-12-30-43-skrinshot-ekrana

Чтобы проверить правильность определения реакций, следует выбрать любую точку на балке и составить уравнение равновесия моментов относительно этой точки (сумма моментов относительно любой точки должна равняться 0).

Если реакции определены верно, записываем их значения на расчетную схему.

2016-11-20-12-34-29-skrinshot-ekrana

Привет! В этой статье предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции опор, чему учат еще в рамках дисциплины — «теоретическая механика». Но для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.

Так как этот урок для чайников, я многие моменты буду упрощать и рассказывать только самое основное, чтобы написанное здесь, было понятно даже самому неподготовленному студенту — заочнику.

В рамках статьи рассмотрим 4 примера: двухопорная балка, загруженная посередине пролёта сосредоточенной силой, такая же балка, но загруженная распределённой нагрузкой, консольная балка и плоская рама.

Что такое реакция опоры?

Чтобы лучше понять, что такое реакция опоры (опорная реакция), давай рассмотрим следующий пример — балку (стержень) лежащую на опорах:

Схема, демонстрирующая схему балки (стержня) и опоры

На балку давит нагрузка – сила, в свою очередь, балка давит на опоры. И чтобы балка лежала на опорах (никуда не проваливалась), опоры выполняют свою основную функцию — удерживают балку. А чтобы удерживать балку, опоры должны компенсировать тот вес, с которым балка давит на них. Соответственно, действие опор можно представить в виде некоторых сил, так называемых — реакций опор.

Возникшие реакции в опорах балки под нагрузкой

Для балки, и нагрузка, и реакции опор, будут являться внешними силами, которые нужно обязательно учитывать при расчёте балки. А чтобы учесть опорные реакции, сначала нужно научиться определять их, чем, собственно, и займёмся на этом уроке.

Виды связей и их реакции

Связи – это способы закрепления элементов конструкций. Опоры, которые я уже показывал ранее – это тоже связи.

 В этой статье будем рассматривать три вида связей: жёсткая заделка, шарнирно-подвижная и шарнирно-неподвижная опора.

Жёсткая заделка

Схема жёсткой заделки

Жёсткая заделка — это один из вариантов закрепления элементов конструкций. Этот тип связи препятствует любым перемещениям, тем самым для плоской задачи, может возникать три реакции: вертикальная (RA), горизонтальная (HA) и момент (MA).

Реакции жёсткой заделки

Шарнирно-подвижная и шарнирно-неподвижная опора

В этой статье будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.

Схема шарнирно-подвижной и шарнирно-неподвижной опоры

В шарнирно-неподвижной опоре возникает две реакции: вертикальная и горизонтальная. Так как опора препятствует перемещению в этих двух направлениях. В шарнирно-подвижной опоре возникает только вертикальная реакция.

Реакции в шарнирно-подвижной и шарнирно-неподвижной опоре

Однако, видов связей и их условных обозначений достаточно много, но в рамках этой статьи их все рассматривать не будем. Так как, изученные ранее виды связей, являются основными и практически всегда, при решении задач по сопромату, ты будешь сталкиваться именно с ними.

Что такое момент силы?

Также необходимо разобраться с понятием момент силы.

Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр.

Проиллюстрирую написанное:

Схема для нахождения момента силы
На изображении показано, как определить момент силы F, относительно точки O.

Правило знаков для моментов

Также для моментов, нужно задаться каким-то правилом знаков. Я в своих уроках буду придерживаться такого правила:

  • если сила относительно точки стремится повернуть ПРОТИВ часовой стрелки, то момент положительный;
  • если она стремится повернуть ПО часовой стрелке, то момент отрицательный.
Правило знаков для моментов

Всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнём с простейшей расчётной схемы балки.

Определение реакций для двухопорной балки

Возьмём балку, загруженную посередине сосредоточенной силой и опирающейся на шарнирно-неподвижную и шарнирно-подвижную опору:

Расчётная схема балки, загруженная распределённой нагрузкой

Введём систему координат: направим ось x вдоль балки, а ось y вертикально. Обозначим реакции в опорах как HA, RA и RB:

Указание координатных осей для схемы балки

Для тех, кто пришёл сюда, ещё будучи на этапе изучения теоретической механики, а я знаю, таких будет много, важно отметить, что в сопромате не принято указывать знаки векторов над силами.

В термехе же, в обязательном порядке, преподаватель от тебя настойчиво будет требовать указывать знак вектора над всеми силами, вот так:

Обозначение векторов

Условия равновесия системы

Чтобы найти все реакции, нужно составить и решить три уравнения — уравнения равновесия:

Условия равновесия

Данные уравнения являются условиями равновесия системы. А так как мы предполагаем, что опоры обеспечивают это состояние равновесия (удерживают балку). То составив и решив уравнения равновесия — найдём значения опорных реакций.

Первое уравнение называется уравнением проекций — суммой проекций всех сил на координатную ось, которая должна быть равна нулю. Два других уравнения называются уравнениями моментов — суммами моментов всех сил относительно точек, которые должны быть равны нулю.

Уравнения равновесия

Как видишь, чтобы научиться находить реакции опор, главное — научиться правильно составлять уравнения равновесия.

Расчётная схема для определения реакций

Уравнение проекций

Запишем первое уравнение — уравнение проекций для оси x.

В уравнении будут участвовать только те силы, которые параллельны оси x. Такая сила у нас только одна — HA. Так как HA направлена против положительного направления оси x, в уравнение её нужно записать с минусом:

Тогда HA будет равна:

Поздравляю, первая реакция найдена!

Уравнения моментов

А теперь самое интересное…запишем уравнение моментов, относительно точки A, с учётом ранее рассмотренного правила знаков для моментов.

Так как сила F поворачивает ПО часовой стрелке, записываем её со знаком «МИНУС» и умножаем на плечо.

Так как сила RB поворачивает ПРОТИВ часовой стрелки, пишем её со знаком «ПЛЮС» и умножаем на плечо. И, наконец, всё это приравниваем к нулю:

Из полученного уравнения выражаем реакцию RB:

Вторая реакция найдена! Третья реакция находится аналогично, но только теперь уравнение моментов записываем относительно другой точки:

Проверка правильности найденных опорных реакций

Чем хороши задачи на определение реакций, так это тем, что правильность расчёта реакций легко проверить. Для этого достаточно составить дополнительное уравнение равновесия, подставить все численные значения и если сумма проекций сил или сумма моментов будет равна нулю, то и реакции, значит, найдены — верно, а если нет, то ищем ошибку.

Составим дополнительное уравнение проекций для оси y и подставим все численные значения:

Как видишь, реакции опор найдены правильно.

Определение реакций опор для балки с распределенной нагрузкой

Теперь рассмотрим балку, загруженную распределенной нагрузкой:

Схема балки, загруженная распределённой нагрузкой

Перед тем как посчитать реакции опор, распределенную нагрузку нужно «свернуть» до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:

Сворачивание распределённой нагрузки до сосредоточенной силы

Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:

Обозначение реакций в опорах и координатных осей
Условия равновесия для балки

Расчёт реакций для консольной балки

Давай рассмотрим теперь пример с жёсткой заделкой – консольную балку. Заодно посмотрим, как учесть силу, приложенную под углом (α = 30°).

Консольная балка, загруженная распределённой нагрузкой и силой под определённым углом

Силу, направленную под определённым углом, нужно разложить на две составляющие – горизонтальную и вертикальную. А их значения найти из силового треугольника:

Раскладывание сил на составляющие и силовой треугольник

Покажем реакции в заделке и выполним расчёт:

Обозначение реакций, сил и координатных осей для консольной балки

Для этой задачи выгоднее использовать другую форму условий равновесия:

А выгодна она тем, что из каждого записанного уравнения будем сразу находить реакцию:

Не пугайся отрицательного значения реакции! Это значит, что при указании реакции, мы не угадали с её направлением. Расчёт же показал, что MA, направлена не по часовой стрелке, а против.

В теоретической механике, когда реакции получают с «минусом» обычно не заморачиваются и не меняют их направление на схеме, так и оставляют в ответе отрицательное значение, оговаривая, что да реакция найдена, но с учётом знака, на самом деле направлена в другую сторону. Потому что найденные реакции в задачах на статику, являются конечной точкой расчёта.

У нас же, в сопромате после нахождения опорных реакций, всё только начинается. Найдя реакции, мы всего лишь находим ВСЕ силы действующие на элемент конструкции, а дальше по сценарию стоит задача определить внутренние усилия, возникающие в этом элементе, расчёты на прочность и т. д. Поэтому на схеме, обязательно следует указывать истинное направление реакций. Чтобы потом, когда будут рассчитываться внутренние усилия ничего не напутать со знаками.

Если получили отрицательное значение, нужно отразить это на схеме:

Изменение направления реактивного момента

С учётом изменений на схеме реакция будет равна:

Сделаем проверку, составив уравнение равновесие, ещё не использованное – сумму моментов относительно, скажем, точки B, которая, при правильном расчёте, конечно, должна быть равна нулю:

Если не менять направление реакции, то в проверочном уравнении нужно учесть этот «минус»:

Можешь посмотреть еще один пример, с похожей схемой, для закрепления материала, так сказать.

Реакции опор для плоской рамы

Теперь предлагаю выполнить расчёт плоской рамы. Для примера возьмём расчётную схему, загруженную всевозможными видами нагрузок:

Расчётная схема плоской рамы

Проводим ряд действий с расчетной схемой рамы:

  • заменяем опоры на реакции;
  • сворачиваем распределенную нагрузку до сосредоточенной силы;
  • вводим систему координат x и y.
Обозначение реакций, сворачивание распределённой нагрузки и введение осей координат

Выполняем расчёт реакций опор:

Меняем направление реакции RA:

Изменение направления опорной реакции

В итоге получили следующие реакции в опорах рамы:

Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумма будет равна нулю, то расчет выполнен верно:

Как видим, расчет реакций выполнен правильно!

На
рис. 6 показана балка АВ, жестко заделанная
в стену в точке А.

Жесткая
заделка препятствует не только любым
поступательным движениям балки, но
также и вращательному вокруг оси А
в плоскости рисунка. Поэтому реакция
жесткой заделки состоит из трех
неизвестных: двух составляющих реакции
RAX,
RAY
и реактивного момента MA.

Проекции силы на оси, расположенные в одной плоскости с силой

Если
сила

расположена в плоскости ХОУ, то проекцией
FX
силы

на ось X
будет являться отрезок на оси X,
заключенный между перпендикулярами,
опущенными из начала и конца вектора
на эту ось. Проекция будет положительной,
если угол между силой и осью острый, и
отрицательной, если этот угол тупой
(рис. 7):

Fх
=
Fcos
(90
0
+α) = –
Fsin
α,

Fу
= Fcos
α.

Сам
вектор

есть равнодействующая
двух
составляющих Fx

и Fy
.

Проекция вектора
силы на ось есть величина алгебраическая.

Момент силы относительно точки. Момент пары сил

Моментом
силы

относительно точки 0 (центра) называется
приложенный
в точке 0 (центре) вектор
,
модуль которого равен произведению
модуля F
силы на плечо

и который направлен перпендикулярно
плоскости, проходящей через точку О и
силу, в ту сторону, откуда сила видна
стремящейся повернуть тело вокруг точки
0 против хода часовой стрелки (рис. 8).

Плечом
силы

относительно точки 0 называется длина
перпендикуляра, опущенного из точки О
на линию действия силы

.

Mo(F)=F·h

Парой
сил

‑ называется система двух равных по
модулю, параллельных и противоположных
по направлению, сил, действующих на
абсолютно твердое тело (рис. 8).

Рис. 8

Плоскость,
проходящая через линии действия пары
сил, называется плоскостью действия
пары. Расстояние между линиями действия
сил пары называется плечом пары. Действие
пары сил на твердое тело характеризуется
ее моментом.

Моментом
пары сил

– называется вектор


,
модуль которого
равен
произведению модуля
одной
из сил пары на ее плечо
относительно точки приложения другой
силы пары и который
направлен перпендикулярно
плоскости действия
пары в ту сторону, откуда пара видна
стремящейся повернуть тело против хода
часовой стрелки (рис 8).

Модуль
момента
пары:

M
=
F·d

Свойство
пары сил
:
пару, не изменяя оказываемого ею на
твердое тело
действия, можно переносить куда угодно
в плоскости действия пары.

Алгебраические моменты силы и пары

Когда
все силы системы лежат в одной плоскости,
их моменты относительно любой точки А
на этой же плоскости перпендикулярны
этой плоскости, т.е. направлены параллельно
друг другу. В данном случае направления
этих моментов можно отличить одно от
другого знаком и рассматривать момент
силы

относительно точки А как алгебраическую
величину. Алгебраический момент силы

относительно точки А равен произведению
модуля силы на ее плечо:

mo(F)
=


F
h.

Алгебраический
момент силы считается положительным,
если сила пытается повернуть тело вокруг
точки А против хода часовой стрелки, и
отрицательным – по ходу часовой стрелки
(рис. 9).

Так,
для силы

на рис. 9 : MA=
+
F
h1

MB=
F
h2

Для
пар сил, лежащих в одной плоскости,
момент пары также можно рассматривать
как алгебраическую величину и условно
обозначать
символом М.
Правило знаков то же, что и для моментов
сил.

Следует
иметь в виду, что величина момента пары
сил не зависит от выбора точки, относительно
которой находятся моменты всех сил.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #

    30.04.20221.07 Mб0Учебник 309.docx

  • #
  • #
  • #
  • #
  • #
  • #
  • #

    30.04.20221.13 Mб0Учебник 315.docx

  • #
  • #
  • #

Пример №3. Консольная балка (жесткая заделка слева)

Определение опорных реакций

Согласно схеме решения задач статики определяем, что для нахождения неизвестных реакций необходимо рассмотреть равновесие балки.
1. На балку наложена связь в точке A (слева) типа жесткая заделка, поэтому освобождаем балку, заменив действие связи реакциями (HA, RA, MA).
2. Определим реакции опор в соответствии с уравнениями равновесия балки: ΣFx=0, ΣFy=0, ΣMA=0.
ΣFx=0: HA + P1*cos(30)=0
ΣFy=0: RA – q1*1.8 – P1*sin(30)=0;
ΣMA=0: MA – q1*1.8*(1.8/2) + M1 – 3*P1*sin(30)=0;
3. Решаем полученную систему уравнений, находим неизвестные:
HA=- P1*cos(30)=- 7*0.8660=-6.06 (кН), так как реакция отрицательна, на расчетной схеме направим ее в противоположную сторону.
RA=q1*1.8 + P1*sin(30)=2*1.8 + 7*sin(30)=7.10 (кН)
MA=q1*1.8*(1.8/2) – M1 + 3*P1*sin(30)=2*1.8*(1.8/2) – 19 + 3*7*sin(30)=-5.26 (кН*м), так как момент отрицателен, на расчетной схеме направим его в противоположную сторону.
4. Выполним проверку, составив дополнительное моментное уравнение отоносительно свободного конца балки:
– 3*RA – MA + q1*1.8*(1.2+1.8/2) + M1 + 0*P1*sin(30)=- 3*7.10 – 5.26 + 2*1.8*(1.2+1.8/2) + 19.00 + 0*7*sin(30)=0

Построение эпюр

Рассмотрим второй участок 1.8 ≤ x2

SOPROMATGURU.RU © 2022. Все права защищены Авторские права

iSopromat.ru

Пример решения задачи по расчету реакций опоры в жесткой (глухой) заделке стальной балки, нагруженной поперечной силой F, сосредоточенным моментом m и равномерно распределенной нагрузкой q.

Задача

Рассчитать величину и направление опорных реакций в жесткой заделке консольной балки нагруженной заданной системой внешних нагрузок.

Пример решения

Покажем значения нагрузок и продольные размеры балки, обозначим ее характерные сечения буквами A, B и C.

В случае плоского поперечного изгиба в жесткой заделке консольной балки могут иметь место только две опорные реакции:

  1. Поперечная сила R
  2. Изгибающий момент M

На данном этапе решения задачи эти реакции можно направить в любую сторону.

Короткое видео о реакциях в заделках:

Определим величину, а заодно и истинное направление опорных реакций.

Зададим систему координат y-z.

Для нахождения двух реакций нам понадобятся два уравнения равновесия.

Балка не перемещается вверх-вниз, поэтому сумма проекций всех сил на ось y должна равняться нулю.

Проецируя все силы на ось y получаем первое уравнение:

Откуда находим величину реакции R

Знак «-» в ответе говорит о том, что реальное направление реакции R противоположно выбранному вначале.

Поэтому изменим направление силы и соответственно ее знак на противоположные.

Второе уравнение статики получим из условия, что балка не вращается, так как сумма моментов приложенных к ней тоже равнв нулю.

Отсюда находим опорный момент M

Положительный результат показывает, что выбранное наугад направление момента М оказалось верным, то есть перенаправлять его не нужно.

Полученные значения опорных реакций можно легко проверить.

Для этого запишем уравнение суммы моментов относительно точки B или C:

и подставив в него полученные значения, мы должны получить сумму равную нулю

Так и есть! Значит опорные реакции определены верно.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Решение задач, контрольных и РГР

Стоимость мы сообщим в течение 5 минут
на указанный вами адрес электронной почты.

Если стоимость устроит вы сможете оформить заказ.

НАБОР СТУДЕНТА ДЛЯ УЧЁБЫ

– Рамки A4 для учебных работ
– Миллиметровки разного цвета
– Шрифты чертежные ГОСТ
– Листы в клетку и в линейку

Расчет прогиба балки методом начальных параметров

В этой статье будут рассмотрены основные нюансы расчета прогибов, методом начальных параметров, на примере консольной балки, работающей на изгиб. А также рассмотрим пример, где с помощью универсального уравнения, определим прогиб балки и угол поворота.

Теория по методу начальных параметров

Возьмем консольную балку, нагруженную сосредоточенной силой, моментом, а также распределенной нагрузкой. Таким образом, зададимся такой расчетной схемой, где присутствуют все виды нагрузок, тем самым, охватим всю теоретическую часть по максимуму. Обозначим опорные реакции в жесткой заделке, возникающие под действием внешней нагрузки:

Выбор базы и обозначение системы координат

Для балки выберем базу с левой стороны, от которой будем отсчитывать расстояния до приложения сил, моментов, начала и конца распределенной нагрузки. Базу обозначим буквой O и проведем через нее систему координат:

Базу традиционно выбирают с левого краю балки, но можно выбрать ее и справа. Тогда в уравнении будут противоположные знаки, это может пригодиться в некоторых случаях, упростит немного решение. Понимание, когда принимать базу слева или справа, придет с опытом решения задач на метод начальных параметров.

Универсальное уравнение прогибов для балки

После введения базы, системы координат и обозначении расстояний а, б, в, г записываем универсальную формулу, с помощью которой, будем рассчитывать прогиб балки (вертикальное перемещение сечения K, находящегося на свободном торце балки): Теперь поговорим об этой формуле, проанализируем так сказать:

  • E – модуль упругости;
  • I – момент инерции;
  • Vk – прогиб сечения K;
  • VO – прогиб сечения O;
  • θO – угол поворота сечения О.

Не буду приводить вывод этой формулы, не хочу отпугивать читателей, продвинутые студенты могут ознакомиться с выводом самостоятельно в учебнике по сопромату. Я только расскажу об основных закономерностях этого уравнения и как записать его для любой балки постоянного сечения.

Итак, изучаем эту формулу с лева направо. В левой части уравнения обознается искомый прогиб, в нашем случае Vk, который дополнительно умножается на жесткость балки — EI:В уравнении всегда учитывается прогиб сечения балки, совпадающего с нашей базой EIVO:

Также всегда учитывается угол поворота сечения совпадающего с выбранной базой. Причем, произведение EIθO всегда умножается на расстояние от базы до сечения, прогиб которого рассчитывается, в нашем примере — это расстояние г.

Следующие компоненты этого уравнения учитывают всю нагрузку находящуюся слева от рассматриваемого сечения. В скобках расстояния от базы до сечения отнимаются расстояния от базы до соответствующей силы или момента, начала или конца распределенной нагрузки.

Скобка, в случае с сосредоточенными силами, возводится в 3 степень и делится на 6. Если сила смотрит вверх, то считаем ее положительной, если вниз, то в уравнении она записывается с минусом:

В случае с моментами, скоба возводится во 2 степень и делится на 2. Знак у момента будет положительный, когда он направлен почасовой стрелке и отрицательным, соответственно, когда против часовой стрелки.

Учет распределенной нагрузки

Теперь поговорим о распределенной нагрузке. Как уже говорилось, в уравнении метода начальных параметров должно учитываться начало и конец распределенной нагрузки, но конец ее совпадает с сечением, прогиб которого мы хотим вычислить, поэтому в уравнение попадает только ее начало.

Причем важно, даже если бы в этом сечении была бы сила или момент, их бы так же не учитывали. Нас интересует все, что находится слева от рассматриваемого сечения.

Для распределенной нагрузки скобочка возводится в 4 степень и делится на 24. Правило знаков такое же, как и для сосредоточенных сил:

Граничные условия

Чтобы решить уравнение нам понадобятся еще кое-какие данные. С первого взгляда в уравнении у нас наблюдается три неизвестных: VK, V O и θO. Но кое-что мы можем почерпнуть из самой схемы. Мы знаем, в жесткой заделке не может быть никаких прогибов, и ни каких поворотов, то есть VO=0 и θO=0, это и есть так называемые начальные параметры или их еще называют граничными условиями. Теперь, если бы у нас была реальная задача, мы бы подставили все численные данные и нашли перемещение сечения K.

Если бы балка была закреплена с помощью шарнирно подвижной и неподвижной опоры, тогда мы бы приняли прогибы в опорах равными нулю, но угол поворота в опорах был бы уже отличен от нуля. Более подробно об этом рассказано в другой моей статье, посвященной методу начальных параметров на примере балки на двух опорах .

Чуть не забыл про еще одну величину, которую часто требуется определять методом начальных параметров. Как известно, при изгибе, поперечные сечения балок помимо того, что перемещаются вертикально (прогибаются) так еще и поворачиваются на какой-то угол. Углы поворота и прогибы поперечных сечений связаны дифференциальной зависимостью.

Если продифференцировать уравнение, которое мы получили для прогиба поперечного сечения K, то получим уравнение угла поворота этого сечения:

Пример расчета прогиба балки

Для закрепления пройденного материала, предлагаю рассмотреть пример с заданными численными значениями всех параметров балки и нагрузок. Возьмем также консольную балку, которая жестко закреплена с правого торца. Будем считать, что балка изготовлена из стали (модуль упругости E = 2·10 5 МПа), в сечении у нее двутавр №16 (момент инерции по сортаменту I = 873 см 4 ). Рассчитывать будем прогиб свободного торца, находящегося слева.

Подготовительный этап

Проводим подготовительные действия, перед расчетом прогиба: помечаем базу O, с левого торца балки, проводим координатные оси и показываем реакции, возникающие в заделке, под действием заданной нагрузки:

В методе начальных параметров, есть еще одна особенность, которая касается распределенной нагрузки. Если на балку действует распределенная нагрузка, то ее конец, обязательно должен находиться на краю балки (в точке наиболее удаленной от заданной базы). Только в таком случае, рассматриваемый метод будет работать. В нашем примере, нагрузка, как видно, начинается на расстоянии 2 м. от базы и заканчивается на 4 м. В таком случае, нагрузка продлевается до конца балки, а искусственное продление компенсируется дополнительной, противоположно-направленной нагрузкой. Тем самым, в расчете прогибов будет уже учитываться 2 распределенные нагрузки:

Расчет прогиба

Записываем граничные условия для заданной расчетной схемы:

VA = 0 при x = 6м

θA = 0 при x = 6м

Напомню, что нас, в этом примере, интересует прогиб сечения O (VO). Для его нахождения составим уравнение, для сечения A, в которое будет входить искомая величина:

В полученном уравнении, у нас содержится две неизвестные величины: искомый прогиб VO и угол поворота этого сечения — θO:

Таким образом, чтобы решить поставленную задачу, составим дополнительное уравнение, но только теперь, не прогибов, а углов поворотов, для сечения A:Из второго уравнения, найдем угол поворота:После чего, рассчитываем искомый прогиб:

Таким образом, свободный торец такой балки, прогнется практически на 6 см. Данную задачу, можно решить несколько проще, если ввести базу с правого торца. В таком случае, для решения потребовалось бы лишь одно уравнение, однако, оно было бы немного объемнее, т.к. включало реакции в заделке.

[spoiler title=”источники:”]

http://ssopromat.ru/raschet-progiba-balki-metodom-nachalnyh-parametrov/

[/spoiler]

Добавить комментарий