Как найти мономер полимера

Мономер представляет собой особое вещество, которое образуется после протекания определенной химической реакции. Также мономерами обозначает все повторяющиеся частицы, которые входят в состав полимерных молекул.

Отличие мономеров от полимеров При этом получение мономеров достигается в процессе полимеризации. У данных веществ есть классификация. Согласно ней, все мономеры различаются между собой согласно своей функциональности. Существует бифункциональные мономеры, в составе которых присутствует две группы, способные вступать в дальнейшем химические реакции.

Соответственно трифункциональные мономеры имеют свои особенности и больше возможностей. Но, с другой стороны, многофункциональность в мономерах невозможна, ведь данные вещества неспособны полимеризации. Благодаря особенностям своего строения они фактически прерывают полимерную цепь.

Однако, с другой стороны, мономеры все же могут использоваться во всех разбавителях и модификации в различных реакционных смесях.

Здесь всё зависит от:

  • условий, при которых протекают подобные реакции,
  • пропорций веществ,
  • специально созданной среды, позволяющей ускорить получение нужного результата.

Существуют и другие вещества, составной частью которых являются мономеры. Но если смешать между собой два мономера, которые способны самостоятельно вступать в реакции полимеризации, чистых цепей в итоге не получится.

Получение мономеров

Получение мономеровУдивительно, но некоторые вещества можно получить только в определённых лабораторных условиях. Это обусловлено тем, что химики знают, как правильно ускорять некоторые процессы и какое количество вещества для этого потребуется. Поэтому такие элементы, как органические мономеры, нуждаются в контроле над протеканием всей химической реакции, чтобы впоследствии образовались нужные компоненты.

Одним из самых распространенных методов, позволяющих получить мономеры, является реакция на перераспределения различных заместителей у атомов, присутствующих в кремнии. При этом данный метод представляет собой ценность ещё и потому, что позволяет осуществлять производство тех типов мономеров, получить которые практически невозможно, используя другие способы.

Ведь подобные реакции являются затратными с финансовой точки зрения. Во время подобных процедур израсходуются так же значительные объёмы электроэнергии. Из-за особенностей, которые присущи определённым химическим веществам, строение мономера представляет собой сложную систему, каждый из элементов которой занимает в ней своё собственное и правильное место. Чтобы создать нечто подобное в лабораторных условиях понадобятся химические вещества, позволяющие создать все условия для правильного протекания этого процесса.

Кроме того, существует и другой способ, благодаря которому можно получить мономеры. Суть второго процесса состоит в использовании пентапласта.

Почему при проведении нескольких последовательных химических реакций можно получить сырые мономеры. Завершающим этапом на пути к получению данного вещества является ректификация. Для протекания этого процесса необходимо создать определенную атмосферу из азота. Вся реакция происходит под вакуумом. Только так появляется возможность получить по консистенции необходимое вещество.

Существует также и другие лабораторные методы, позволяющие получать мономеры. Они в основном основаны на уже проведенных ранее исследованиях и зависят от определенных химических элементов, ускоряющих процессы проведения данных реакций.

Промышленность подобные методы не могут быть перенесены из-за объемов производства и больших затрат на приобретение всех необходимых для правильного протекания всех реакций химических веществ.

Преимущества мономеров

Преимущества мономеровВ самих мономерах существует несколько групп, позволяющих веществу находиться в определенном устойчивом состоянии. Поэтому не только полярные, но также неполярные группы способны оказывать значительное влияние на свойства защитного покрытия.

Все дело в том, что:

  • мономеры отличаются прочной структурой,
  • их зачастую используют для создания различных типов защитного покрытия,
  • химические вещества способны создавать новые элементы, если правильно провести соответствующие реакции.

В отличие от лабораторных методов, технически позволяют произвести синтез мономеров при меньших финансовых затратах. Важно так же понимать тот факт, что при создании подобных химических веществ особую роль играет переработка всевозможных элементов, относящихся к классам взрывоопасных. Поэтому при работе с подобными химическими веществами необходимо соблюдать все правила пожарной безопасности и четко следовать ранее установленным пропорциям составов, необходимых для последующего протекания реакций синтеза.

Применение мономеров

Применение мономеровКак уже было сказано выше, мономеры применяют для создания защитных покрытий. Однако сфера, в которой они используются, достаточно широка. Таким образом, из мономеров зачастую изготавливают некоторые ароматизированные вещества. С промышленной точки зрения подобные элементы важны.

Из некоторых типов мономеров впоследствии можно «собрать» более сложные вещества. Например, основанные на нескольких элементах полимеры вполне могут стать важной составляющей при производстве всевозможного сырья из нефти и подобных ей химических элементов.

Интерес к мономерам в последние годы значительно возрос из-за возможности их использования в различных сферах человеческой жизнедеятельности.

Для России данное вещество могло бы стать отличным способом значительно улучшить положение экономики. Ведь, если при помощи мономеров производить всевозможные защитные покрытия для различных типов поверхностей, не понадобится осуществлять их закупку за рубежом. Этот факт значительно снизит уровень затрат на организацию и проведение всевозможных химических реакций.

Наша страна богата всевозможными запасами природных ископаемых и различных по своей структуре химических элементов. Однако необходимо организовать процесс добычи необходимых для промышленности веществ – правильно. Нельзя бездумно использовать все дары природы, не привнося в неё ничего взамен.

На данный момент в нашем государстве происходит реорганизация большинства сфер промышленности. Это позволит заменить старое оборудование на заводах более совершенным и, таким образом, выйти на совершенно новый в экономическом плане уровень развития.

Если рассматривать процесс получения мономеров, то он является больше химическим, нежели технологическим. Так как реакции происходят без вмешательства специалистов. Они просто создают для и протекания благоприятную среду и в результате получают нужный им мономер.

В зависимости от способа получения данного вещества, его структура будет различной. Однако, если для промышленных целей необходимо использовать конкретный по своей структуре мономер, процесс его получения будет выбран соответствующий.

Картинка мономеры Так как Россия может себе позволить проводить подобные химические реакции в пределах узкоспециализированных предприятий, у страны появляется уникальная возможность стать лидером среди других, развивающихся в промышленном плане стран мира. С другой стороны, отрасль требует к себе особого внимания и дополнительных финансовых затрат, а также инвестиций, на проведение определённых опытов выявляющих новые и наиболее приемлемые для промышленности способы получения мономеров.

Только после этого можно будет работать с уже проверенными специалистами способами, позволяющими получить нужный мономер в лабораториях или же при необходимости прямо на заводах.

Кроме современных, существуют так же и отечественные технологии, которые основаны на более простых способах, позволяющих создать в результате протекания различных химических реакций нужное по составу вещество.

Но, несмотря на то, что данный процесс представляет собой ряд определённых реакций от последовательности которых зависит, будет ли результат положительным, важно изначально использовать только качественное сырьё.

Многие страны сталкиваются на данный момент с дешёвыми поддёлками, не способными обеспечить полноценное протекание определённых типов реакций. Удивительно, но узнать, является ли данное вещество оригиналом практически невозможно без применения дорогостоящих индикаторов.

Поэтому Россия стремится вытеснить подобных несознательных производителей, чтобы занять их место на мировых рынках. Всё дело в том, что отсутствие инвестиций в данную область сказывается на недостаточном изучении данной темы. Необходимо создать в промышленности отдельное направление, которое занималось ба решением всех проблем, связанных с получением мономеров в лабораторных условиях.

Формулы мономеровЧтобы такие страны как Россия смогли обеспечить полноценное изучение данной темы, необходимо приобретать сырьё по достаточно доступной для производителей стоимости. Ведь если исходная цена будет высокой, нет гарантии в том, что при последующем производстве мономеров расходы на его получение окупятся сполна.

Важно так же учитывать, что процесс создания подобных химических веществ должен быть простым. То есть, чтобы разработать защитное покрытие, нужно лишь учесть все этапы проведения реакций, которые в результате приведут нас к получению необходимого по консистенции вещества.

При этом нужно использовать незначительное количество исходного сырья. То есть, пропорции веществ должны быть рассчитаны правильно, чтобы не происходил перерасход материалов, принимающих участие в последующем промышленном производстве мономеров.

Но самым главным условием положительного результата выступает качество уже готовой продукции. Если она отличается от дешёвых товаров своей прочностью и долговечностью подобный производитель будет высоко цениться.

Фактически разные группы в мономерах осуществляют своё влияние на формирование и последующие функциональных характеристики большинства защитных покрытий. Важность здесь представляет их соотношение между собой. От него напрямую зависит конечный результат большинства реакций, направленных на получение мономеров, а также их дальнейшее использование в промышленности.

Поэтому производителям следует, прежде всего, задуматься над тем, что исходный состав веществ, который необходим для получения мономеров, должен быть правильно рассчитан. А если каждое вещество при этом будет состоять из качественных составных элементов, исчезнет необходимость в том, чтобы израсходовать химические вещества на производство некачественных товаров. При проведении химических реакций необходимо так же соблюдать все меры безопасности!

Таблица. Перечень мономеров, полимеров и их названий.

Заместитель Х Мономер Полимер
Н этен(этилен) полиэтен(полиэтилен)
СН3 пропен(пропилен) полипропен(полипропилен)
С1 хлорэтен(хлорвинил) полихлорвинил
СООН пропеновая (акриловая) кислота полиакрилат
СN акрилонитрил полиакрилонитрил
ОСН3 виниловый эфир поливиниловый эфир
О-СО-СН3 винилацетат поливинилацетат
С6 Н5 фенилэтен (стирол) полистирол

Для характеристики высокомолекулярных соединений необходимо рассмотреть следующие основные структурные  понятия.

Мономер

Мономеры — низкомолекулярные вещества, из которых образуются молекулы полимеров.

Молекулы полимеров являются макромолекулами.

Например, пропилен СН2=СH–CH3 является мономером полипропилена:

а такие соединения, как α-аминокислоты, служат мономерами при синтезе природных полимеров – белков (полипептидов):

Полимер, макромолекула

Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть).

Например, полиэтилен, получаемый при полимеризации этилена CH2=CH2:

… -CH2-CH2-CH2-CH2-CH2-CH2-CH2— …  или   (-CH2-CH2-)n

Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный).

Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц массы.

Структурное звено полимера (мономерное звено)

Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.

… -CH2-CHCl- CH2-CHCl-CH2-CHCl-CH2-CHCl-CH2-CHCl- …

поливинилхлорид

В формуле макромолекулы это звeно обычно выделяют скобками:

(-CH2-CHCl-)n

По строению структурного звeна макромолекулы можно сказать о том, какой мономер использован в синтезе данного полимера и, наоборот, зная формулу мономера, нетрудно представить строение структурного звeна.

Строение структурного звена соответствует строению исходного мономера, поэтому его называют также мономерным звеном.

Степень полимеризации

Степень полимеризации (n)— число, которое показывает, сколько молекул мономеров соединяются в макромолекулу полимера.

В формуле макромолекулы степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено:

n >> 1

Для синтетических полимеров, как правило, n ≈ 102-104; а самые длинные из известных природных макромолекул – ДНК (полинуклеотидов) – имеют степень полимеризации n ≈ 109-1010.

Молекулярная масса макромолекулы и полимера

Молекулярная масса макромолекулы связана со степенью полимеризации соотношением:

М(макромолекулы) = M (звена) × n,

где n – степень полимеризации,
      M – относительная молекулярная масса
(подстрочный индекс r в обозначении относительной молекулярной массы Мr в химии полимеров обычно не используется).

Для полимера, состоящего из множества макромолекул, понятие молекулярная масса и степень полимеризации имеют несколько иной смысл. Дело в том, что когда в ходе реакции образуется полимер, то в каждую макромолекулу входит не строго постоянное число молекул мономера. Это зависит от того, в какой момент прекратится рост полимерной цепи.

Поэтому в одних макромолекулах мономерных звеньев больше, а в других — меньше. То есть, образуются макромолекулы с разной степенью полимеризации и, соответственно, с разной молекулярной массой (так называемые полимергомологи).

Следовательно, молекулярная масса и степень полимеризации полимера являются средними величинами:

Mср(полимера) = M (звена) × nср

Геометрическая форма макромолекул

Геометрическая форма макромолекулы — пространственная структура макромолекулы в целом.

В зависимости от строения углеродной цепи, различают линейные (неразветвленные), разветвленные и пространственные (сетчатые, сшитые) полимеры.

Линейная форма (структурные звенья соединены в длинные цепи последовательно одно за другим) — натуральный каучук, целлюлоза, амилоза (составная часть крахмала), поливиниловый спирт, полистирол, полиэтилен низкого давления, капрон, найлон и др. полимеры:

Разветвленная форма (макромолекулы разветвленных полимеров – это длинные цепи с короткими боковыми ответвлениями) — полиэтилен высокого давления, амилопектин (компонент крахмала):

Пространственная форма (сетчатая, сшитая), при которой длинные линейные молекулы соединены между собой поперечными химическими связями – шерсть, вулканизованный каучук (резина), фенолформальдегидные смолы:

В сетчатых полимерах различные углеродные цепи «сшиты» между собой, и вещество представляет собой одну гигантскую молекулу.

Геометрическая форма макромолекул в значительной степени влияет на свойства полимеров.

Высокомолекулярные соединения (ВМС)

Мономе́р (др.-греч. μόνος «один» + μέρος «часть») — низкомолекулярное вещество, образующее полимер в реакции полимеризации; а также повторяющиеся звенья (структурные единицы) в составе полимеров.

Низкомолекулярные полимеры, образованные из небольшого количества мономеров и способные, в свою очередь, к полимеризации, принято называть олигомерами.

Способность к полимеризации в основном обусловлена наличием двойных связей в их молекулах.

Мономеры различают по функциональности. Бифункциональными называют мономеры, имеющие две реакционноспособные функциональные группы. Трифункциональными — соответственно три и т. д. Строго говоря монофункциональными мономеры быть не могут, так как такие вещества не способны к полимеризации, «обрывая» растущую полимерную цепь, но всё же могут использоваться для модификации молекулярной массы и молекулярно-массового распределения готового полимера и в качестве «активных разбавителей» для модификации технологических свойств реакционной смеси.

Функциональность мономера не является постоянной величиной и зависит от условий проведения реакции. Например в реакциях с эпоксидными или глицидиловыми группами глицерин при температурах ниже 80 °C проявляет себя как бифункциональный мономер. При температурах выше 120 °C — как трифункциональный. Бифункциональные мономеры образуют линейные (строго говоря — линейно-разветвлённые) полимеры. Трифункциональные и с более высокой функциональностью — сетчатые, «трёхмерные», характеризующиеся неплавкостью и нерастворимостью. Функциональность может быть и дробной величиной, если вычисляется по уравнению скорости реакции:

V=k*(C_a)^a*(C_b)^b, где:

V — скорость реакции, моль/с;
k — константа скорости реакции, моль/с;
{displaystyle C_{a}} — концентрация мономера «а», моль вещества/моль реакционной массы;
{displaystyle C_{b}} — концентрация мономера «b», моль вещества/моль реакционной массы;
a — функциональность мономера «а»;
b — функциональность мономера «b».

Другие низкомолекулярные вещества принято называть димерами, тримерами, тетрамерами, пентамерами и т. д., если они, соответственно, состоят из 2, 3, 4, и 5 мономеров. Приставку «олиго-» (сахариды, меры, пептиды) добавляют в общем случае, когда полимер состоит из небольшого количества мономеров.

Смешение двух мономеров А и Б, способных к самополимеризации и способных к взаимной реакции никогда не даёт ни регулярного чередования звеньев (-АБАБАБАБАБ-) ни абсолютно чистых цепей (-ААААААА- + -ББББББ-). Строение полученного сополимера зависит от четырёх констант реакций: константы реакции самополимеризации каждого из мономеров А и Б и констант реакции первого со вторым и второго с первым[прояснить].

  • Если константа реакции сополимеризации мономера А значительно выше Б, то мы получим полимер вида: (-А(А)nАБ(Б)mБ-) с редкими вкраплениями А в Б и Б в А.
  • Если константа реакции сополимеризации мономера А близка к Б, то мы получим полимер блочного вида: (-АААБББАААБББ-), причём величина блоков будет зависеть от отношения константы взаимной полимеризации к константе самополимеризации. Чем это величина больше — тем чаще происходит чередование мономеров.
  • В случае, если константы реакции сополимеризации мономеров значительно различаются, технологически гораздо проще получить пластик с заданными свойствами простым механических смешением готовых гомополимеров.

Примеры[править | править код]

Мономеры могут быть как органическими, так и неорганическими.

Примерами неорганических полимеров являются красный фосфор, селен.

Примерами органических мономеров могут служить молекулы ненасыщенных углеводородов, таких как алкены и алкины. К примеру, полимеризация этилена приводит к образованию широко известной пластмассы — полиэтилена.

Также в промышленности широко используют акриловые мономеры — акриловую кислоту, акриламид.

В результате полимеризации природных мономеров — аминокислот, образуются белки. Мономеры глюкозы образуют различные полисахариды — гликоген, крахмал.

    В данной книге описываются способы получения акриловых мономеров, их полимеризация, свойства и методы анализа полимеров и сополимеров, а также способы их переработки. [c.4]

    Современная техника полимеризации предъявляет большие требования к чистоте исходных мономеров. Наличие даже небольших количеств примесей отражается как на кинетике процессов полимеризации и сополимеризации, так и на структуре полимеров и сополимеров. Чистота мономеров приобретает особое значение, если полимер предназначен для применения в качестве диэлектрика. Для характеристики качества мономеров применяются химические, физические и физикохимические методы анализа. [c.252]

    ОБЩИЕ МЕТОДЫ АНАЛИЗОВ МОНОМЕРОВ И ПОЛИМЕРОВ [c.22]

    Наряду с общими методами анализа мономеров и полимеров приводятся анализы отдельных видов сырья многоатомных спиртов, альдегидов, карбоновых кислот, производных бензола, азотсодержащих соединений и пластификаторов анализ отдельных видов полимеров полистирола, поливинилового спирта, феноло-формальдегидных смол, фенопластов, мочевино-формальдегидных смол. Описаны теплофизические, физико-механические и электрические испытания пластмасс. [c.2]

    Концентрации мономера, находящегося в равновесии с живым (т. е. растущим) полимером, очень малы и могут быть определены только спектральными методами анализа. Например, равновесная концентрация стирола в реакционной системе стирол — полистирол следующая  [c.259]

    Газожидкостная хроматография представляет собой очень ценный метод анализа низкомолекулярных соединений, например мономеров, различного вида добавок, растворителей. Трудность использования этого метода для анализа полимеров заключается в том, что большинство макромолекул даже при повышенных температурах имеют слишком низкое давление паров, чтобы проходить через колонки такого типа. Частично эту проблему удается решить путем применения пиролитической газовой хроматографии (разд. 34.15). [c.15]

    Широкое использование и высокие темпы роста производства полимеров обусловлены, в первую очередь, разнообразием их физических, химических и механических свойств. Для направленного изменения свойств, т. е для установления связи состав — структура — свойства необходимо владеть знаниями о структуре полимеров и способах се регулирования в процессе синтеза. Решение этой задачи требует серьезного анализа и обобщения обширной информации в области химии и физики поли.меров, накопленной за последние годы Отбирая эту информацию для учебного пособия, авторы руководствовались те.м, что в какой бы области полимерной науки и технологии ни работал специалист, он должен владеть знаниями не только в этой области. Действительно, современный химик-синтетик должен знать не только методы синтеза мономеров и полимеров, но и хорошо разбираться в том, как свойства получаемого им полимера зависят от химической природы исходных веществ— мономеров. Исследователь, занимающийся физикой и механикой поли.меров, должен иметь четкое представление об их химическом строении. Наконец технолог, работающий в области переработки полимеров, должен знать и химию полимеров, и их физические и эксплуатационные свойства, а также свойства их растворов. [c.5]

    Однако газо-хроматографические методы применяются далеко не всегда в оптимальном варианте, и использование их для решения различных проблем химии полимеров очень неравномерно. Наиболее широко газовая хроматография используется в тех областях, где формы ее применения являются традиционными. Так, газовая хроматография является основным методом анализа при определении примесей в мономерах и растворителях для полимеризации и широко используется при изучении летучих продуктов деструкции. В гораздо меньшей степени используется газовая хроматография для исследования термодинамики взаимодействия летучих стандартных соединений с высокомолекулярными соединениями методом обращенной газовой хроматографии. Пиролитическая газовая хроматография, в которой исследуемая полимерная система характеризуется спектром летучих продуктов пиролиза, является, пожалуй, единственным примером метода, разработанного совместно исследователями, работающими в газовой хроматографии и в полимерной химии, метода, широко используемого для идентификации полимеров, количественного анализа сополимеров и их строения. Однако можно не сомневаться, что в ближайшее время будут разработаны и другие варианты газо-хроматографического метода специально для исследования полимеров. [c.6]

    В современной промышленности синтетических каучуков все шире используются физические и физико-химические методы анализа. Одним из таких методов является спектрофотометрия в ультрафиолетовой области спектра, применяемая для анализа самых разнообразных продуктов производства (определение примесей в мономерах и различных полупродуктах, изучение состава ряда полимеров, определение содержания различных ингредиентов в каучуках), для контроля некоторых процессов сополимер изации и т. д. В ряде случаев этим методом можно пользоваться для идентификации некоторых соединений и расшифровки состава образцов синтетического каучука. [c.2]

    В книге описываются способы получения и технология производства мономеров, их полимеризация, свойства и методы анализа полимеров и сополимеров, подробно рассматриваются способы переработки полимеров и сополимеров. [c.335]

    В книге отражены основные направления применения газовой хроматографии в химии полимеров анализ мономеров и растворителей, изучение процессов образования полимеров, исследование деструкции высокомолекулярных соединений, изучение полимеров методом пиролитической и обращенной хроматографии. Рассмотрены работы, опубликованные вплоть до 1970 г. [c.4]

    Метод применяется в основном для анализа линейных полимеров, полученных поликонденсацией или полиприсоединением. Его можно применять также для анализа полимеров, полученных радикальной полимеризацией, при наличии у них доступных анализу концевых групп (например, меченых инициаторов и передатчиков цепи). При этом следует учитывать механизм обрыва и возможность передачи цепи на мономер, поскольку [c.201]

    В заключение отметим, что в настоящее время методы анализа летучих компонентов в полимерных системах разработаны достаточно подробно и газовая хроматография может рассматриваться как основной метод анализа растворителей, мономеров, пластификаторов в полимерах. Главной задачей в этой области, по нашему мнению, являются выбор оптимальных методов и разработка стандартных методик газо-хроматографического анализа. [c.145]

    Количественные методы определения мономеров после извлечения их из смеси с полимерами обычно основываются на тех же реакциях, что и анализ соответствующих классов низкомолекулярных органич. веществ. Ниже рассматриваются аналитич. реакции, применяющиеся для количественного определения наиболее распространенных мономеров — виниловых соединений. [c.68]

    Ранние исследования по хроматографии аминокислот и пептидов показали, что для сокращения продолжительности анализа необходимы смолы с малым размером зерна, поскольку в этом случае быстрее достигается состояние равновесия между аминокислотами и окружающим раствором. (Трудности с получением воспроизводимых результатов от партии к партии встречаются даже при использовании смол с размером зерна менее 400 меш.) Размалыванием такого сферического полимера получают мельчайшие порошкообразные частицы, улучшающие разделение и позволяющие ускорить анализ. Однако выход целевого продукта чрезвычайно мал и, кроме того, требуется очистка смолы от примесей. Сферические смолы, полученные специфическими методами из мономеров, позволяют еще в большей степени сократить время анализа и улучшить разделение [88]. [c.19]

    Вторая группа включает многочисленные патенты на радиационные методы синтеза привитых полимеров. Анализ этих патентов показывает, что радиационная прививка может осуществляться не только путем облучения системы полимер—мономер, но и путем взаимодействия предварительно облученного полимера с мономером, находящимся в жидкой или газовой фазе. Как и при радиационной полимеризации, в систему не требуется вводить инициаторы или какие-либо другие вещества. На стадию инициирования мало влияет изменение температуры. Вместе с тем [c.6]

    За последнее десятилетие гигиенические свойства ряда полистирольных пластиков улучшились и некоторые из них сейчас соответствуют гигиеническим требованиям, предъявляемым органами здравоохранения. Для определения токсичных мономеров и примесей в соответствии с возрастающими требованиями разрабатывались все более чувствительные и специфичные методы анализа. Однако, чтобы полностью исключить опасность отрицательного влияния полистирольных пластиков на здоровье ныне живущих людей и будущих поколений, необходима еще длительная работа по улучшению качества этих полимеров. При этом наиболее актуальной задачей производства и переработки полистирольных пластиков по-прежнему остается снижение содержания остаточных мономеров до такой степени, чтобы выделение их в окружающую среду не превышало гигиенических норм, а также более тщательная очистка мономеров от примесей. [c.68]

    Следовательно, для изучения аддиционных полимеров метод анализа концевых групп, как правило, непригоден. Однако некоторые специально создаваемые полимеры можно исследовать этим методом. Так, Прайс с сотрудниками [10] инициировали полимеризацию различных мономеров винилового ряда при помощи бромпроизводных перекиси бензоила (типичного инициатора радикальной полимеризации) и определили содержание брома в получившемся полимере. Эванс [11] полимеризовал виниловые мономеры при помощи системы перекись водорода — ион двухвалентного железа (реактив Фентона) и определял в полимерах содержание гидроксильных групп. Неопределенность в отношении механизма обрыва, о которой упоминалось выше, существует и для этих реакций, поэтому лучшим методом является использование передатчика цепи, содержащего группировку, которую легко определить анализом. Аллен [12] синтезировал полиметилметакрилат низкого молекулярного веса, применяя в качестве передатчика цепи трет-бутилмеркаптан, причем полимеризация проводилась в таких условиях, что каждая молекула полимера получалась при инициировании радикалом, образовавшимся из передатчика цепи. Молекулярный вес затем легко определяли по результатам анализа на серу. [c.278]

    Спектрометрический метод анализа в ИК-области можно использовать для определения молекулярной массы полимеров и их идентификации для определения содержания мономеров в полимерах, для анализа сополимеров и изучения процессов старения полимеров. [c.211]

    Этот метод пригоден также для идентификации полимеров в вулканизатах и резинах. Растворимость образца не имеет значения. Вулканизаты и резину можно анализировать, не удаляя наполнитель и ингредиенты, применяемые при вулканизации, однако следует иметь в виду, что они могут несколько исказить результаты. Метод дает менее надежные результаты при анализе смесей полимеров и сополимеров олефинов с мономерами иной природы. Так как метод рекомендуется применять только для идентификации полиолефинов, то полезно до проведения хроматографического анализа продуктов пиролиза убедиться путем элементного анализа в том, что исследуемый полимер, не содержит иных соединений. Пиролиз полимера проводится на установке, описанной на стр. 35 (см. рис. 10). [c.96]

    Вторая группа методов связана с характеристикой качества полимеров. Эти методы анализа являются специфичными для каждого полимера и сополимера. Качество полимера и сополимера зависит от содержания остаточного мономера и растворителя, присутствия таких соединений, как пластификаторы, стабилизаторы и т. д. [c.209]

    Тематический сборник по методам анализа мономеров и полимеров акрилового ряда. подготовлен к изданию впервые. До сих пор не было практического руководства, посвященного специально методам анализа акрилатов и метакрилатов. В 1967 г. в издательстве Химия вышла книга Анализ иолимеризационных пластмасс , которая содержит главу по анализу акриловых соединений. Однако объем представленного в этой главе материала недостаточен для того, чтобы книгу можно было использовать как пособие при анализе акрилатов. [c.11]

    Для количественного определения содержания элементов, мономеров и функциональных групп широко применяют физико-химические и физические методы анализа. Однако и химические методы еще не утратили своего значения. В табл. 10.4 перечислены некоторые химические методы, используемые в производстве полимеров. Влажность может быть определена гравиметрическим методом — высушиванием образца полимера до постояной массы в сушильном шкафу или с помощью ИК-нагревателя. В третьей части книги приведены примеры химических методов аналитического контроля в производстве пластмасс (см. гл. 18). [c.225]

    В частности, даны полные сведения, касающиеся физических и химических свойств изобутилена, методов синтеза и анализа мономера. Предпочтение отдается последним достижениям, связанным с использованием ионообменных смол – катионных катализаторов для реакций изобутиленового сырья со спиртами как первой стадии получения высокочистого мономера и одновременно основной реакции получения алкилтретбутиловых эфиров – экологически чистых антидетонационных добавок к топливам. Проанализированы и обсуждены данные по кинетике и термодинамике реакций, оптимизации процессов. Расширены сведения о нетрадиционном способе получения изобутилена – термокаталитической деструкцией изобутиленсодержащих и других углеводородных полимеров (олигомеров), где параллельно решается проблема утилизации нестандартных продуктов. Дополнены ранее известные данные по некоторым химическим свойствам и лабораторным методам синтеза изобутилена, обсуждены промышленные варианты процессов. [c.377]

    Метод высокоэффективной жидкостной хроматографии, предназначенный для определения мономерной акриловой кислоты в различных природных, в том числе загрязненных, водных системах и полиакрилатах, рассмотрен в работе [1863]. Хроматографический метод, позволяющий определять остаточное содержание бутилакрилата, метилакрилата и метакриловой кислоты в изопропиловых растворах акрильных полимеров, описан в работе [1864]. Обзор хроматографических методов, применяемых для анализа мономеров в акрилатных полимерах, приведен в табл. 67. [c.366]

    Наиболее широко неводные растворы применяются в анализе кремнийорганических мономеров и полимеров. Кремнийорганичес-кие соединения (КОС) в отличие от многих неорганических и органических соединений не растворяются в воде и в водных растворах кислот и оснований подавляющее большинство этих соединений гидролизуется водой, претерпевая при этом весьма существенные изменения. Поэтому известные химические и физико-химичес-кие методы анализа, разработанные для анализа водных растворов неорганических и органических веществ, непригодны для анализа КОС. Наиболее перспективным способом анализа КОС являются методы, основанные на титровании их в неводных растворах. [c.165]

    Точность определения молекулярных масс можно увеличить, применяя микротитрование, особо чистые мономеры для синтеза полимеров и т. п. Анализ концевых групп полимера может быть осуществлен как в твердом состоянии, так и в растворах, что, в сочетании с лррстотой метода, вызвало большой интерес к этому способу определения молекулярных масс и привело к значительному усовершенствованию самих методов анализа, а также [c.110]

    Из деструкционных методов большое распространение получило пиролитич. расщепление полимеров. Многие полимеры, полученные полимеризацией, при нагревании деструктируют по цепному механизму до исходного мономера (полиметилметакрилат дает мономер с выходом 95%, политетрафторэтилен — с выходом 95% и т. п.), что позволяет легко идентифицировать иолимер при помощи физич. методов анализа. Недостаток пиролитич. метода — побочные реакции, приводящие к образованию сложной смеси коночных нродуктов. Ограни-ченпость применения деструкциолных методов вообще связана с неполнотой наших знаний о механизме процессов деструкции полимеров. [c.399]

    Стирол и акрилонитрпл чистотой 99 % применяют как исходные продукты для производства синтетических веществ, в частности, как компоненты для синтеза некоторых сортов каучука. Однако они содержат загрязнения, которые оказывают влияние на процесс полимеризации и па свойства полимера, если их концентрация составляет больше 0,1%. Как установил Охлингер [1], достаточно, например, чтобы в стироле, применяемом для получения полимеров, содержалось около 0,01% дивинилбензола, чтобы он стал непригодным для этой цели. Необходимо поэтому изучать влияние посторонних веществ в техническом продукте па полимеризацию и на свойства продукта полимеризации, для этого нужно глубоко и всесторонне анализировать мономеры. В стироле может находиться в качестве примесей 26 и более комиопентов, а в акрилонитриле — обычно около 10—И. В таких случаях газовая хроматография является лучшим методом анализа по сравнению с другими методами. Она позволяет при небольших затратах времени провести разделение смеси с более точной идентификацией ее отдельных компонентов. [c.84]

    Полярографический метод анализа применен авторами данной книги для исследования кинетики процессов полимеризации и сополимеризации ряда мономеров (акрилонитрила, стирола, а-метилстирола, эфиров акриловой и метакриловой кислот), анализа поливинилацеталей, альдегидов, перекисей, гидроперекисей, нитробензола и других соединений, а также для определения остаточных мономеров в полимерах и сополимерах. [c.39]

    Химические методы анализа полимеров и сополимеров, разработанные в НИИПМ, обобщены в книге Т. Н. Кастериной и Л. С. Калининой Работы по применению физико-химических методов анализа полимеров были начаты Б. П. Ершовым. Им был разработан метод высокочастотного кислотно-щелочного титрования для анализа сырья и полупродуктов для определения содержания мономеров в смолах , для определения содержания 3,5-ксиленола в техническом ксиленоле [c.197]

    Важной особенностью метода является возможность определения микропримесей в различных веществах и материалах. Это делает метод незаменимым при анализе мономеров, сточных ВОД, растворителей, полимеров и др. [c.4]

    Таким методом получены низкомолекулярные полимеры [27, 28] предпочтительные растворители тетрагидрофуран и бензол. В зависимости от природы амида металла (калия, натрия, лития), температуры реакции, порядка добавления реагентов и молярного отношения металл/мономер были получены полимеры с различным отношением аг/г/ [18]. Элементарный анализ показал, что полимеры содержат углерод, водород, хлор, азот и кислород. Наличие азота и кислорода обусловлено концевыми аминометиль-ными, карбоксильными и карбомидными группами [18]. Был предложен следующий механизм реакции [27, 31]  [c.24]

    В работе [593] при помощи метода спектроскопии ЯМР высокого разрещения проведен анализ ряда полимеров и сополимеров этилена. Были определены качественно и количественно различные сополимеры этилена на основе таких мономеров, как этилакрилат и винилацетат. Данные анализа, полученные методом ЯМР, хорошо сравнимы с результатами анализа методами пиролитической газовой хроматографии и нейтронноактивационного анализа на присутствие кислорода. В этой же работе показано, что методом ЯМР можно определить молекулярную массу и степень разветвленности ряда гомополимеров [c.165]

    Для изучения процесса полимеризации, а также для контроля качества найлона 6 необходим экспресс-метод определения мономера (е-капролактама) и олигомеров в этом полимере. Большинство методов анализа, описанных в литературе, требуют много времени. Как правило, они основаны на определении разности масс и предусматривают экстракцию мономера и олигомеров из образца горячей водой с последующей сушкой остатка. В работе [611] равновесное содержание этих продуктов определяли методами ИК- и УФ-спектроскопии, причем оценивались различия в результатах по сравнению с данными, полученными методом экстракции водой. Для анализа мономера использовали основные полосы при 870 см-> и 196 нм. В работе [612] описано прямое определение содержания циклического олигомера в присутствии мономера методом ИК-спектроскопии. Этот метод включает испарение водного экстракта найлона 6 и растворение остатка в тетрафторпропаноле с последующим измерением поглощения при 6,4 мкм (деформационные колебания NH-гpyппы в олигомере). [c.547]

    В связи с возросшими требованинми к чистоте полимеров в сборнике представлены методы определения примесей в мономерах, в исходных соединениях и в полимерах. Для анализа одних к тех же веществ предлагаются различные методы (инструментальные или химические), что позволяет подбирать методику в зависимости от оснащения лаборатории. Общие методики анализа мономеров подробно описаны только для одного мономера в остальных случаях отмечаются только те изменения, которые необходимо внести при анализе данного мономера. [c.12]


Полимер — высокомолекулярное
соединение, вещество с большой молекулярной
массой (от нескольких тысяч до нескольких
миллионов), состоит из большого числа
повторяющихся одинаковых или различных
по строению атомных группировок —
составных звеньев, соединенных между
собой химическими или координационными
связями в длинные линейные или
разветвленные цепи, а также пространственные
трёхмерные структуры. Часто в его
строении можно выделить мономер —
повторяющийся структурный фрагмент,
включающий несколько атомов. Полимер
образуется из мономеров в результате
реакций полимеризации или поликонденсации.
К полимерам относятся многочисленные
природные соединения: белки, нуклеиновые
кислоты, полисахариды, каучук и другие
органические вещества. В большинстве
случаев понятие относят к органическим
соединениям, однако существует и
множество неорганических полимеров.
Большое число полимеров получают
синтетическим путём на основе простейших
соединений элементов природного
происхождения путём реакций полимеризации,
поликонденсации и химических превращений.

Вопрос 11.Мономеры.

Мономер(с греч. mono “один” и
meros “часть”) — это небольшая молекула,
которая может образовать химическую
связь с другими мономерами и составить
полимер.Стоит отметить, что другие
низкомолекулярные вещества принято
называть димерами, тримерами, тетрамерами,
пентамерами и т.д., если они, соответственно,
состоят из 2, 3, 4, и 5-ти мономеров. Приставку
олиго- (сахариды, меры, пептиды) добавляют
в общем случае, когда полимер состоит
из небольшого количества мономеров.

Мономеры могут быть как органическими,
так и неорганическими.

Примерами органических мономеров могут
служить молекулы углеводородов, такие,
как алкены и арены. К примеру, полимеризация
этена приводит к образованию такой
широко известной пластмассы, как
полиэтилен. Липиды также являются
составленными из мономеров жирных
кислот и глицерина. Также в промышленности
широко используют акриловые мономеры
— акриловую кислоту, акриламид.В
результате полимеризации природных
мономеров — аминокислот, образуются
белки. Мономеры глюкозы образуют
различные полисахариды — гликоген,
крахмал.

Вопрос 12.Периодическая система.

Периодическая система химических
элементов (таблица Менделеева)

классификация химических элементов,
устанавливающая зависимость различных
свойств элементов от числа протонов в
атомном ядре. Система является графическим
выражением периодического закона,
установленного русским химиком Д. И.
Менделеевым в 1869 году. Её первоначальный
вариант был разработан Д. И. Менделеевым
в 1869—1871 годах и устанавливал зависимость
свойств элементов от массового числа
атомов (или их атомной массы). Всего
предложено несколько сот вариантов
изображения периодической системы
(аналитических кривых, таблиц,
геометрических фигур и т. п.). В современном
варианте системы предполагается сведение
элементов в двухмерную таблицу, в которой
каждый столбец (число столбцов составляет
8) определяет основные физико-химические
свойства, а строки представляют собой
периоды, в определённой мере подобные
друг другу.

Соседние файлы в папке КСЕсамост

  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий