1.Если производная функции y
= f(x)
положительна (отрицательна) во всех
точках промежутка, то функцияy
= f(x)
монотонно возрастает (убывает)на этом промежутке.
2.Точкаx0называется точкоймаксимума (минимума)
функцииy = f(x),
если существует интервал, содержащий
точкуx0, такой,
что для всехxиз этого
интервала имеет место неравенствоf(x0)≥ f(x),(f(x0)≤ f(x)).
Точки максимума и точки минимума
называются точкамиэкстремума.
3. Необходимое условие экстремума:
в точке экстремума функции ее производная
либо равна нулю(f
′(x)=0), либо
не существует.
4.Первое достаточное условие
экстремума: если в точке x0функцияy = f(x)
непрерывна, а производная f
′(x)при
переходе через точкуx0меняет знак, то точкаx0– точка экстремума: максимума, если
знак меняется с «+» на «-», и минимума,
если с «–» на «+».
Если при переходе через точку x0производная не меняет знак, то в точкеx0экстремума нет.
5.Второе достаточное условие
экстремума: если в точкеx0
,
а
,
тоx0является точкой
максимума функции. Если
,
а
,
тоx0является точкой
минимума функции.
6.Схема исследования функции
на экстремум:
1) найти производную
;
2) найти критические точки функции, в
которых производная равна нулю или не
существует;
3) исследовать знак производной слева
и справа от каждой критической точки и
сделать вывод о наличии экстремумов
функции;
4) найти экстремальные значения функции.
При исследовании функции на экстремум
с помощью 2-го достаточного условия п.
1), 2), 4) сохраняются, а в п. 3) необходимо
найти вторую производную
и определить ее знак в каждой критической
точке.
7.Чтобы найтинаибольшее и наименьшее
значение(глобальный максимум и
минимум) функции
на отрезке [a,b]
следует выбрать наибольшее (наименьшее)
из значений функции в критических
точках, находящихся в интервале (a,b)
и на концах отрезка (в точкахaиb).
8.Если дифференцируемая на интервале
(a,b) функция
имеетединственнуюточку экстремума,
то в этой точке достигается наибольшее
или наименьшее значение (глобальный
максимум или минимум) функции на интервале
(a,b).
8.35. Найти интервалы монотонности
и экстремумы функции.
Решение. В соответствии со схемой
исследования (п. 6) найдем
.Очевидно, производная существует при
всех значенияхx. Приравниваяy′ к нулю, получаем
уравнение
откудаи– критические точки. Знаки производной
имеют вид (рис. 8.1):
Рис. 8.1
На интервалах
ипроизводная
и функция возрастает, на интервалеи функция убывает;
Рис. 8.2
– точка максимума и– точка минимума и,
так как при переходе через эти точки
производная меняет свой знак соответственно
с «+» на «-» и с «-» на «+».
Замечание.Установить
существование экстремума в критических
точкахи,
в которых
можно было и с помощью второй производной
(см.
п. 5). Так как
,
а
,
то– точка максимума, а– точка минимума.
График данной функции схематично показан
на рисунке 8.2.
8.36. Найти экстремумы и интервалы
монотонности функции.
Решение..
Производная существует во всех точках,
в которых существует и сама функция,
т.е. при x> 0. Точки, в
которых производная обращается в нуль,
задаются равенствамиlnx=0,lnx-1
= 0, откудаx1 =1,x2
= е – критические точки. Знаки
производной указаны на рис. 8.3.
Рис.8.3
Таким образом, функция монотонно
возрастает на промежутках (0;1) и (е;+)
и монотонно убывает на промежутке (1;е).
Точкаx= 1 – точка максимума
и,
точка х = е – точка минимума и.
8.37. Найти экстремумы и интервалы
монотонности функции
Решение..
Производная не существует приcosx=1 т.е. прии равна нулю при.
Знак производной совпадает со знакомsin(x); таким
образом у’ >0 прииy'<0 при.
Это, соответственно, интервалы возрастания
и убывания функции.– точки максимума,– точки минимума.
8.38. Найти наибольшее значение
(глобальный максимум) функциина интервале (10;18).
Решение. Найдем.
На интервале (10;18) имеется всего одна
критическая точкаx= 6.
Производная при переходе через эту
точку меняет знак с «+» на «-», т.е.x= 6 – точка максимума. Следовательно,
функция достигает наибольшего значения
приx= 16, т.е..
(Заметим, что наименьшего значения
(глобального минимума) данной функции
на указанном интервале не существует.)
8.40. Забором длиной 24 метра требуется
огородить с трех сторон прямоугольный
палисадник наибольшей площади. Найти
размеры палисадника.
Решение.Пусть длины сторон палисадникаx,y. Тогда
2x+y= 24, т.е.y= 24-2x.
Площадь палисадникаS=xy=x(24-2x)
= 24x-2x2,
где 0<x<12 (ибо 24-2x>0).
Таким образом, задача свелась к отысканию
значенияx, при которомS(x) принимает
наибольшее значение на интервале (0;12).
НайдемS'(x)
= 24-4x= 0 приx= 6. Легко видеть, чтоx= 6
– единственная точка экстремума –
максимума функцииS(x).
Это означает, что на интервале (0;12)S(x)
принимает наибольшее значение приx= 6, т.е. искомые размеры палисадника 6 м
и 24- 2 – 6 = 12 м.
Найти интервалы
монотонности и экстремумы функции:
8.41..8.42..8.43..
8.44.
.8.45.
8.46.
.
8.47.
.8.48..8.49..
8.50..8.51..8.52.
.
8.53.
.8.54.
.8.55.
.
8.56..8.57.
.8.58.
.
8.59..8.60..
Найти наибольшее
и наименьшее значение (глобальный
максимум и минимум) функции
на отрезке [a,b]:
8.61.8.62.8.63.
8.64.8.65.8.66.
8.67.8.68.
Найти наибольшее
или наименьшее значение (глобальный
максимум или минимум) функции
на интервале(a,b):
8.69.8.70.8.71.
8.72.8.73.8.74.
8.75. Рассматриваются всевозможные
прямоугольные параллелепипеды, основания
которых являются квадратами, а каждая
из боковых сторон имеет периметр, равный
6 см. найти среди них параллелепипед с
наибольшим объемом и найти этот объем.
8.76. Определить размеры открытого
бассейна с квадратным дном, при которых
на облицовку стен и дна пойдет наименьшее
количество материала. Объем бассейнаVфиксирован.
8.77. Требуется огородить два участка:
один в форме правильного треугольника,
другой в форме полукруга. Длина изгороди
фиксирована и равна Р. Определить размеры
участков (сторону треугольника и радиус
полукруга) так, чтобы сумма площадей
этих участков была бы наименьшей.
8.78. В треугольнике с основаниемaи высотойh вписан
прямоугольник, основание которого лежит
на основании треугольника, а две вершины
– на боковых сторонах. Найти наибольшую
площадь вписанного прямоугольника.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Алгебра и начала математического анализа, 11 класс
Урок № 16. Экстремумы функции.
Перечень вопросов, рассматриваемых в теме
1) Определение точек максимума и минимума функции
2) Определение точки экстремума функции
3) Условия достаточные для нахождения точек экстремума функции
Глоссарий по теме
Возрастание функции. Функция y=f(x) возрастает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.
Максимум функции. Значение функции в точке максимума называют максимумом функции
Минимум функции. Значение функции в точке минимума называют минимумом функции
Производная (функции в точке) — основное понятие дифференциального исчисления, которое характеризует скорость изменения функции (в конкретной точке).
Точка максимума функции. Точку х0 называют точкой максимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство .
Точка минимума функции. Точку х0 называют точкой минимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство .
Точки экстремума функции. Точки минимума и максимума называют точками экстремума.
Убывание функции. Функция y = f(x) убывает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.
Алгоритм исследования функции на монотонность и экстремумы:
1) Найти область определения функции D(f)
2) Найти f’ (x).
3) Найти стационарные (f'(x) = 0) и критические (f'(x) не
существует) точки функции y = f(x).
4) Отметить стационарные и критические точки на числовой
прямой и определить знаки производной на получившихся
промежутках.
5) Сделать выводы о монотонности функции и точках ее
экстремума.
Основная литература:
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Дополнительная литература:
Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.
Теоретический материал для самостоятельного изучения
Точки, в которых происходит изменение характера монотонности функции – это ТОЧКИ ЭКСТРЕМУМА.
- Точку х = х0 называют точкой минимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≥ f(x0).
- Точку х = х0 называют точкой максимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≤ f(x0).
Точки максимума и минимума – точки экстремума.
Функция может иметь неограниченное количество экстремумов.
Критическая точка – это точка, производная в которой равна 0 или не существует.
Важно помнить, что любая точка экстремума является критической точкой, но не всякая критическая является экстремальной.
Алгоритм нахождения максимума/минимума функции на отрезке:
- найти экстремальные точки функции, принадлежащие отрезку,
- найти значение функции в экстремальных точках из пункта 1 и в концах отрезка,
- выбрать из полученных значений максимальное и минимальное.
Примеры и разбор решения заданий тренировочного модуля
№1. Определите промежуток монотонности функции у=х2 -8х +5
Решение: Найдем производную заданной функции: у’=2x-8
2x-8=0
х=4
Определяем знак производной функции и изобразим на рисунке, следовательно, функция возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)
Ответ: возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)
№2. Найдите точку минимума функции у= 2х-ln(х+3)+9
Решение: Найдем производную заданной функции:
Найдем нули производной:
х=-2,5
Определим знаки производной функции и изобразим на рисунке поведение функции:
Ответ: -2,5 точка min
№3. Материальная точка движется прямолинейно по закону x(t) = 10t2 − 48t + 15, где x – расстояние от точки отсчета в метрах, t – время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3с.
Решение: Если нас интересует движение автомобиля, то, принимая в качестве функции зависимость пройденного расстояния от времени, с помощью производной мы получим зависимость скорости от времени.
V=х'(t)= 20t – 48. Подставляем вместо t 3c и получаем ответ. V=12 мc
Ответ: V=12 мc
№4. На рисунке изображен график функции. На оси абсцисс отмечены семь точек: x1, x2, x3, x4, x5, x6, x7. Определите количество целых точек, в которых производная функции отрицательна.
Решение: Производная функции отрицательна на тех интервалах, на которых функция убывает. В данном случае это точки х3,х5,х7. Следовательно, таких точек 3
Ответ: 3
найти экстремумы функции
f(x)=x2x−1
.
Производная этой функции —
f′(x)=xx−2(x−1)2
, значит, критические точки функции — это (x=0) и (x=2). Точка (x=1) не принадлежит области определения функции.
Они делят реальную числовую прямую на четыре интервала:
−∞;0∪0;1∪1;2∪2;+∞
. Знак первого интервала положительный (например,
f′
((-1)=0.75)). Второго — отрицательный, третьего — отрицательный, четвёртого — положительный.
−∞;0 |
0;1 |
1;2 |
2;+∞ |
(+) |
(-) |
(-) |
(+) |
Значит, производная меняет знак только в точках (x=0) и (x=2).
В точке (x=0) она меняет знак с положительного на отрицательный, значит, это точка локального максимума со значением функции (f(0)=0).
В точке (x=2) она меняет знак с отрицательного на положительный, значит, это точка локального минимума со значением функции (f(2)=4).
Определение 1. Функция называется возрастающей в интервале , если большему значению аргумента из этого интервала соответствует и большее значение функции.
Определение 2. Функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.
Достаточное условие возрастания ( убывания ) функции:
Если во всех точках выполняется неравенство (причем равенство выполняется лишь в отдельных точках и не выполняется ни на каком сплошном промежутке), то функция возрастает в интервале .
Если в данном промежутке производная данной функции неотрицательна, то функция в этом промежутке убывает.
Справедливы и обратные утверждения.
Определение 3. Максимумом функции такое ее значение , которое больше всех ее значений, принимаемых в точках , достаточно близких к точке и отличных от нее, т. е. , где — любая точка из интервала, содержащего точку ( — точка максимума ).
Определение 4. Минимумом функции называется такое ее значение , которое меньше всех других ее значений, принимаемых в точках , достаточно близких к точке и отличных от нее, т. е. , где — любая точка из некоторого интервала, содержащего точку ( — точка минимума).
Максимум или минимум функции называется экстремумом функции. Точки, в которых достигается экстремум, называются точками экстремума.
Функция может иметь экстремум в тех точках области определения, в которых производная равна нулю или не существует . Такие точки называются критическими .
Достаточное условие экстремума
Если в точке производная функции обращается в нуль или не существует, и меняет знак при переходе через эту точку, то — экстремум функции, причем:
1) функция имеет максимум в точке , если знак производной меняется с «+» на «-»;
2) функция имеет минимум в точке , если знак производной меняется с «-» на «+»%
3) функция не имеет экстремума, если знак производной не меняется.
Алгоритм исследования непрерывной функции на монотонность и экстремумы.
- Найти область определения и производную .
- Найти критические точки.
- Отметить критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
- Опираясь на теоремы сделать выводы о монотонности и о ее точках экстремума.
Пример:
Исследовать функцию на монотонность и экстремумы.
Решение:
1. Найдем область определения: и производную данной функции:
2. Найдем критические точки.
— это две критические точки.
3. Отметим полученные точки на числовой прямой и схематически укажем знаки производной по промежуткам области определения.
— точка минимума функции, а точкой экстремума не является.
На промежутке функция убывает, а на промежутке функция возрастает.
На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:
Высшая математика краткий курс лекций для заочников
Возможно вам будут полезны эти страницы: