Как найти монотонность в точках экстремум

1.Если производная функции y
=
f(x)
положительна (отрицательна) во всех
точках промежутка, то функцияy
=
f(x)
монотонно возрастает (убывает)на этом промежутке.

2.Точкаx0называется точкоймаксимума (минимума)
функцииy = f(x),
если существует интервал, содержащий
точкуx0, такой,
что для всехxиз этого
интервала имеет место неравенствоf(x0) f(x),(f(x0) f(x)).
Точки максимума и точки минимума
называются точкамиэкстремума.

3. Необходимое условие экстремума:
в точке экстремума функции ее производная
либо равна нулю(f
(x)=0), либо
не существует.

4.Первое достаточное условие
экстремума
: если в точке x0функцияy = f(x)
непрерывна, а производная f
(x)при
переходе через точкуx0меняет знак, то точкаx0– точка экстремума: максимума, если
знак меняется с «+» на «-», и минимума,
если с «–» на «+».

Если при переходе через точку x0производная не меняет знак, то в точкеx0экстремума нет.

5.Второе достаточное условие
экстремума
: если в точкеx0
,
а
,
тоx0является точкой
максимума функции. Если
,
а
,
тоx0является точкой
минимума функции.

6.Схема исследования функции

на экстремум:

1) найти производную
;

2) найти критические точки функции, в
которых производная равна нулю или не
существует;

3) исследовать знак производной слева
и справа от каждой критической точки и
сделать вывод о наличии экстремумов
функции;

4) найти экстремальные значения функции.

При исследовании функции на экстремум
с помощью 2-го достаточного условия п.
1), 2), 4) сохраняются, а в п. 3) необходимо
найти вторую производную
и определить ее знак в каждой критической
точке.

7.Чтобы найтинаибольшее и наименьшее
значение
(глобальный максимум и
минимум
) функции
на отрезке [a,b]
следует выбрать наибольшее (наименьшее)
из значений функции в критических
точках, находящихся в интервале (a,b)
и на концах отрезка (в точкахaиb).

8.Если дифференцируемая на интервале
(a,b) функция
имеетединственнуюточку экстремума,
то в этой точке достигается наибольшее
или наименьшее значение (глобальный
максимум или минимум) функции на интервале
(a,b).

8.35. Найти интервалы монотонности
и экстремумы функции.

Решение. В соответствии со схемой
исследования (п. 6) найдем
.Очевидно, производная существует при
всех значенияхx. Приравниваяy′ к нулю, получаем
уравнение

откудаи– критические точки. Знаки производной
имеют вид (рис. 8.1):

Рис. 8.1

На интервалах
ипроизводная
и функция возрастает, на интервалеи функция убывает;

Рис. 8.2

– точка максимума и– точка минимума и,
так как при переходе через эти точки
производная меняет свой знак соответственно
с «+» на «-» и с «-» на «+».

Замечание.Установить
существование экстремума в критических
точкахи,
в которых
можно было и с помощью второй производной
(см.
п. 5). Так как
,
а
,
то– точка максимума, а– точка минимума.

График данной функции схематично показан
на рисунке 8.2.

8.36. Найти экстремумы и интервалы
монотонности функции.

Решение..

Производная существует во всех точках,
в которых существует и сама функция,
т.е. при x> 0. Точки, в
которых производная обращается в нуль,
задаются равенствамиlnx=0,lnx-1
= 0, откудаx1 =1,x2
= е – критические точки. Знаки
производной указаны на рис. 8.3.

Рис.8.3

Таким образом, функция монотонно
возрастает на промежутках (0;1) и (е;+)
и монотонно убывает на промежутке (1;е).
Точкаx= 1 – точка максимума
и,
точка х = е – точка минимума и.

8.37. Найти экстремумы и интервалы
монотонности функции

Решение..
Производная не существует приcosx=1 т.е. прии равна нулю при.
Знак производной совпадает со знакомsin(x); таким
образом у’ >0 прииy'<0 при.
Это, соответственно, интервалы возрастания
и убывания функции.– точки максимума,– точки минимума.

8.38. Найти наибольшее значение
(глобальный максимум) функциина интервале (10;18).

Решение. Найдем.
На интервале (10;18) имеется всего одна
критическая точкаx= 6.
Производная при переходе через эту
точку меняет знак с «+» на «-», т.е.x= 6 – точка максимума. Следовательно,
функция достигает наибольшего значения
приx= 16, т.е..
(Заметим, что наименьшего значения
(глобального минимума) данной функции
на указанном интервале не существует.)

8.40. Забором длиной 24 метра требуется
огородить с трех сторон прямоугольный
палисадник наибольшей площади. Найти
размеры палисадника.

Решение.Пусть длины сторон палисадникаx,y. Тогда
2x+y= 24, т.е.y= 24-2x.
Площадь палисадникаS=xy=x(24-2x)
= 24x-2x2,
где 0<x<12 (ибо 24-2x>0).
Таким образом, задача свелась к отысканию
значенияx, при которомS(x) принимает
наибольшее значение на интервале (0;12).
НайдемS'(x)
= 24-4x= 0 приx= 6. Легко видеть, чтоx= 6
– единственная точка экстремума –
максимума функцииS(x).
Это означает, что на интервале (0;12)S(x)
принимает наибольшее значение приx= 6, т.е. искомые размеры палисадника 6 м
и 24- 2 – 6 = 12 м.

Найти интервалы
монотонности и экстремумы функции:

8.41..8.42..8.43..

8.44.
.8.45.
8.46.
.

8.47.
.8.48..8.49..

8.50..8.51..8.52.
.

8.53.
.8.54.
.8.55.
.

8.56..8.57.
.8.58.
.

8.59..8.60..

Найти наибольшее
и наименьшее значение (глобальный
максимум и минимум) функции
на отрезке [a,b]:

8.61.8.62.8.63.

8.64.8.65.8.66.

8.67.8.68.

Найти наибольшее
или наименьшее значение (глобальный
максимум или минимум) функции
на интервале(a,b):

8.69.8.70.8.71.

8.72.8.73.8.74.

8.75. Рассматриваются всевозможные
прямоугольные параллелепипеды, основания
которых являются квадратами, а каждая
из боковых сторон имеет периметр, равный
6 см. найти среди них параллелепипед с
наибольшим объемом и найти этот объем.

8.76. Определить размеры открытого
бассейна с квадратным дном, при которых
на облицовку стен и дна пойдет наименьшее
количество материала. Объем бассейнаVфиксирован.

8.77. Требуется огородить два участка:
один в форме правильного треугольника,
другой в форме полукруга. Длина изгороди
фиксирована и равна Р. Определить размеры
участков (сторону треугольника и радиус
полукруга) так, чтобы сумма площадей
этих участков была бы наименьшей.

8.78. В треугольнике с основаниемaи высотойh вписан
прямоугольник, основание которого лежит
на основании треугольника, а две вершины
– на боковых сторонах. Найти наибольшую
площадь вписанного прямоугольника.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Алгебра и начала математического анализа, 11 класс

Урок № 16. Экстремумы функции.

Перечень вопросов, рассматриваемых в теме

1) Определение точек максимума и минимума функции

2) Определение точки экстремума функции

3) Условия достаточные для нахождения точек экстремума функции

Глоссарий по теме

Возрастание функции. Функция y=f(x) возрастает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Максимум функции. Значение функции в точке максимума называют максимумом функции 

Минимум функции. Значение функции в точке минимума называют минимумом функции 

Производная (функции в точке) — основное понятие дифференциального исчисления, которое характеризует скорость изменения функции (в конкретной точке).

Точка максимума функции. Точку  х0 называют точкой максимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство  .

Точка минимума функции. Точку  х0 называют точкой минимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство  .

Точки экстремума функции. Точки минимума и максимума называют точками экстремума.

Убывание функции. Функция y = f(x) убывает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Алгоритм исследования функции на монотонность и экстремумы:

1) Найти область определения функции D(f)

2) Найти f’ (x).

3) Найти стационарные (f'(x) = 0) и критические (f'(x) не

существует) точки функции y = f(x).

4) Отметить стационарные и критические точки на числовой

прямой и определить знаки производной на получившихся

промежутках.

5) Сделать выводы о монотонности функции и точках ее

экстремума.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

Точки, в которых происходит изменение характера монотонности функции – это ТОЧКИ ЭКСТРЕМУМА.

  • Точку х = х0 называют точкой минимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≥ f(x0).
  • Точку х = х0 называют точкой максимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≤ f(x0).

Точки максимума и минимума – точки экстремума.

Функция может иметь неограниченное количество экстремумов.

Критическая точка – это точка, производная в которой равна 0 или не существует.

Важно помнить, что любая точка экстремума является критической точкой, но не всякая критическая является экстремальной.

Алгоритм нахождения максимума/минимума функции на отрезке:

  1. найти экстремальные точки функции, принадлежащие отрезку,
  2. найти значение функции в экстремальных точках из пункта 1 и в концах отрезка,
  3. выбрать из полученных значений максимальное и минимальное.

Примеры и разбор решения заданий тренировочного модуля

№1. Определите промежуток монотонности функции у=х2 -8х +5

Решение: Найдем производную заданной функции: у’=2x-8

2x-8=0

х=4

Определяем знак производной функции и изобразим на рисунке, следовательно, функция возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)

Ответ: возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)

№2. Найдите точку минимума функции у= 2х-ln(х+3)+9

Решение: Найдем производную заданной функции:

Найдем нули производной:

х=-2,5

Определим знаки производной функции и изобразим на рисунке поведение функции:

Ответ: -2,5 точка min

№3. Материальная точка движется прямолинейно по закону x(t) = 10t2 − 48t + 15, где x – расстояние от точки отсчета в метрах, t – время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3с.

Решение: Если нас интересует движение автомобиля, то, принимая в качестве функции зависимость пройденного расстояния от времени, с помощью производной мы получим зависимость скорости от времени. 

V=х'(t)= 20t – 48. Подставляем вместо t 3c и получаем ответ. V=12 мc

Ответ: V=12 мc

№4. На рисунке изображен график функции. На оси абсцисс отмечены семь точек: x1, x2, x3, x4, x5, x6, x7. Определите количество целых точек, в которых производная функции отрицательна.

Решение: Производная функции отрицательна на тех интервалах, на которых функция убывает. В данном случае это точки х3,х5,х7. Следовательно, таких точек 3

Ответ: 3

найти экстремумы функции 

f(x)=x2x−1

.

Производная этой функции —

f′(x)=xx−2(x−1)2

, значит, критические точки функции — это (x=0) и (x=2). Точка (x=1) не принадлежит области определения функции.

Они делят реальную числовую прямую на четыре интервала:

−∞;0∪0;1∪1;2∪2;+∞

. Знак первого интервала положительный  (например,

f′

((-1)=0.75)). Второго — отрицательный, третьего — отрицательный, четвёртого — положительный.

−∞;0

0;1

1;2

2;+∞

(+)

(-)

(-)

(+)

ekstremi.bmp

Значит, производная меняет знак только в точках (x=0) и (x=2).

В точке (x=0) она меняет знак с положительного на отрицательный, значит, это точка локального максимума со значением функции (f(0)=0).

В точке (x=2) она меняет знак с отрицательного на положительный, значит, это точка локального минимума со значением функции (f(2)=4).

Определение 1. Функция Монотонность и экстремумы функции называется возрастающей в интервале Монотонность и экстремумы функции, если большему значению аргумента Монотонность и экстремумы функции из этого интервала соответствует и большее значение функции.

Определение 2. Функция Монотонность и экстремумы функции называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Достаточное условие возрастания ( убывания ) функции:

Если во всех точках Монотонность и экстремумы функции выполняется неравенство Монотонность и экстремумы функции (причем равенство Монотонность и экстремумы функции выполняется лишь в отдельных точках и не выполняется ни на каком сплошном промежутке), то функция Монотонность и экстремумы функции возрастает в интервале Монотонность и экстремумы функции.

Если в данном промежутке производная данной функции неотрицательна, то функция в этом промежутке убывает.

Справедливы и обратные утверждения.

Определение 3. Максимумом функции Монотонность и экстремумы функции такое ее значение Монотонность и экстремумы функции, которое больше всех ее значений, принимаемых в точках Монотонность и экстремумы функции, достаточно близких к точке Монотонность и экстремумы функции и отличных от нее, т. е. Монотонность и экстремумы функции, где Монотонность и экстремумы функции — любая точка из интервала, содержащего точку Монотонность и экстремумы функции (Монотонность и экстремумы функции — точка максимума ).

Определение 4. Минимумом функции Монотонность и экстремумы функции называется такое ее значение Монотонность и экстремумы функции, которое меньше всех других ее значений, принимаемых в точках Монотонность и экстремумы функции, достаточно близких к точке Монотонность и экстремумы функции и отличных от нее, т. е. Монотонность и экстремумы функции, где Монотонность и экстремумы функции — любая точка из некоторого интервала, содержащего точку Монотонность и экстремумы функции (Монотонность и экстремумы функции — точка минимума).

Максимум или минимум функции называется экстремумом функции. Точки, в которых достигается экстремум, называются точками экстремума.

Функция может иметь экстремум в тех точках области определения, в которых производная равна нулю или не существует . Такие точки называются критическими .

Достаточное условие экстремума

Если в точке Монотонность и экстремумы функции производная функции Монотонность и экстремумы функции обращается в нуль или не существует, и меняет знак при переходе через эту точку, то Монотонность и экстремумы функции — экстремум функции, причем:

1) функция имеет максимум в точке Монотонность и экстремумы функции, если знак производной меняется с «+» на «-»;

2) функция имеет минимум в точке Монотонность и экстремумы функции, если знак производной меняется с «-» на «+»%

3) функция не имеет экстремума, если знак производной не меняется.

Алгоритм исследования непрерывной функции Монотонность и экстремумы функции на монотонность и экстремумы.

  1. Найти область определения и производную Монотонность и экстремумы функции.
  2. Найти критические точки.
  3. Отметить критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
  4. Опираясь на теоремы сделать выводы о монотонности и о ее точках экстремума.

Пример:

Исследовать функцию Монотонность и экстремумы функции на монотонность и экстремумы.

Решение:

1. Найдем область определения: Монотонность и экстремумы функции и производную данной функции:

Монотонность и экстремумы функции

2. Найдем критические точки.

Монотонность и экстремумы функции — это две критические точки.

3. Отметим полученные точки на числовой прямой и схематически укажем знаки производной по промежуткам области определения.

Монотонность и экстремумы функции

Монотонность и экстремумы функции — точка минимума функции, а Монотонность и экстремумы функции точкой экстремума не является.

На промежутке Монотонность и экстремумы функции функция убывает, а на промежутке Монотонность и экстремумы функции функция возрастает.

На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:

Высшая математика краткий курс лекций для заочников

Возможно вам будут полезны эти страницы:

Добавить комментарий