Как найти мощность электрического тока в цепи

Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм

Электростатика

Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал

Магнитостатика

Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Магнитная индукция

Электродинамика

Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле

Электрическая цепь

Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс

Ковариантная формулировка

Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток

См. также: Портал:Физика

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Единицей измерения в Международной системе единиц (СИ) является ватт (русское обозначение: Вт, международное: W).

Мгновенная электрическая мощность[править | править код]

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение численно равно работе по переносу единичного заряда из точки A в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу или над ним будет совершена работа, численно равная электрическому напряжению, действующему на участке цепи. Умножив напряжение на количество единичных зарядов, мы, таким образом, получаем работу, которую совершает электрическое поле по перемещению этих зарядов от начала участка цепи до его конца.
Мощность, по определению — это работа в единицу времени.

Введём обозначения:

U — напряжение на участке A-B (принимаем его постоянным на интервале Delta t);
Q — количество зарядов, прошедших от A к B за время Delta t;
A — работа, совершённая зарядом Q при движении по участку A-B;
P — мощность.

Записывая вышеприведённые рассуждения, получаем:

{displaystyle P_{A-B}={frac {A}{Delta t}}~.}

Для единичного заряда на участке A-B:

{displaystyle P_{e(A-B)}={frac {U}{Delta t}}~.}

Для всех зарядов:

{displaystyle P_{A-B}={frac {U}{Delta t}}cdot {Q}={U}cdot {frac {Q}{Delta t}}~.}

Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть {displaystyle textstyle I={frac {Q}{Delta t}}} по определению, в результате получаем:

{displaystyle P_{A-B}=Ucdot I~.}

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

{displaystyle p(t)=u(t)cdot i(t)~.}

Если участок цепи содержит резистор c электрическим сопротивлением R, то:

{displaystyle p(t)=i(t)^{2}cdot R={frac {u(t)^{2}}{R}}~.}

Дифференциальные выражения для электрической мощности[править | править код]

Мощность, выделяемая в единице объёма, равна:

{displaystyle w={frac {dP}{dV}}=mathbf {E} cdot mathbf {j} ~,}

где:

mathbf {E}  — напряжённость электрического поля;
{mathbf  j} — плотность тока.

Отрицательное значение скалярного произведения (векторы mathbf {E} и {mathbf  j} противонаправлены или образуют тупой угол) означает, что в данной точке электрическая мощность не рассеивается, а генерируется за счёт работы сторонних сил.

В случае изотропной среды в линейном приближении:

{displaystyle w=sigma E^{2}={frac {E^{2}}{rho }}=rho j^{2}={frac {j^{2}}{sigma }}~,}

где {displaystyle textstyle sigma ,{overset {underset {mathrm {def} }{}}{=}},{frac {1}{rho }}} — удельная проводимость, величина, обратная удельному сопротивлению.

В случае наличия анизотропии (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла) в линейном приближении:

{displaystyle w=sigma _{alpha beta }E_{alpha }E_{beta }~,}

где sigma _{{alpha beta }} — тензор проводимости.

Мощность постоянного тока[править | править код]

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

{displaystyle P=Icdot U~.}

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

{displaystyle P=I^{2}cdot R={frac {U^{2}}{R}}~,}

где R — электрическое сопротивление.

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

{displaystyle P=Icdot {mathcal {E}}~,}

где {mathcal {E}} — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность p=I^{2}cdot r прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока[править | править код]

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для большинства простых практических расчётов не слишком полезна непосредственно. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол varphi (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность[править | править код]

Единица измерения в СИ — ватт[1].

{displaystyle P=Ucdot Icdot cos varphi ~.}

Среднее за период T значение мгновенной мощности называется активной электрической мощностью или электрической мощностью:

{displaystyle P={frac {1}{T}}int limits _{0}^{T}p(t)dt~.}

В цепях однофазного синусоидального тока P=Ucdot Icdot cos varphi , где U и I — среднеквадратичные значения напряжения и тока, varphi  — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P=I^{2}cdot r=U^{2}cdot g. В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением P=Scdot cos varphi .

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отражённой мощностью.

Реактивная мощность[править | править код]

Единица измерения, по предложению Международной электротехнической комиссии, – вар (вольт-ампер реактивный); (русское обозначение: вар; международное: var). В терминах единиц СИ, как отмечено в 9-ом издании Брошюры СИ, вар когерентен произведению вольт-ампер. В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения в области «электротехника»[1][2]:

{displaystyle Q=Ucdot Icdot sin varphi ~.}

Вар определяется как реактивная мощность цепи с синусоидальным переменным током при действующих значениях напряжения 1 В и тока 1 А, если сдвиг фазы между током и напряжением {displaystyle textstyle {frac {pi }{2}}}[3].

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз varphi между ними: Q=Ucdot Icdot sin varphi (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью P соотношением:

{displaystyle |Q|={sqrt {S^{2}-P^{2}}}~.}

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin varphi для значений varphi от 0 до плюс 90° является положительной величиной. Величина sin varphi для значений varphi от 0 до −90° является отрицательной величиной. В соответствии с формулой Q=UIsin varphi , реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии, возвращаемой от индуктивной и ёмкостной нагрузки в источник переменного напряжения.

Полная мощность[править | править код]

Единица измерения — В·А, вольт-ампер (русское обозначение: В·А; международное: V·A). В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «электротехника»[1][2].

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах S=Ucdot I связана с активной и реактивной мощностями соотношением:

{displaystyle S={sqrt {P^{2}+Q^{2}}}~,}

где:

P — активная мощность;
Q — реактивная мощность (при индуктивной нагрузке {displaystyle Q>0}, а при ёмкостной {displaystyle Q<0}).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

{displaystyle {vec {S}}={vec {P}}+{vec {Q}}~.}

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность[править | править код]

Мощность, аналогично импедансу, можно записать в комплексном виде:

{displaystyle {dot {S}}={dot {U}}{dot {I}}^{*}=I^{2}mathbb {Z} ={frac {U^{2}}{mathbb {Z} ^{*}}}~,}

где:

{dot  {U}} — комплексное напряжение;
{dot  {I}} — комплексный ток;
mathbb {Z}  — импеданс;
* — оператор комплексного сопряжения.

Модуль комплексной мощности left|{dot  {S}}right| равен полной мощности S. Действительная часть {mathrm  {Re}}({dot  {S}}) равна активной мощности P, а мнимая {mathrm  {Im}}({dot  {S}}) — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.

Измерения[править | править код]

  • Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра, амперметра и фазометра.
  • Для измерения коэффициента реактивной мощности применяют фазометры
  • Государственный эталон мощности — ГЭТ 153—2012 Государственный первичный эталон единицы электрической мощности в диапазоне частот от 1 до 2500 Гц. Институт-хранитель: ВНИИМ

Потребление мощности некоторыми электроприборами[править | править код]

Значения потребляемой электрической мощности некоторых потребителей

Электрический прибор Мощность,Вт
Лампочка фонарика 1
Сетевой роутер, хаб 10…20
Системный блок ПК 100…1700
Системный блок сервера 200…1500
Монитор для ПК ЭЛТ 15…200
Монитор для ПК ЖК 2…40
Лампа люминесцентная бытовая 5…30
Лампа накаливания бытовая 25…150
Холодильник бытовой 15…700
Электропылесос 100… 3000
Электрический утюг 300…2 000
Стиральная машина 350…2 000
Электрическая плитка 1000…2000
Сварочный аппарат бытовой 1000…5500
Двигатель лифта невысокого дома 3 000…15 000
Двигатель трамвая 45 000…75 000
Двигатель электровоза 650 000
Электродвигатель шахтной подъёмной машины 1 000 000…5 000 000
Электродвигатель прокатного стана 6 000 000…32 000 000

Выходная мощность[править | править код]

Измеряется как долговременная (RMS[en]), так и кратковременная (PMO, PMPO) мощности, способные отдавать усилителями мощности.

также см.: КПД

См. также[править | править код]

  • Ваттметр
  • Электрический ток
  • Коэффициент мощности
  • Список параметров напряжения и силы электрического тока
  • Закон Ома
  • КПД

Примечания[править | править код]

  1. 1 2 3 Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 26—27. — 240 с. — ISBN 5-7050-0118-5.
  2. 1 2 Положение о единицах величин, допускаемых к применению в Российской Федерации Архивная копия от 2 ноября 2013 на Wayback Machine Утверждено Постановлением Правительства РФ от 31 октября 2009 г. N 879.
  3. Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1977. — С. 213.

Литература[править | править код]

  • ГОСТ 8.417-2002 Единицы величин.
  • ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации.
  • Л. А. Бессонов . Теоретические основы электротехники. Электрические цепи: учебник

для бакалавров. — 12-е изд., испр. и доп. — М.: Юрайт, 2016. — 702 с. — (Бакалавр. Углубленный курс). — 1000 экз. — ISBN 978-5-9916-3210-2.

  • Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193 — 2009. — 146 с.

Ссылки[править | править код]

  • Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока. ToeHelp.Ru. Дата обращения: 7 марта 2022.
  • Для чего нужна компенсация реактивной мощности. Школа для электрика (2010). Дата обращения: 7 марта 2022.
  • . ред. Д. Макаров : Как рассчитать мощность электрического тока? Заметки электрика. ASUTPP. Дата обращения: 7 марта 2022.

Мощность электрического тока является величиной, которая характеризует его свойства. Она определяется силой тока и напряжением. Единицей измерения является Ватт, в честь первооткрывателя этой величины. Обозначается она буквами Вт, в английском языке буквой W. В формулах эта характеристика имеет другое условное обозначение – латинская буква Р. Измеряется мощность тока ваттметром. Найти мощности нужно умножив силу тока на напряжение, то есть амперы на вольты получаем Ватты.

В статье будет рассказано подробно, о том, что такое мощность, как ее можно определить, от чего зависит и на что влияет.

Что такое мощность электрического тока и как ее рассчитать

Что такое мощность в электричестве

Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий. Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.

Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт).

Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе. Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.

Наука подразделяет электрическую мощность на:

  • активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
  • реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.

Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.

Как измерить мощность

Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрификации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.

Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.

Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах. Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.

Мощность электрического тока расчет и формулы

Для вычисления мощности тока в ваттах, силу тока в амперах умножаем на напряжение в вольтах. Обозначить мощность электрического тока латинским символом P, то приведенное выше правило можно записать в виде математической формулы P = I × U (1).

Воспользуемся этой формулой на практике. Необходимо вычислить, какая мощность электрического тока требуется для накала нити лампы, если напряжение накала равно 4 в, а ток накала 75 мА. Р= 0,075 А × 4 В = 0,3 Вт Мощность электрического тока можно определить и другим способом. Например, нам известны сила тока и сопротивление цепи, а напряжение величина неизвестная, тогда мы воспользуемся соотношением из закона Ома: U=I × R Подставим правую часть формулы (1) IR вместо напряжения U. P = I× U = I×IR или Р = I2×R.

Рассмотрим пример расчета: какая мощность теряется в реостате сопротивлением в 5 Ом, если через него идет ток, силой 0,5 А. Пользуясь формулой (2), вычислим:. P= I2 × R = 0,52×5 =0,25×5 = 1,25 Вт. Кроме того, мощность электрического тока можно рассчитать если известны напряжение и сопротивление, а сила тока величина неизвестна.

Для этого вместо силы тока I в формулу подставляется отношение U/R и тогда формула приобретает следующий вид: Р = I × U=U2/R (3) Разберем очередной практический пример с использованием этой формулы, при 2,5 вольта падения напряжения на реостате сопротивлением в 5 Ом поглощаемая реостатом мощность будет определяться: Р = U2/R=(2,5)2/5=1,25 Вт; Выводы: Для нахождения мощности необходимо знать любые две из величин, из закона Ома. Мощность электрического тока равна работе тока, производимой в течение времени. P = A/t

Основные электротехнические формулы
Основные электротехнические формулы

Проходя по цепи, ток совершает работу. Как например, водный поток направить течь, на лопасти генератора, то пон будет совершать работу, вращая лопасти. Так же и ток совершает работу, двигаясь по проводнику. И эта работа тем выше, чем больше величина сила тока и напряжения. Работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока, напряжению и времени действия тока. Работа электрического тока обозначается латинским символом A. Так как, произведение I×U есть мощность, то формулу работы электрического тока можно записать: A = P×t

Единицей измерения работы электрического тока, является ватт в секундах или в джоулях. Поэтому, если мы хотим вычислить, какую работу осуществил ток, идя по цепи в течение временного интервала, мы должны умножить мощность на время Рассмотрим практический пример, через реостат с сопротивлением 5 Ом идет ток силой 0,5 А. Нужно вычислить, какую работу совершит ток в течение четырех часов. Работа в течение одной секунды будет: P=I2R = 0,52×5= 0,25×5 =1,25 Вт,

Тогда за 4 часа t=14400 секунд. Следовательно: А = Р×t= 1,25×14 400= 18 000 вт-сек. Ватт-секунда или один джоуль считаетсяя слишком малой велечиной для измерения работы. Поэтому на практике применяют единицу, называемую ватт-час (втч). Один ватт-час это эквивалентно 3 600 Дж. В электротехнике используются и еще большие единицы, гектоваттчас (гвтч) и киловаттчас (квтч): 1 квтч =10 гвтч =1000 втч = 3600000 Дж, 1 гвтч =100 втч = 360 000 Дж, 1 втч = 3 600 Дж.

Мощность электрического тока
Мощность электрического тока

Как рассчитать сопротивление и мощность

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом. На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой Р=24х0,5=12 Вт.

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит. Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

Мощность тока

Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать  U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».

Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

Расчетные формулы мощности тока
Расчетные формулы мощности тока

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.

Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления, тем больше я понимаю что  делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

Где:

  • P – активная мощность;
  • U – напряжение приложенное к участку цепи;
  • I  — сила тока, протекающего через соответствующий участок.

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома для участка цепи, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U2/R

Где,

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I2*R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Суммарная мощность

Где,

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Треугольник мощностей

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

S = 3*Uф*Iф

В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:

Мощность и линейное напряжение

Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.

Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.

Шильд электродвигателя

Рис. 2. Шильд электродвигателя

Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:

  • полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
  • коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
  • тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
  • напряжение, при соединении обмоток треугольником составит 220 В;
  • сила тока при том же способе соединения – 13,3 А.

С таким перечнем характеристик можно воспользоваться несколькими способами:

S = 1,732*220*13,3 = 5067 Вт

Чтобы найти искомую величину, сначала определяем активную составляющую:

P = Pполезная / КПД = 3000/0.8 = 3750 Вт

Далее полную по способу деления активной  на коэффициент cos φ:

S = P/cos φ = 3750/0.74 = 5067 Вт

Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.

Примеры задач

Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.

Последовательная расчетная цепь

Рис. 3. Последовательная расчетная цепь

Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:

P = U2/R = 81 / (10+20+30) = 1.35 Вт

Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:

Параллельная схема подключения

Рис. 4. Параллельная схема подключения

Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:

Rобщ = (R1*R2) / (R1+R2) = (10*15) / (10+15) = 6 Ом

Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:

P = I2*R = 25*6 = 150 Вт

Видео по теме

При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.

При прохождении заряда (q) по участку цепи электрическое поле будет совершать работу: (A=qcdot U), где (U) — напряжение электрического поля, (A) — работа, совершаемая силами электрического поля по перемещению заряда (q) из одной точки в другую.

Для выражения любой из этих величин можно использовать приведённый ниже рисунок.

зависимость.svg

Рис. (1). Зависимость между работой, напряжением и зарядом

Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда:

q=I⋅t

.

Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку:

A=U⋅q

.

Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи:

A=U⋅I⋅t

.

Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.

3.png

Рис. (2). Зависимость между работой, силой тока и временем прохождения заряда

Единицы измерения величин:

работа электрического тока ([A]=1) Дж;

напряжение на участке цепи ([U]=1) В;

сила тока, проходящего по участку ([I]=1) А;

время прохождения заряда (тока) ([t]=1) с.

Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.

в_пример.svgpower-8191WKS.jpg

Рис. (3). Схема и часы для измерения

Например:

I = 1,2 АU = 5 Вt = 1,5 мин = 90 сА = U⋅I⋅t = 5⋅1,2⋅90 = 540 Дж 

Обрати внимание!

Работа чаще всего выражается в килоджоулях или мегаджоулях.

(1) кДж = 1000 Дж или (1) Дж = (0,001) кДж;
(1) МДж = 1000000 Дж или (1) Дж = (0,000001) МДж.

Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.

soe_52_60_11_sh.jpg

Рис. (4). Электросчетчик

Механическая мощность численно равна работе, совершённой телом в единицу времени:

N = Аt

.  Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока,

A=U⋅I⋅t

, разделить на время.

Мощность электрического тока обозначают буквой (Р):

P=At=U⋅I⋅tt=U⋅I

. Таким образом:

Мощность электрического тока равна произведению напряжения на силу тока:

P=U⋅I

.

Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённый ниже рисунок.

зависимость1.svg

Рис. (5). Зависимость между мощностью, напряжением и силой тока

За единицу мощности принят ватт: (1) Вт = (1) Дж/с.

Из формулы

P=U⋅I

следует, что

(1) ватт = (1) вольт ∙ (1) ампер, или (1) Вт = (1) В ∙ А.

Обрати внимание!

Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
(1) гВт = (100) Вт или (1) Вт = (0,01) гВт;
(1) кВт = (1000) Вт или (1) Вт = (0,001) кВт;
(1) МВт = (1 000 000) Вт или (1) Вт = (0,000001) МВт.

Пример:

Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.

в_пример.svg

Рис. (6). Схема

Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:

I=1,2АU=5ВP =U⋅I=5⋅1,2=6Вт

.

Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.

В зависимости от сферы применения у них различаются пределы измерения.

Аналоговый ваттметр

Аналоговый ваттметр

Аналоговый ваттметр

Цифровой ваттметр

0007-004-Vattmetr-pribor-dlja-izmerenija-moschnosti.jpg

791838.jpeg

c301 (1).jpg

0987.jpg

Рис. (7). Приборы для измерения

Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.

1.png Jauda1.png

Рис. (8). Лампы различной мощности в цепи

Сила тока в лампочке мощностью (25) ватт будет составлять (0,1) А. Лампочка мощностью (100) ватт потребляет ток в четыре раза больше — (0,4) А. Напряжение в этом эксперименте неизменно и равно (220) В. Легко можно заметить, что лампочка в (100) ватт светится гораздо ярче, чем (25)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в (4) раза больше, потребляет в (4) раза больше тока. Значит: 

Обрати внимание!

Мощность прямо пропорциональна силе тока.

Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение (110) В и (220) В.

2_1.png Jauda2.png 

Рис. (8). Лампа, подключенная к источнику тока с различным напряжением

Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:

Обрати внимание!

Мощность зависит от напряжения.

Рассчитаем мощность лампочки в каждом случае:

I=0,2АU=110ВP=U⋅I=110⋅0,2=22Вт I=0,4АU=220ВP=U⋅I=220⋅0,4=88Вт.

Можно сделать вывод о том, что при увеличении напряжения в (2) раза мощность увеличивается в (4) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).

Рис. (9). Маркировка

В таблице дана мощность, потребляемая различными приборами и устройствами:

Таблица (1). Мощность различных приборов

Название

Рисунок

Мощность

 Калькулятор

441.jpg

(0,001) Вт

 Лампы дневного света

lampy-dnevnogo-sveta-potolochnye1.jpg

(15 — 80) Вт

 Лампы накаливания

l1.png

(25 — 5000) Вт

 Компьютер

apple-1834328_640.jpg

(200 — 450) Вт

 Электрический чайник

skolko-elektroe-nergii-potreblyaet-chajnik-nowbest.ru_.jpg

(650 — 3100) Вт

 Пылесос

6a.jpg

(1500 — 3000) Вт

 Стиральная машина

atlant.jpeg

(2000 — 4000) Вт

 Трамвай

64216.jpg

(150 000 — 240000) Вт

Источники:

Рис. 1. Зависимость между работой, напряжением и зарядом. © ЯКласс.
Рис. 3. Схема и часы для измерения. © ЯКласс.
Рис. 5. Зависимость между мощностью, напряжением и силой тока. © ЯКласс.
Рис. 6. Схема. © ЯКласс.
Таблица 1.  Мощность различных приборов. Компьютер. Указание авторства не требуется, 2021-08-14, Pixabay License, https://pixabay.com/ru/photos/яблоко-стул-компьютер-1834328/.

Что такое мощность электрического тока

При описании электрической мощности в широком смысле чаще всего речь идет об энергии или силе, которой наделен некоторый объект либо действие. Например, ее можно определить для взрыва или же механизма, например двигателя. Этот параметр связан с силой и зависит от нее, потому эти явления нередко путают.

Отличие в том, что сила влияет на физические действия, то есть выполняется работа. Если она проделана за указанное время, то через эти два параметра можно вычислить значение мощности.

В случае с электричеством она бывает двух видов:

  1. Активная – превращается в энергию тепла, света, механических действий и т. д. Она измеряется в ваттах и вычисляется по формуле 1 Вт = 1 В х 1А. Но на практике этот показатель чаще всего выражен в киловаттах и мегаваттах.
  2. Реактивная – нагрузка, возникающая из-за колебаний внутри электромагнитного поля. Единица измерения – вольт-амперы (ВА), они вычисляются как Q=U x I x sin угла. Последнее означает изменение фазы между током и снижением напряжения.

Как найти мощность электрического тока: формулы и расчёты

На практике отличия обоих видов лучше всего рассмотреть на примере элементов для нагревания и электродвигателей. ТЭНы собраны из материала с высоким сопротивлением, поэтому всю полученную электроэнергию они превращают в тепловую. Электродвигатель же имеет детали, обладающие индуктивностью, то есть часть тока возвращается в сеть и может отрицательно влиять на нее, создавая перегрузки.

Как обозначается мощность

Р — мощность электрического тока обозначается (Вт).

В завершение следует отметить, что полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому данная величина трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

Что такое активная и реактивная мощность переменного электрического тока?

Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.

S = U⋅I

ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.

Простое объяснение с формулами

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

P = U I

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

P = U I Cosθ

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I – в цепях постоянного тока

P = U I cosθ – в однофазных цепях переменного тока

P = √3 UL IL cosθ – в трёхфазных цепях переменного тока

P = 3 UPh IPh cosθ

P = √ (S2 – Q2) или

P =√ (ВА2 – вар2) или

Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или

кВт = √ (кВА2 – квар2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

Q = U I sinθ

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Все формулы мощности

Зная определения, несложно понять формулы мощности, используемые в разных разделах физики — в механике и электротехнике.

В механике

Механическая мощность (N) равна отношению работы ко времени, за которое она была выполнена.

Основная формула:

N = A / t, где A — работа, t — время ее выполнения.

Если вспомнить, что работой называется произведение модуля силы, модуля перемещения и косинуса угла между ними, мы получим формулу измерения работы.

Формула измерения механической работы

Если направления модуля приложения силы и модуля перемещения объекта совпадают, угол будет равен 0 градусов, а его косинус равен 1. В таком случае формулу можно упростить:

A = F × S

Используем эту формулу для вычисления мощности:

N = A / t = F × S / t = F × V

В последнем выражении мы исходим из того, что скорость (V) равна отношению перемещения объекта на время, за которое это перемещение произошло.

Формула мощности

В электротехнике

В общем случае электрическая мощность (P) говорит о скорости передачи энергии. Она равна произведению напряжения на участке цепи на величину тока, проходящего по этому участку.

P = I × U, где I — напряжение, U — сила тока.

В электротехнике существует несколько видов мощности: активная, реактивная, полная, пиковая и т. д. Но это тема отдельного материала, сейчас же мы потренируемся решать задачи на основе общего понимания этой величины. Посмотрим, как найти мощность, используя вышеуказанные формулы по физике.

Особенности расчёта в цепях переменного электричества

Чтобы выполнить расчёты P, потребляемой нагрузкой в цепях изменяющегося электричества, нужно чётко разделять схемы включения. Они могут быть однофазными и трёхфазными.

В однофазных цепях P находят, перемножив значение силы тока на значение напряжения (220 В). При этом учитывают наличие фазного сдвига между ними.

В трёхфазных сетях с напряжением 380 В рассматривают два случая:

  • симметричная нагрузка по фазам;
  • ассиметричная нагрузка фаз.

В первом случае P находят по формуле:

P = √3*U*I* cosφ.

Во втором случае необходимо рассчитывать P для каждой фазы (А, В, С). Общее значение P– это результат суммирования:

P общ = PфА + PфВ + PфС.

Внимание! Когда необходимо найти полную мощность трёхфазной цепи, находят по такому же принципу значения реактивной Q.

Рассчитать ток по мощности, зная, какое напряжение: фазное (220 В) или линейное (380 В), можно и в этом случае, выразив его из общей формулы P.

Формула мощности для постоянного электрического тока

Поэтому формулы мощности в электронике имеют вот такой вид:

Мощность электрического тока

Отсюда  A=IUt

где,

А — это полезная работа, Джоули

t  — время,  секунды

U — напряжение, Вольты

I — сила тока, Амперы

P — собственно сама мощность, Ватты

R — сопротивление, Омы

Как вы можете заметить, формула P=I2 R говорит нам о том, что не всегда на маленьком сопротивлении вырабатывается большая мощность и то, что мощность очень сильно зависит от силы тока. А как поднять силу тока? Добавить напряжения ;-). Закон Ома работает всегда и везде.

А из формулы P=U2/R, можно увидеть, что чем меньше сопротивление и больше напряжение в цепи, тем больше мощность будет выделяться на нагрузке. А что такое выделение мощности на нагрузке? Это может быть тепло, свет, какая-либо механическая работа и тд. Короче говоря, выработка какой-либо полезной энергии для наших нужд.

Средняя P в активной нагрузке

В электрических сетях P измеряют при помощи специального прибора – ваттметра. Схемы подключения находятся в зависимости от способа подключения нагрузки.

При симметричной нагрузке P измеряется в одной фазе, а полученный результат умножают на три. В случае несимметричной нагрузки для измерения потребуется три прибора.

Параметры P электросети или установки являются важными данными электрического прибора. Данные по потреблению P активного типа передаются за определенный период времени, то есть передается средняя потребляемая P за расчетный период времени.

Измерители мощности и энергии тока | БЛОГ ЭЛЕКТРОМЕХАНИКА

Формулы расчета мощности для однофазной и трехфазной схемы питания

Выше уже была представлена формула для одной фазы: P=U*I*cos(фи).

Отсюда следует, что в трехфазной сети показатель равен тройной мощности однофазной, соединенной в треугольник: P=3*U*I*cos(фи). На практике же инженеры пользуются формулой P=1,73*U*I*cos(фи).

Формулы для реактивной мощности

Q = U I sinθ

Реактивная мощность = √ (Полная мощность2 – Активная мощность2)

вар =√ (ВА2 – P2)

квар = √ (кВА2 – кВт2)

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Формула для полной мощности

S = U I

Полная мощность = √ (Активная мощность2 + Реактивная мощность2)

kUA = √(kW2 + kUAR2)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

Все эти величины тригонометрически соотносятся друг с другом, как показано на рисунке:

clip image002

Активная нагрузка (АН)

Подобной нагрузкой являются элементы приборов, имеющие активное сопротивление. Рабочая часть подобных аппаратов при прохождении через них электричества нагревается.

Ток, проходя через нагрузку, совершает работу, которая затрачивается на нагревание и выделение тепловой энергии. В чем измеряется такая нагрузка? Её измеряют в омах (Ом).

К примерам АН относятся: утюг, электроплита, спирали фена, нить накала лампы, резистивное сопротивление.

К сведению. АН ведёт себя одинаково, как при постоянном, так и при изменяющемся во времени токе.

Емкостная нагрузка

Устройства, способные запасаться энергией в электрическом поле и создавать рециркуляцию (полный или частичный возврат) мощности, именуют ёмкостной нагрузкой. Емкостная нагрузка (ЕН) при переменном напряжении, пропуская ток, сдвигает его фазу на 900 вперёд.

Основными элементами, относящимися к ЕН, считаются:

  • конденсаторы;
  • кабельные линии (ёмкость между жилами);
  • ЛЭП (линии электропередач) сверхвысокого напряжения;
  • генераторы, работающие в режиме перевозбуждения.

ЕН отдаёт реактивную мощность (Q).

Индуктивная нагрузка (ИН)

Нагрузка, в которой ток сдвинут по фазе назад от напряжения на 900, называется индуктивной. Она также потребляет Q.

Цепь с катушкой

При включении в сеть переменного напряжения катушки индуктивности (дросселя), у которой низкое активное сопротивление, в ней образуется ЭДС. Электродвижущая сила противостоит приложенному напряжению.

Важно! В случае чистой индуктивности L сопротивление синусоидальному току увеличивается с ростом частоты. Выделяемая на такой нагрузке средняя мощность P равна нулю.

Примерами ИН служат:

  • асинхронные двигатели;
  • электромагниты;
  • дроссели;
  • реакторы;
  • трансформаторы;
  • выпрямители.

Сюда же можно отнести тиристорные преобразователи.

Как узнать ток, зная мощность и напряжение

Для вычисления тока электросети по мощности и напряжению используют формулы:

  • I=P/U – постоянный ток;
  • I=P/(U*cos(фи)) — однофазная сеть;
  • I=P/(1,73*U*cos(фи)) — трехфазная сеть.

Для простоты расчетов значение фи принимают равной 0,95.

Как узнать напряжение, зная силу тока

расчет мощности тока

Для расчета напряжения используют формулы:

U=P/I – постоянный ток;

U=P/(I*cos(фи)) — однофазная сеть;

U=P/(1,73*I*cos(фи)) — трехфазная сеть.

Из выражения видно, что напряжение прямо пропорционально напряжению и обратно пропорционально силе тока.

Как рассчитать мощность, зная силу тока и напряжение

Силовую характеристику электроустановок рассчитывают по формуле:

P=U*I — постоянный ток;

P=U*I*cos(фи) – переменный ток однофазной сети.

P=1,73*U*I*cos(фи) — трехфазная сеть.

В статье приведены упрощенные формулы расчета активной мощности электросети, которые дают приблизительные результаты.

Для получения точных результатов, необходимо учитывать также реактивное и обычное сопротивление, а также потери.

Как правильно рассчитать

Активная мощность, как сделать правильный расчет?

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Однофазный синусоидальный ток в электрических цепях вычисляется по формуле Р = U x I x cos φ, где υ и Ι. Их обозначение шифруется следующим образом: среднеквадратичное значение напряжение и тока, а φ — фазный угол фаз между ними.

Для цепей несинусоидального тока электрическая ёмкость равна корню квадратному из суммы квадратов активной и реактивной производительности. Активная производительность характеризуется скоростью, которая имеет необратимый процесс преобразования электрической энергии в другие виды энергии. Данная ёмкость может вычисляться через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I(2) x r = U(2) x g.

Kartinka 9 Reaktivnaya moshhnost Reactive PowerРеактивная мощность (Reactive Power)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

В любой электрической цепи как синусоидального, так и несинусоидального тока активная способность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая емкость определяется как сумма пропускной способности отдельных фаз. С полной производительностью S, активная связана соотношением P = S x cos φ.

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной производительностью.

Как найти реактивную полную мощность через активную? Данная производительность, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = U x I x sin φ (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).

Kartinka 10 Oboznachenie reaktivnoj velichinyОбозначение реактивной величины

Пример расчета мощности электрического тока

В конце концов, вы сможете проверить свои познания на 2-ух обычных примерах.

Представьте, что в первой задачке у вас есть резистор R = 50 Ом, через который течет электрический ток I = 0,3А. Какая электрическая мощность преобразуется в этом резисторе?

Вы можете отыскать решение, найдя соответствующую формулу и подставив в нее заданные значения. То есть у нас получается: P = I2R = 0,32  * 50 = 4,5 Вт

Во второй задаче дан резистор R, электрическое сопротивление которого 700 Ом. В техническом описании указано, что максимальная мощность этого резистора составляет 10 Вт. Насколько высоким может быть напряжение, подаваемое на этот резистор?

Для решения этой задачки подбираем подходящую формулу: P = U2/R, откуда мы находим Umax = Pmax * R = 700 * 10 = 83,67 В.

Это означает, что максимальное напряжение может составлять 83,67 В. Чтобы подстраховаться, следует выбирать электрическое напряжение значительно ниже этого предела.

Видео описание

Работа и мощность электрического тока.

Источники

  • https://knigaelektrika.ru/teoriya/formula-moshhnosti-elektricheskogo-toka-raschet-po-moshhnosti-i-napryazheniyu.html
  • https://rusenergetics.ru/polezno-znat/polnaya-moschnost
  • https://odinelectric.ru/knowledgebase/aktivnaja-i-reaktivnaja-moshhnost-peremennogo-toka
  • https://ElectroInfo.net/raznoe/aktivnaja-moshhnost-chto-takoe-aktivnaja-moshhnost.html
  • https://skysmart.ru/articles/physics/moshnost
  • https://amperof.ru/teoriya/raschet-moshhnosti.html
  • https://www.RusElectronic.com/power/
  • https://vdome.club/materialy/raschety/formula-moschnosti.html
  • https://remont220.ru/osnovy-elektrotehniki/1090-formula-moshchnosti/
  • https://khomovelectro.ru/articles/aktivnaya-reaktivnaya-i-polnaya-kazhushchayasya-moshchnosti.html
  • https://www.asutpp.ru/moschnost-elektricheskogo-toka.html
  • https://m-strana.ru/articles/elektricheskaya-moshchnost/

Как вам статья?

Павел

Павел

Бакалавр “210400 Радиотехника” – ТУСУР. Томский государственный университет систем управления и радиоэлектроники

Написать

Пишите свои рекомендации и задавайте вопросы

Добавить комментарий