Классическая электродинамика |
---|
Электричество · Магнетизм |
Электростатика Закон Кулона |
Магнитостатика Закон Био — Савара — Лапласа |
Электродинамика Векторный потенциал |
Электрическая цепь Закон Ома |
Ковариантная формулировка Тензор электромагнитного поля |
См. также: Портал:Физика |
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
Единицей измерения в Международной системе единиц (СИ) является ватт (русское обозначение: Вт, международное: W).
Мгновенная электрическая мощность[править | править код]
Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки в точку , к величине пробного заряда. То есть можно сказать, что электрическое напряжение численно равно работе по переносу единичного заряда из точки в точку . Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу или над ним будет совершена работа, численно равная электрическому напряжению, действующему на участке цепи. Умножив напряжение на количество единичных зарядов, мы, таким образом, получаем работу, которую совершает электрическое поле по перемещению этих зарядов от начала участка цепи до его конца.
Мощность, по определению — это работа в единицу времени.
Введём обозначения:
- — напряжение на участке (принимаем его постоянным на интервале );
- — количество зарядов, прошедших от к за время ;
- — работа, совершённая зарядом при движении по участку ;
- — мощность.
Записывая вышеприведённые рассуждения, получаем:
Для единичного заряда на участке :
Для всех зарядов:
Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть по определению, в результате получаем:
Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:
Если участок цепи содержит резистор c электрическим сопротивлением , то:
Дифференциальные выражения для электрической мощности[править | править код]
Мощность, выделяемая в единице объёма, равна:
где:
- — напряжённость электрического поля;
- — плотность тока.
Отрицательное значение скалярного произведения (векторы и противонаправлены или образуют тупой угол) означает, что в данной точке электрическая мощность не рассеивается, а генерируется за счёт работы сторонних сил.
В случае изотропной среды в линейном приближении:
где — удельная проводимость, величина, обратная удельному сопротивлению.
В случае наличия анизотропии (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла) в линейном приближении:
где — тензор проводимости.
Мощность постоянного тока[править | править код]
Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:
Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:
где — электрическое сопротивление.
Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:
где — ЭДС.
Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.
Мощность переменного тока[править | править код]
В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для большинства простых практических расчётов не слишком полезна непосредственно. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.
Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.
Активная мощность[править | править код]
Единица измерения в СИ — ватт[1].
Среднее за период значение мгновенной мощности называется активной электрической мощностью или электрической мощностью:
В цепях однофазного синусоидального тока , где и — среднеквадратичные значения напряжения и тока, — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи или её проводимость по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью активная связана соотношением .
В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отражённой мощностью.
Реактивная мощность[править | править код]
Единица измерения, по предложению Международной электротехнической комиссии, – вар (вольт-ампер реактивный); (русское обозначение: вар; международное: var). В терминах единиц СИ, как отмечено в 9-ом издании Брошюры СИ, вар когерентен произведению вольт-ампер. В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения в области «электротехника»[1][2]:
Вар определяется как реактивная мощность цепи с синусоидальным переменным током при действующих значениях напряжения 1 В и тока 1 А, если сдвиг фазы между током и напряжением [3].
Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения и тока , умноженному на синус угла сдвига фаз между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью и активной мощностью соотношением:
Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.
Необходимо отметить, что величина для значений от 0 до плюс 90° является положительной величиной. Величина для значений от 0 до −90° является отрицательной величиной. В соответствии с формулой , реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.
Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.
Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии, возвращаемой от индуктивной и ёмкостной нагрузки в источник переменного напряжения.
Полная мощность[править | править код]
Единица измерения — В·А, вольт-ампер (русское обозначение: В·А; международное: V·A). В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «электротехника»[1][2].
Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи и напряжения на её зажимах связана с активной и реактивной мощностями соотношением:
где:
- — активная мощность;
- — реактивная мощность (при индуктивной нагрузке , а при ёмкостной ).
Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:
Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.
Комплексная мощность[править | править код]
Мощность, аналогично импедансу, можно записать в комплексном виде:
где:
- — комплексное напряжение;
- — комплексный ток;
- — импеданс;
- — оператор комплексного сопряжения.
Модуль комплексной мощности равен полной мощности Действительная часть равна активной мощности а мнимая — реактивной мощности с корректным знаком в зависимости от характера нагрузки.
Измерения[править | править код]
- Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра, амперметра и фазометра.
- Для измерения коэффициента реактивной мощности применяют фазометры
- Государственный эталон мощности — ГЭТ 153—2012 Государственный первичный эталон единицы электрической мощности в диапазоне частот от 1 до 2500 Гц. Институт-хранитель: ВНИИМ
Потребление мощности некоторыми электроприборами[править | править код]
Электрический прибор | Мощность,Вт |
---|---|
Лампочка фонарика | 1 |
Сетевой роутер, хаб | 10…20 |
Системный блок ПК | 100…1700 |
Системный блок сервера | 200…1500 |
Монитор для ПК ЭЛТ | 15…200 |
Монитор для ПК ЖК | 2…40 |
Лампа люминесцентная бытовая | 5…30 |
Лампа накаливания бытовая | 25…150 |
Холодильник бытовой | 15…700 |
Электропылесос | 100… 3000 |
Электрический утюг | 300…2 000 |
Стиральная машина | 350…2 000 |
Электрическая плитка | 1000…2000 |
Сварочный аппарат бытовой | 1000…5500 |
Двигатель лифта невысокого дома | 3 000…15 000 |
Двигатель трамвая | 45 000…75 000 |
Двигатель электровоза | 650 000 |
Электродвигатель шахтной подъёмной машины | 1 000 000…5 000 000 |
Электродвигатель прокатного стана | 6 000 000…32 000 000 |
Выходная мощность[править | править код]
Измеряется как долговременная (RMS[en]), так и кратковременная (PMO, PMPO) мощности, способные отдавать усилителями мощности.
- также см.: КПД
См. также[править | править код]
- Ваттметр
- Электрический ток
- Коэффициент мощности
- Список параметров напряжения и силы электрического тока
- Закон Ома
- КПД
Примечания[править | править код]
- ↑ 1 2 3 Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 26—27. — 240 с. — ISBN 5-7050-0118-5.
- ↑ 1 2 Положение о единицах величин, допускаемых к применению в Российской Федерации Архивная копия от 2 ноября 2013 на Wayback Machine Утверждено Постановлением Правительства РФ от 31 октября 2009 г. N 879.
- ↑ Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1977. — С. 213.
Литература[править | править код]
- ГОСТ 8.417-2002 Единицы величин.
- ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации.
- Л. А. Бессонов . Теоретические основы электротехники. Электрические цепи: учебник
для бакалавров. — 12-е изд., испр. и доп. — М.: Юрайт, 2016. — 702 с. — (Бакалавр. Углубленный курс). — 1000 экз. — ISBN 978-5-9916-3210-2.
- Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193 — 2009. — 146 с.
Ссылки[править | править код]
- Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока. ToeHelp.Ru. Дата обращения: 7 марта 2022.
- Для чего нужна компенсация реактивной мощности. Школа для электрика (2010). Дата обращения: 7 марта 2022.
- . ред. Д. Макаров : Как рассчитать мощность электрического тока? Заметки электрика. ASUTPP. Дата обращения: 7 марта 2022.
В этой статье мы расскажем вам, что представляет собой мощность электрического тока и как её можно рассчитать.
Определение.
Мощность электрического тока (обозначается буквой P) — это физическая величина, определяемая как количество работы, которая совершается источником электрического напряжения для переноса электрического заряда (q) по проводнику за единицу времени t.
Если сказать в целом, то мощность электрического тока показывает, сколько электрической энергии преобразуется за определенное время. Она, в том числе, описывает энергопотребление потребителя.
Формулы
На многих бытовых электроприёмниках есть этикетки с указанием мощности. Мощность (P) говорит о работе (A), выполняемой электроприбором в единицу времени (t). Поэтому, дабы отыскать среднюю мощность электрического тока, необходимо поделить его работу на время, то есть P = A / t.
Давайте рассмотрим, что такое мощность электрического тока. Для этого рассмотрим электрическую цепь (см. рисунок 1), состоящую из источника тока, проводов и какого-либо электроприёмника, которым может быть резистор, аккумулятор, электродвигатель и т.д.
Рекомендуемое электрическое напряжение также указывается на электрооборудовании. Как эти две величины связаны друг с другом? Из школьного курса физики мы знаем, что напряжение (U) между концами данного электроприёмника определяется следующим образом: U = A / q, где: A — работа, совершаемая источником электрического напряжения для переноса электрического заряда (q) по проводнику.
Величина электрического заряда рассчитывается по формуле: q = I * t
Имеем A = P * t; A = U*q, а q = I * t. После преобразования формул получаем: A = P*t = U*q = U*I*t
Отсюда следует (разделив обе стороны уравнения на t), что P = U*I. То есть мы можем сказать, что количество энергии, переданное от источника тока к резистору определяется по формуле: P = U * I
Из этой формулы можно найти, что U = P / I , I = P / U.
Согласно закону Ома для участка цепи I = U/R, где R — электрическое сопротивление участка цепи. Потому из формулы P = U*I следуют две другие формулы для мощности электрического тока, то есть P = U2/R, P = I2R.
Формулу P = I2R комфортно применять для электрических цепей с последовательным соединением проводников, потому что сила электрического тока при таком соединении в проводниках одинакова.
Для параллельно соединенных проводников работу и мощность удобнее выражать через одинаковое для их электрическое напряжение, исключая силу электрического тока, т.е. лучше применять формулу P = U2/R.
Если электроприборы соединены последовательно либо параллельно, их электрическая мощность суммируется. В данном случае для расчета полной мощности употребляется такая формула:
Pобщ = P1 + P2 + … + Pn, где P1 , P2 , … — мощность отдельно взятых электроприёмников.
Единицы измерения и обозначение
Единицей измерения мощности в Международной системе единиц (СИ), является ватт. При этом русское обозначение: Вт, международное: W). 1 Вт = 1 Дж/c. Из формулы P = U*I следует, что: 1 ватт = 1 вольт * 1 ампер, или 1 Вт = 1 В*А.
Есть также единицы измерения мощности, кратные ваттам: гектаватт (гВт), киловатт (кВт), мегаватт (МВт). Другими словами 1 гВт = 100 Вт, 1 кВт = 1000 Вт, 1 МВт = 1 000 000 Вт.
Единицы мощности, применяемые в электротехнике, кратны ватту: микроватт (мкВт), милливатт (мВт), гектоватт (гВт), киловатт (кВт) и мегаватт (МВт). Другими словами, 1 мкВт = 1*10-6 Вт, 1 мВт = 1*10-3 Вт, 1 гВт = 1*102 Вт, 1 кВт = 1*103 Вт, 1 МВт = 1*106 Вт.
Каждый электроприбор имеет определенную мощность (указана на приборе). Вот типовые значения мощности для некоторых электроприборов.
Прибор | Мощность, Вт |
Телевизор в режиме ожидания | 0,5 |
Лампа карманного фонарика | Около 1 |
Лампы накаливания | 25-150 |
Холодильник | 160 |
Электронагреватель | 500-2000 |
Пылесос | До 1300-1800 |
Электрочайник | Около 2000 |
Утюг | 1200-2200 |
Стиральная машина | До 2300 |
Раньше для обозначения мощности использовалась единица измерения — лошадиная сила (л.с.), которая известна и сейчас. Переведите из лошадиных сил в ватты, используя выражение: 1 л.с. = 735.5 Вт.
Пример расчета мощности электрического тока
В конце концов, вы сможете проверить свои познания на 2-ух обычных примерах.
Представьте, что в первой задачке у вас есть резистор R = 50 Ом, через который течет электрический ток I = 0,3А. Какая электрическая мощность преобразуется в этом резисторе?
Вы можете отыскать решение, найдя соответствующую формулу и подставив в нее заданные значения. То есть у нас получается: P = I2R = 0,32 * 50 = 4,5 Вт
Во второй задаче дан резистор R, электрическое сопротивление которого 700 Ом. В техническом описании указано, что максимальная мощность этого резистора составляет 10 Вт. Насколько высоким может быть напряжение, подаваемое на этот резистор?
Для решения этой задачки подбираем подходящую формулу: P = U2/R, откуда мы находим Umax = Pmax * R = 700 * 10 = 83,67 В.
Это означает, что максимальное напряжение может составлять 83,67 В. Чтобы подстраховаться, следует выбирать электрическое напряжение значительно ниже этого предела.
Более подробно о том как можно находить мощность электрического тока я писал в статье: https://www.asutpp.ru/kak-nayti-moschnost.html
Измерение мощности электрического тока
Вы сможете измерить силу электрического тока при помощи вольтметра и амперметра. Чтобы высчитать нужную мощность, помножьте электрическое напряжение на силу тока. Электрический ток и напряжение можно найти по показаниям приборов.
Помните, что вы всегда должны определять электрическое напряжение параллельно нагрузке и электрический ток последовательно.
Есть особые приборы – ваттметры, определяющие мощность электрического тока в цепи, которые, по сути, подменяют два устройства – амперметр и вольтметр.
Единицы измерения электрического тока, применяемые на практике
В паспортах потребителей электроэнергии – лампочки, плиты, электродвигатели – обычно указывают силу электрического тока в них. Исходя из мощности, найти работу электрического тока за данный промежуток времени довольно просто, нужно лишь использовать формулу A = P*t.
Выразив мощность в ваттах, а время в секундах, мы получим работу в джоулях: 1 Вт = 1 Дж/с, где 1 Дж = 1 Вт*с.
Но эту единицу работы неудобно применять на практике, так как электроприёмники потребляют ее в течение долгих периодов времени, как, к примеру, в бытовых устройствах – в течение нескольких часов, в электропоездах – в течение нескольких часов либо даже суток, а расчет потребленной энергии по электросчетчику в большинстве случаев делается раз в месяц.
Потому при расчете работы тока либо затраченной и выработанной электроэнергии во всех этих случаях нужно переводить эти промежутки времени в секунды, что усложняет расчеты.
Перышкин А.В. Физика 8. – М.: Дрофа, 2010. [2]
Потому на практике, при расчете работы электрического тока, более удобно выражать время в часах, а работу электрического тока не в джоулях, а в других единицах: например, ватт-час (Вт*ч), гектоватт*час (гВт*ч), киловатт-час (кВт*ч).
Перышкин А.В. Физика 8. – М.: Дрофа, 2010. [2]
Будут верны следующие соотношения:
- 1 Вт*ч = 3600 Дж;
- 1 гВт*ч = 100 Вт*ч = 360 000 Дж;
- 1 кВт*ч = 1000 Вт*ч = 3 600 000 Дж.
Задача. Существует электрическая лампа, рассчитанная на ток в мощностью 100 ватт. Лампа работает в течение 6 часов каждый день. Нам нужно отыскать работу электрического тока за один месяц (30 дней) и стоимость потребленной электроэнергии, предполагая, что тариф составляет 500 копеек за один кВт/ч.
Запишем условие задачки и решим ее.
Входные данные: P = 100 Вт, t = 6 ч * 30 = 180 ч, тариф = 500 к / кВт*ч .
Решение задачи. Мы знаем, что A = P*t, потому получаем: A = 100 Вт*180 ч = 18 000 Вт*ч = 18 кВт*ч.
Мы рассчитываем стоимость так: Стоимость = 500 к / кВт*ч * 18 кВт*ч = 9000 копеек = 90 рублей.
Ответ: A = 18 кВт*ч, стоимость израсходованной электроэнергии = 90 рублей.
Связь мощности тока с действием тока в электрической цепи
Сравнение мощности тока с номинальной мощностью электрического прибора позволяет определить, насколько сильно нагружен в электрической цепи прибор. Если мощность тока меньше номинального, то действие тока не достаточно интенсивно или совсем не проявляется. Подключение мощного прибора к слабому источнику тока не вызывает в нем никаких действий. Приборы, рассчитанные на малую мощность работы тока, при подключении к источникам, создающим сильное поле, сгорают.
Список использованной литературы
- Физика, 8 класс, Исаченкова Л.А., Лещинский Ю.Д., Дорофейчик В.В., 2018
- Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
- Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.
Как посчитать мощность тока
- Главная
- /
- Физика
- /
- Как посчитать мощность тока
Чтобы посчитать мощность тока (электрическую мощность) воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Мощность тока (Р) или электрическая мощность — физическая величина, которая характеризует скорость передачи или преобразования электрической энергии. В системе СИ единицей измерения мощности тока является ватт (Вт).
Найти мощность зная ток и напряжение
Напряжение: U =В
Сила тока: I =A
Мощность тока: P =
0
Вт
Формула
P = U ⋅ I
Пример
Если электрическое напряжение U = 12 В, а сила тока I = 5 А, то:
Электрическая мощность P = 12 ⋅ 5 = 60 Вт
Найти мощность зная ток и сопротивление
Сила тока: I =A
Сопротивление: R =Ом
Мощность тока: P =
0
Вт
Формула
P = I² ⋅ R
Пример
Если сила тока I = 5 А, а электрическое сопротивление R = 2 Ом, то:
Электрическая мощность P = 5² ⋅ 2 = 50 Вт
Найти мощность зная сопротивление и напряжение
Напряжение: U =В
Сопротивление: R =Ом
Мощность тока: P =
0
Вт
Формула
P = U²/R
Пример
Если электрическое напряжение U = 12 В, а электрическое сопротивление R = 2 Ом, то:
Электрическая мощность P = 12² : 2 = 72 Вт
См. также
При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.
При прохождении заряда (q) по участку цепи электрическое поле будет совершать работу: (A=qcdot U), где (U) — напряжение электрического поля, (A) — работа, совершаемая силами электрического поля по перемещению заряда (q) из одной точки в другую.
Для выражения любой из этих величин можно использовать приведённый ниже рисунок.
Рис. (1). Зависимость между работой, напряжением и зарядом
Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда:
q=I⋅t
.
Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку:
A=U⋅q
.
Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи:
A=U⋅I⋅t
.
Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.
Рис. (2). Зависимость между работой, силой тока и временем прохождения заряда
Единицы измерения величин:
работа электрического тока ([A]=1) Дж;
напряжение на участке цепи ([U]=1) В;
сила тока, проходящего по участку ([I]=1) А;
время прохождения заряда (тока) ([t]=1) с.
Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.
Рис. (3). Схема и часы для измерения
Например:
I = 1,2 АU = 5 Вt = 1,5 мин = 90 сА = U⋅I⋅t = 5⋅1,2⋅90 = 540 Дж
Обрати внимание!
Работа чаще всего выражается в килоджоулях или мегаджоулях.
(1) кДж = 1000 Дж или (1) Дж = (0,001) кДж;
(1) МДж = 1000000 Дж или (1) Дж = (0,000001) МДж.
Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.
Рис. (4). Электросчетчик
Механическая мощность численно равна работе, совершённой телом в единицу времени:
N = Аt
. Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока,
A=U⋅I⋅t
, разделить на время.
Мощность электрического тока обозначают буквой (Р):
. Таким образом:
Мощность электрического тока равна произведению напряжения на силу тока:
P=U⋅I
.
Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённый ниже рисунок.
Рис. (5). Зависимость между мощностью, напряжением и силой тока
За единицу мощности принят ватт: (1) Вт = (1) Дж/с.
Из формулы
P=U⋅I
следует, что
(1) ватт = (1) вольт ∙ (1) ампер, или (1) Вт = (1) В ∙ А.
Обрати внимание!
Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
(1) гВт = (100) Вт или (1) Вт = (0,01) гВт;
(1) кВт = (1000) Вт или (1) Вт = (0,001) кВт;
(1) МВт = (1 000 000) Вт или (1) Вт = (0,000001) МВт.
Пример:
Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.
Рис. (6). Схема
Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:
.
Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.
В зависимости от сферы применения у них различаются пределы измерения.
Аналоговый ваттметр |
Аналоговый ваттметр |
Аналоговый ваттметр |
Цифровой ваттметр |
Рис. (7). Приборы для измерения
Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.
Рис. (8). Лампы различной мощности в цепи
Сила тока в лампочке мощностью (25) ватт будет составлять (0,1) А. Лампочка мощностью (100) ватт потребляет ток в четыре раза больше — (0,4) А. Напряжение в этом эксперименте неизменно и равно (220) В. Легко можно заметить, что лампочка в (100) ватт светится гораздо ярче, чем (25)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в (4) раза больше, потребляет в (4) раза больше тока. Значит:
Обрати внимание!
Мощность прямо пропорциональна силе тока.
Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение (110) В и (220) В.
Рис. (8). Лампа, подключенная к источнику тока с различным напряжением
Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:
Обрати внимание!
Мощность зависит от напряжения.
Рассчитаем мощность лампочки в каждом случае:
I=0,2АU=110ВP=U⋅I=110⋅0,2=22Вт | I=0,4АU=220ВP=U⋅I=220⋅0,4=88Вт. |
Можно сделать вывод о том, что при увеличении напряжения в (2) раза мощность увеличивается в (4) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).
Рис. (9). Маркировка
В таблице дана мощность, потребляемая различными приборами и устройствами:
Таблица (1). Мощность различных приборов
Название |
Рисунок |
Мощность |
Калькулятор |
(0,001) Вт |
|
Лампы дневного света |
(15 — 80) Вт |
|
Лампы накаливания |
(25 — 5000) Вт |
|
Компьютер |
(200 — 450) Вт |
|
Электрический чайник |
(650 — 3100) Вт |
|
Пылесос |
(1500 — 3000) Вт |
|
Стиральная машина |
(2000 — 4000) Вт |
|
Трамвай |
(150 000 — 240000) Вт |
Источники:
Рис. 1. Зависимость между работой, напряжением и зарядом. © ЯКласс.
Рис. 3. Схема и часы для измерения. © ЯКласс.
Рис. 5. Зависимость между мощностью, напряжением и силой тока. © ЯКласс.
Рис. 6. Схема. © ЯКласс.
Таблица 1. Мощность различных приборов. Компьютер. Указание авторства не требуется, 2021-08-14, Pixabay License, https://pixabay.com/ru/photos/яблоко-стул-компьютер-1834328/.
Безаварийная работа устройства зависит от соответствия технических характеристик прибора нормам питающей сети. Зная напряжение, сопротивление и силу тока в цепи, электрик поймёт, как найти мощность. Формула расчёта важного параметра зависит от свойств сети, в которую подключается потребитель.
- Труд электричества
- Производительность постоянного тока
- Мощность переменной сети
- Активный компонент
- Реверсивные потери
- В полную силу
- Критерий полезности
Труд электричества
Механические устройства и электрические приборы предназначены для выполнения работы. Согласно второму закону Ньютона, кинетическая энергия, которая воздействует на материальную точку в течение определённого промежутка времени, совершает полезное действие. В электродинамике поле, созданное разностью потенциалов, переносит заряды на участке электрической цепи.
Объём, производимой током работы, зависит от интенсивности электричества. В середине XIX века Д. П. Джоуль и Э. Х. Ленц решали одинаковую проблему. В проводимых опытах кусок проволоки с высоким сопротивлением разогревался, когда через него пропускался ток. Учёных интересовал вопрос, как вычислить мощность цепи. Для понимания процесса, происходящего в проводнике, следует ввести следующие определения:
- P — мощность.
- A — работа, совершаемая зарядом в электрической цепи.
- U — падение напряжения в проводнике.
- I — сила тока.
- Q — количество электрических зарядов, переносимых в единицу времени.
Мощность — это работа, производимая током в проводнике за какой-то временной период. Утверждение описывает формула: P = A ∕ ∆t.
На участке цепи разность потенциалов в точках a и b совершает работу по перемещению электрических зарядов, которая определяется уравнением: A = U ∙ Q. Ток представляет собой суммарный заряд, прошедший в проводнике за единицу времени, что математически выражается соотношением: U ∙ I = Q ∕ ∆t. После преобразований получается формула мощности электрического тока: P = A ∕ ∆t = U ∙ Q ∕ ∆t = U ∙ I. Можно утверждать, что в цепи проводится работа, которая зависит от мощности, определяемой током и напряжением на контактах подключённого электрического устройства.
Производительность постоянного тока
В линейной цепи без конденсаторов и катушек индуктивности соблюдается закон Ома. Немецкий учёный обнаружил взаимосвязь тока и напряжения от сопротивления цепи. Открытие выражается уравнением: I = U ∕ R. При известном значении сопротивления нагрузки мощность вычисляется двумя способами: P = I ² ∙ R или P = U ² ∕ R.
Если ток в цепи течёт от плюса к минусу, то энергия сети поглощается потребителем. Такой процесс проистекает при зарядке аккумуляторной батареи. Если движение тока совершается в противоположном направлении, то мощность отдаётся в электрическую цепь. Так происходит в случае питания сети от работающего генератора.
Мощность переменной сети
Расчёт переменных цепей отличается от вычисления параметра производительности в линии постоянного тока. Это связано с тем, что напряжение и ток изменяются во времени и по направлению.
В цепи со сдвигом фаз тока и напряжения, рассматриваются следующие виды мощности:
- Активная.
- Реактивная.
- Полная.
Активный компонент
Активная часть полезной мощности учитывает скорость невозвратного преобразования электричества в тепловую или магнитную энергию. В линии тока с одной фазой активная составляющая вычисляется по формуле: P = U ∙ I ∙ cos ϕ.
В международной системе единиц СИ величина производительности измеряется в ваттах. Угол ϕ определяет смещение напряжения по отношению к току. В трёхфазной цепи активная часть складывается из суммы мощностей каждой отдельной фазы.
Реверсивные потери
Для работы конденсаторов, катушек индуктивности, обмоток электродвигателей затрачивается сила сети. Из-за физических свойств таких устройств энергия, которая определяется реактивной мощностью, возвращается в цепь. Величина отдачи рассчитывается при помощи уравнения: V = U ∙ I ∙ sin ϕ.
Единицей измерения принят ватт. Возможно использование внесистемной меры подсчёта var, название которой составлено из английских слов volt, amper, reaction. Перевод на русский язык соответственно означает «вольт», «ампер», «обратное действие».
Если напряжение опережает ток, то смещение фаз считается больше нуля. В противном случае сдвиг фаз отрицательный. В зависимости от значения sin ϕ реактивная составляющая носит положительный или отрицательный характер. Присутствие в цепи индуктивной нагрузки позволяет говорить о реверсивной части больше нуля, а подключённый прибор потребляет энергию. Использование конденсаторов делает реактивную производительность минусовой, и устройство добавляет энергию в сеть.
Во избежание перегрузок и изменения установленного коэффициента мощности в цепи устанавливаются компенсаторы. Такие меры снижают потери электроэнергии, понижают искажения формы тока и позволяют использовать провода меньшего сечения.
В полную силу
Полная электрическая мощность определяет нагрузку, которую потребитель возлагает на сеть. Активная и реверсивная составляющие объединяются с полной мощностью уравнением: S = √ (P ² + V ²).
С индуктивной нагрузкой показатель V ˃ 0, а использование конденсаторов делает V ˂ 0. Отсутствие конденсаторов и катушек индуктивности делает реактивную часть равной нулю, что возвращает формулу к привычному виду: S = √ (P ² + V ²) = √ (P ² + 0) = √ P ² = P = U ∙ I. Полная мощность измеряется внесистемной единицей «вольт-ампер». Сокращённый вариант — В ∙ А.
Критерий полезности
Коэффициент мощности характеризует потребительскую нагрузку с точки зрения присутствия реактивной части работы. В физическом смысле параметр определяет сдвиг тока от приложенного напряжения и равен cos ϕ. На практике это означает количество тепла, выделяемого на соединительных проводниках. Уровень нагрева способен достигать существенных величин.
В энергетике коэффициент мощности обозначается греческой буквой λ. Диапазон изменения от нуля до единицы или от 0 до 100%. При λ = 1 подаваемая потребителю энергия расходуется на работу, реактивная составляющая отсутствует. Значения λ ≤ 0,5 признаются неудовлетворительными.
Безотказная работа приборов в электрической линии обусловлена правильным расчётом технических параметров. Найти мощность тока в цепи помогает набор формул, выведенных из законов Джоуля — Ленца и Ома. Принципиальная схема, грамотно составленная с учётом особенностей применяемых устройств, повышает производительность электросети.