Как найти мощность электроприбора формула


Загрузить PDF


Загрузить PDF

Мощность (в ваттах, Вт), потребляемую электроприборами, можно вычислить по простой формуле. Для этого нужно знать значение силы тока (в амперах, А) и значение напряжения (в вольтах, В). Это важные расчеты, потому что они позволят вам экономить энергию, а значит и деньги.

  1. Изображение с названием Calculate Wattage Step 1

    1

    Определите мощность источника питания. Вам понадобятся значения силы тока (I) и напряжения (V) источника питания. Для вычисления мощности (Р) нужно перемножить эти два значения. Сила тока – это количество тока (заряда), прошедшее через некоторую поверхность за некоторое время.[1]
    . Напряжение – это величина, характеризующая электрическое поле, создаваемое током.

    • Мощность равна произведению силы тока на напряжение, то есть 1 Вт = 1 А х 1 В. Формула: Р = I х V.[2]
    • Например, если сила тока равна 3 А, а напряжение равно 110 В, то мощность равна: 3 х 110 = 330 Вт. (Формула: Р = I х V, где Р – мощность).
    • Вот почему внесистемной единицей измерения мощности является вольт-ампер. Как правило, сила тока указывается на автоматических выключателях (прерывателях цепи); указанное значение представляет собой максимальную силу тока, при котором срабатывает прерыватель. Также значения силы тока и напряжения указываются на корпусе электроприбора или в документации к нему. Значения силы тока и напряжения распространенных электроприборов можно найти в специализированных справочниках или в интернете (например, сила тока домашних светильников варьируется в пределах 15-20 А, а сила тока более мощных приборов – в пределах 20 – 60 А).[3]
      Напряжение в электросети равно 120-240 В.
  2. Изображение с названием Calculate Wattage Step 2

    2

    Вычислите силу тока или напряжение по аналогичной формуле. Для этого соответствующие величины нужно делить, а не умножать. Например, напряжение источника питания равно 24 В, а его мощность равна 40 Вт. [4]

    • Сила тока источника питания равна 1,6 А. Так как Р = I x V, то I = Р/V = 40/24 = 1,6. [5]
    • Вот еще один пример. Вам нужно выяснить, какую мощность потребляет потолочный вентилятор, при этом сила тока указана на самом вентиляторе. В этом случае найдите напряжение вентилятора (у его производителя или в интернете) и вычислите мощность, потребляемую вентилятором, перемножив силу тока и напряжение.
  3. Изображение с названием Calculate Wattage Step 3

    3

    Вычислите мощность резистора. Для этого вам понадобятся значения силы тока (I) и напряжения (V) источника питания. Зависимость величин описывает закон Ома.[6]

    • Формула для вычисления мощности: Р = V x I. [7]
      Иногда мощность обозначают буквой W, а не Р.
    • Формула усложняется, когда в течение некоторого промежутка времени мощность меняется. В этом случае учитывается временной интервал и вычисляется средняя мощность. Эту величину довольно сложно найти; в этом случае используется прибор, который называется ваттметр.

    Реклама

  1. Изображение с названием Calculate Wattage Step 4

    1

    Найдите онлайн-калькулятор. В интернете есть множество онлайн-калькуляторов, предназначенных для вычисления мощности. Такие калькуляторы делают расчеты в автоматическом режиме, то есть формулы вводить не нужно.[8]

    • В калькулятор нужно ввести только два значения – силу тока и напряжение. Затем нажмите кнопку «Посчитать», и вы получите значение мощности.
    • Имейте в виду, что онлайн-калькуляторы не всегда выдают точное значение мощности, так как потребляемая мощность даже однотипных приборов может слегка варьироваться.
    • На некоторых онлайн-ресурсах вы найдете потребляемую мощность, если зададите тип прибора, например, телевизор или компьютер. На других ресурсах представлены таблицы, в которых приводятся значения потребляемой мощности множества распространенных приборов (от музыкального проигрывателя до холодильника).[9]
  2. Изображение с названием Calculate Wattage Step 5

    2

    Осмотрите ваш прибор. Зачастую мощность указывается на корпусе прибора, например, на специальной наклейке.

    • Как правило, такую наклейку можно найти на задней панели прибора. В большинстве случаев на наклейке указывается сила тока, напряжение и мощность прибора. Или же такая информация указывается на шильдике прибора.[10]
    • Ваттметры подключаются к приборам и показывают точные значения потребляемой этими приборами мощности. Потребляемая мощность приборов не является постоянной величиной и зависит от настроек приборов. Например, радиоприемник потребляет большую мощность, если включить его на полную громкость.

    Реклама

  1. Изображение с названием Calculate Wattage Step 6

    1

    Уясните важность вычисления мощности. Мощность – это скорость, с которой энергия преобразуется, передается или потребляется. Как правило, вы оплачиваете электроэнергию на основе потребленной мощности, измеряемой в ваттах. Мощность электроприбора – это количество энергии, которое потребляет этот прибор.[11]

    • Номинальная мощность – это мощность, необходимая для стабильной работы прибора. Например, номинальная мощность многих холодильников равна 500 Вт. Чтобы экономить электроэнергию (а значит и деньги), вычислите мощность, потребляемую всеми приборами в вашем доме; возможно, вы решите установить солнечные батареи или использовать генератор.
    • Ток бывает переменным и постоянным. Переменный ток с течением времени изменяется по величине или направлению; такой ток подается по электросетям. Постоянный ток не меняется по величине или направлению; источниками такого тока являются аккумуляторы или батарейки.[12]
    • Стартовая мощность – это мощность, необходимая для запуска двигателя или компрессора прибора. Например, стартовая мощность холодильника равна 2000 Вт (она необходима для запуска двигателя и компрессора холодильника).
  2. Изображение с названием Calculate Wattage Step 7

    2

    Подумайте об энергоэффективности. Любая мощность (электрическая, механическая, тепловая) измеряется в ваттах. Важно знать потребляемую мощность, чтобы экономить энергию.

    • Если вы уменьшите потребляемую мощность, то сэкономите энергию и деньги. Рассмотрим пример. Вы купили две лампочки – мощность одной равна 100 Вт, а мощность другой равна 23 Вт. Если лампочка, мощность которой равна 100 Вт, дешевле, то можно предположить, что выгоднее покупать именно такие лампочки. Но если вы будете пользоваться обеими лампочками на протяжении длительного периода времени, то лампочка, мощность которой равна 23 Вт, сэкономит вам значительную сумму денег.[13]
    • Для вычисления разности мощностей просто вычтите одно значение мощности из другого. В нашем примере: 100 – 23 = 77 Вт. Когда вы оплачиваете электроэнергию, вы платите за каждый потребленный киловатт. Для конвертирования ватт в киловатты разделите значение в ваттах на 1000. Затем умножьте значение в киловаттах на количество часов, в течение которого работал определенный прибор. Вы получите значение в киловаттах-час (кВт-ч); умножьте это значение на стоимость киловатта электроэнергии, чтобы определить, сколько вам нужно заплатить.
    • Например, в вашем доме 10 лампочек. Каждая лампочка потребляет 100 Вт. 10 х 100 = 1000 Вт. 1000 Вт разделите на 1000 и получите 1 кВт. Например, лампочки горели в течение 2000 часов (в год). Таким образом, 1 кВт х 2000 ч = 2000 кВт. Допустим, один киловатт-час стоит 5 руб. 2000 кВт-ч х 5 = 50000 руб. Таким образом, за пользование десятью лампочками в течение года вы заплатите 50000 руб.

    Реклама

Советы

  • При расчетах помните о небольшой мощности, потребляемой некоторыми приборами даже тогда, когда они выключены, но подключены к источнику питания, например, к розетке. Если некоторый прибор выключен, но на нем горит светодиод, то такой прибор продолжает потреблять некоторую мощность.

Реклама

Предупреждения

  • Если через инвертер пропустить слишком большую мощность, то он может выйти из строя.
  • Подключение чрезмерного числа приборов к инвертеру может привести к недостатку мощности для каждого прибора. Результатом этого может быть повреждение или отключение приборов.
  • При вычислении мощности по формуле вы получите приблизительное значение. Если вам нужно точное значение мощности, воспользуйтесь ваттметром.[14]

Реклама

Об этой статье

Эту страницу просматривали 456 322 раза.

Была ли эта статья полезной?

Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм

Электростатика

Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал

Магнитостатика

Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Магнитная индукция

Электродинамика

Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле

Электрическая цепь

Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс

Ковариантная формулировка

Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток

См. также: Портал:Физика

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Единицей измерения в Международной системе единиц (СИ) является ватт (русское обозначение: Вт, международное: W).

Мгновенная электрическая мощность[править | править код]

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение численно равно работе по переносу единичного заряда из точки A в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу или над ним будет совершена работа, численно равная электрическому напряжению, действующему на участке цепи. Умножив напряжение на количество единичных зарядов, мы, таким образом, получаем работу, которую совершает электрическое поле по перемещению этих зарядов от начала участка цепи до его конца.
Мощность, по определению — это работа в единицу времени.

Введём обозначения:

U — напряжение на участке A-B (принимаем его постоянным на интервале Delta t);
Q — количество зарядов, прошедших от A к B за время Delta t;
A — работа, совершённая зарядом Q при движении по участку A-B;
P — мощность.

Записывая вышеприведённые рассуждения, получаем:

{displaystyle P_{A-B}={frac {A}{Delta t}}~.}

Для единичного заряда на участке A-B:

{displaystyle P_{e(A-B)}={frac {U}{Delta t}}~.}

Для всех зарядов:

{displaystyle P_{A-B}={frac {U}{Delta t}}cdot {Q}={U}cdot {frac {Q}{Delta t}}~.}

Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть {displaystyle textstyle I={frac {Q}{Delta t}}} по определению, в результате получаем:

{displaystyle P_{A-B}=Ucdot I~.}

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

{displaystyle p(t)=u(t)cdot i(t)~.}

Если участок цепи содержит резистор c электрическим сопротивлением R, то:

{displaystyle p(t)=i(t)^{2}cdot R={frac {u(t)^{2}}{R}}~.}

Дифференциальные выражения для электрической мощности[править | править код]

Мощность, выделяемая в единице объёма, равна:

{displaystyle w={frac {dP}{dV}}=mathbf {E} cdot mathbf {j} ~,}

где:

mathbf {E}  — напряжённость электрического поля;
{mathbf  j} — плотность тока.

Отрицательное значение скалярного произведения (векторы mathbf {E} и {mathbf  j} противонаправлены или образуют тупой угол) означает, что в данной точке электрическая мощность не рассеивается, а генерируется за счёт работы сторонних сил.

В случае изотропной среды в линейном приближении:

{displaystyle w=sigma E^{2}={frac {E^{2}}{rho }}=rho j^{2}={frac {j^{2}}{sigma }}~,}

где {displaystyle textstyle sigma ,{overset {underset {mathrm {def} }{}}{=}},{frac {1}{rho }}} — удельная проводимость, величина, обратная удельному сопротивлению.

В случае наличия анизотропии (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла) в линейном приближении:

{displaystyle w=sigma _{alpha beta }E_{alpha }E_{beta }~,}

где sigma _{{alpha beta }} — тензор проводимости.

Мощность постоянного тока[править | править код]

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

{displaystyle P=Icdot U~.}

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

{displaystyle P=I^{2}cdot R={frac {U^{2}}{R}}~,}

где R — электрическое сопротивление.

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

{displaystyle P=Icdot {mathcal {E}}~,}

где {mathcal {E}} — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность p=I^{2}cdot r прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока[править | править код]

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для большинства простых практических расчётов не слишком полезна непосредственно. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол varphi (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность[править | править код]

Единица измерения в СИ — ватт[1].

{displaystyle P=Ucdot Icdot cos varphi ~.}

Среднее за период T значение мгновенной мощности называется активной электрической мощностью или электрической мощностью:

{displaystyle P={frac {1}{T}}int limits _{0}^{T}p(t)dt~.}

В цепях однофазного синусоидального тока P=Ucdot Icdot cos varphi , где U и I — среднеквадратичные значения напряжения и тока, varphi  — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P=I^{2}cdot r=U^{2}cdot g. В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением P=Scdot cos varphi .

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отражённой мощностью.

Реактивная мощность[править | править код]

Единица измерения, по предложению Международной электротехнической комиссии, – вар (вольт-ампер реактивный); (русское обозначение: вар; международное: var). В терминах единиц СИ, как отмечено в 9-ом издании Брошюры СИ, вар когерентен произведению вольт-ампер. В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения в области «электротехника»[1][2]:

{displaystyle Q=Ucdot Icdot sin varphi ~.}

Вар определяется как реактивная мощность цепи с синусоидальным переменным током при действующих значениях напряжения 1 В и тока 1 А, если сдвиг фазы между током и напряжением {displaystyle textstyle {frac {pi }{2}}}[3].

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз varphi между ними: Q=Ucdot Icdot sin varphi (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью P соотношением:

{displaystyle |Q|={sqrt {S^{2}-P^{2}}}~.}

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin varphi для значений varphi от 0 до плюс 90° является положительной величиной. Величина sin varphi для значений varphi от 0 до −90° является отрицательной величиной. В соответствии с формулой Q=UIsin varphi , реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии, возвращаемой от индуктивной и ёмкостной нагрузки в источник переменного напряжения.

Полная мощность[править | править код]

Единица измерения — В·А, вольт-ампер (русское обозначение: В·А; международное: V·A). В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «электротехника»[1][2].

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах S=Ucdot I связана с активной и реактивной мощностями соотношением:

{displaystyle S={sqrt {P^{2}+Q^{2}}}~,}

где:

P — активная мощность;
Q — реактивная мощность (при индуктивной нагрузке {displaystyle Q>0}, а при ёмкостной {displaystyle Q<0}).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

{displaystyle {vec {S}}={vec {P}}+{vec {Q}}~.}

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность[править | править код]

Мощность, аналогично импедансу, можно записать в комплексном виде:

{displaystyle {dot {S}}={dot {U}}{dot {I}}^{*}=I^{2}mathbb {Z} ={frac {U^{2}}{mathbb {Z} ^{*}}}~,}

где:

{dot  {U}} — комплексное напряжение;
{dot  {I}} — комплексный ток;
mathbb {Z}  — импеданс;
* — оператор комплексного сопряжения.

Модуль комплексной мощности left|{dot  {S}}right| равен полной мощности S. Действительная часть {mathrm  {Re}}({dot  {S}}) равна активной мощности P, а мнимая {mathrm  {Im}}({dot  {S}}) — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.

Измерения[править | править код]

  • Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра, амперметра и фазометра.
  • Для измерения коэффициента реактивной мощности применяют фазометры
  • Государственный эталон мощности — ГЭТ 153—2012 Государственный первичный эталон единицы электрической мощности в диапазоне частот от 1 до 2500 Гц. Институт-хранитель: ВНИИМ

Потребление мощности некоторыми электроприборами[править | править код]

Значения потребляемой электрической мощности некоторых потребителей

Электрический прибор Мощность,Вт
Лампочка фонарика 1
Сетевой роутер, хаб 10…20
Системный блок ПК 100…1700
Системный блок сервера 200…1500
Монитор для ПК ЭЛТ 15…200
Монитор для ПК ЖК 2…40
Лампа люминесцентная бытовая 5…30
Лампа накаливания бытовая 25…150
Холодильник бытовой 15…700
Электропылесос 100… 3000
Электрический утюг 300…2 000
Стиральная машина 350…2 000
Электрическая плитка 1000…2000
Сварочный аппарат бытовой 1000…5500
Двигатель лифта невысокого дома 3 000…15 000
Двигатель трамвая 45 000…75 000
Двигатель электровоза 650 000
Электродвигатель шахтной подъёмной машины 1 000 000…5 000 000
Электродвигатель прокатного стана 6 000 000…32 000 000

Выходная мощность[править | править код]

Измеряется как долговременная (RMS[en]), так и кратковременная (PMO, PMPO) мощности, способные отдавать усилителями мощности.

также см.: КПД

См. также[править | править код]

  • Ваттметр
  • Электрический ток
  • Коэффициент мощности
  • Список параметров напряжения и силы электрического тока
  • Закон Ома
  • КПД

Примечания[править | править код]

  1. 1 2 3 Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 26—27. — 240 с. — ISBN 5-7050-0118-5.
  2. 1 2 Положение о единицах величин, допускаемых к применению в Российской Федерации Архивная копия от 2 ноября 2013 на Wayback Machine Утверждено Постановлением Правительства РФ от 31 октября 2009 г. N 879.
  3. Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1977. — С. 213.

Литература[править | править код]

  • ГОСТ 8.417-2002 Единицы величин.
  • ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации.
  • Л. А. Бессонов . Теоретические основы электротехники. Электрические цепи: учебник

для бакалавров. — 12-е изд., испр. и доп. — М.: Юрайт, 2016. — 702 с. — (Бакалавр. Углубленный курс). — 1000 экз. — ISBN 978-5-9916-3210-2.

  • Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193 — 2009. — 146 с.

Ссылки[править | править код]

  • Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока. ToeHelp.Ru. Дата обращения: 7 марта 2022.
  • Для чего нужна компенсация реактивной мощности. Школа для электрика (2010). Дата обращения: 7 марта 2022.
  • . ред. Д. Макаров : Как рассчитать мощность электрического тока? Заметки электрика. ASUTPP. Дата обращения: 7 марта 2022.

Что такое потребляемая мощность?

Потребляемая мощность — это численная мера количества электрической энергии, необходимой для функционирования электроприбора или преобразуемой им в процессе функционирования. Для статических устройств (плита, утюг, телевизор, осветительные приборы) энергия тока при работе переходит в тепло). При преобразовании (электродвигатели) – энергия электрического тока преобразуется в механическую энергию.

Основная единица электрической мощности – Ватт, ее численное значение

Р = U × I,

где U – напряжение, Вольты, I – ток, амперы.

Иногда этот параметр указывают в В×А (V×А у импортной техники), что более правильно для переменного тока. Разница между Ваттами и В×А для бытовых сетей мала и ее можно не учитывать.

Потребляемая электрическая мощность важна при планировании проводки (от нее зависит сечение проводов, а также выбор номиналов и количество защитных автоматов). При эксплуатации она определяет затраты на содержание жилища.

Формула для определения мощности

Первое, на что надо обратить внимание, – это паспортные данные приборов. Потребляемая мощность в ваттах может быть указана и на различных табличках, прикрепленных к устройствам.

Часто показатель мощности указывается в вольтамперах (В*А). Обычно это происходит, когда потребляемая прибором энергия имеет реактивную составляющую. Тогда обозначается полная мощность электрического устройства, а она измеряется в вольтамперах.

Потребляемая мощность, указанная на электроприборе

Но не всегда эта информация доступна. Тогда на помощь приходят простая формула и измерительные приборы.

Основная формула, с помощью которой ведется расчет потребляемой мощности:

P = I * U, то есть надо перемножить напряжение и ток.

Если в паспортных данных электроприбора нет мощности, но указан ток, то ее можно узнать по этой формуле. Допустим, устройство берет ток 1 А и работает от сети 220 В. Тогда P = U * I = 1 * 220 = 220 Вт.

Измерение мощности приборами

В чем измеряется мощность

Если это обычный бытовой прибор, подключаемый в розетку, то питающее напряжение электрической сети известно – 220 В. При подсоединении к другим источникам питания берется их напряжение.

Сила тока может быть измерена:

  • токоизмерительными клещами;
  • используя тестер.

С помощью токоизмерительных клещей замеры проще, так как осуществляются бесконтактным способом на одном проводе, подходящем к нагрузке.

Существует два метода, как измерить мощность мультиметром:

  1. Включить его в режиме измерения силы тока последовательно с электроприбором и затем рассчитать мощность по формуле. Этот способ не всегда подходит, так как может не быть возможности разорвать цепь питания устройства для подключения мультиметра;
  2. Подсоединить мультиметр к устройству в режиме измерения сопротивления и затем определить ток по формуле I = U/R, зная напряжение. Затем посчитать мощность.

Измерение сопротивления ТЭНа мультиметром

Важно! Если измеряется сила тока бытовых электроприборов, то тестер устанавливается на измерение переменного тока.

Как определить?

Для решения задачи нахождения мощности можно воспользоваться различными способами. Все они доступны для применения даже при знаниях в области физики и электротехники на уровне школьной программы.

Чаще мощность находят через определение тока, иногда можно обойтись без промежуточных процедур и определит ее сразу.

Смотрим в техпаспорт

Обычно потребляемая мощность указывается в паспорте или описании устройства и дублируется на фирменной табличке-шильдике. Последняя находится на задней стенке корпуса или его основании.

В случае отсутствия описания этот параметр можно узнать по интернету, для чего достаточно воспользоваться поиском по названию устройства.

Указываемая производителем техники мощность относится к пиковой и потребляется от сети только при полной нагрузки, что встречается достаточно редко. Образовавшаяся разница рассматривается как запас. На нормативном уровне этот запас определяют через коэффициент мощности.

Закон Ома в помощь

Мощность большинства бытовых электрических устройств можно довольно точно оценить экспериментально-расчетным путем с привлечением известного еще со средней школы закона Ома. Этот эмпирический закон связывает между собой напряжение, ток и сопротивление R нагрузки как:

P = U2/R.
U = 230 В, а сопротивление измеряется тестером. Далее следует простой расчет по формуле
P = 48 400/R Вт.

Например, при R = 200 Ом получаем мощность Р = 240 Вт.

Метод не учитывает так называемое реактивное сопротивление прибора, которое создается в первую очередь входными трансформаторами и дросселями, и поэтому получаемая оценка дает некоторое завышение.

Используем электросчетчик

При определении мощности по счетчику можно поступить двумя различными способами. В обоих случаях от бытовой сети должен питаться только тестируемый прибор. Все без исключения остальные потребители должны быть отключены.

При первом подходе для замера мощности привлекается оптический индикатор счетчика, интенсивность вспышек которого пропорциональна потребляемой мощности. Коэффициент пропорциональности указан на лицевой панели в единицах imp/kWh или имп/кВтч, рисунок 1, где imp – количество импульсов (вспышек индикатора) на один киловатт час.

Лицевая панель бытового счетчика электроэнергии с оптическим индикатором
 Лицевая панель бытового счетчика электроэнергии с оптическим индикатором.

После включения исследуемого устройства необходимо начать считать вспышки индикатора на протяжении 15 или 20 минут. Затем полученное значение умножается на 3 или на 4 (при 20- или 15-минутном интервале замера, соответственно) и делится на коэффициент с лицевой панели. Результат выкладки дает мощность прибора в кВт, который в ряде случаев умножением на 1000 удобно перевести в Ватты.

Пример. Для счетчика имеем k = 1600 импульсов на киловатт час. При 20 минутном интервале замера индикатор сработал (вспыхнул) 160 раз. Тогда мощность устройства составит 160*3/1600 = 0,3 кВт или 300 Вт.

При втором подходе также используется 15- или 20-минутный интервал времени, но расход электроэнергии определяется уже по цифровой шкале. Например, при разности показаний за 20 минут 0,2 кВт×час мощность агрегата составляет 0,2 × 3 = 0,6 кВт или 600 Вт.

Прибор для для определения мощности «Ваттметр».

Современный бытовой измеритель мощности или ваттметр удобен для использования, так как:

  • включается непосредственно в разрыв цепи, для чего снабжен вилкой и розеткой, см. рисунок 2;
  • оборудован легко читаемым цифровым индикатором и снабжен внутренними цепями автоматической настройки, что исключает ошибки в показаниях;
  • отличается хорошими массогабаритными показателями.

Прибор готов к работе немедленно после включения.

Цифровой бытовой ваттметр

Единственный его недостаток – узкая специализация, поэтому этот прибор редко встречается в домашнем хозяйстве.

Измерение мощности с помощью электросчетчика

Для того чтобы узнать мощность электроприбора, пользуясь счетчиком, надо отсоединить от сети все остальные устройства и посмотреть на счетчик:

  1. Есть электронные приборы учета, которые сразу показывают, какова потребляемая мощность. Для этого надо просто воспользоваться соответствующими кнопками, найдя активную мощность;
  2. В других электросчетчиках мигающий индикатор позволяет подсчитать количество импульсов. Например, сосчитав их за 1 минуту, надо умножить полученную цифру на 60 (получится количество импульсов за час). На приборе должно быть указано значение imp/kW*h (3200 или другая цифра). Теперь количество импульсов за час делится на imp/kW*h, и получается мощность электроприбора;
  3. Если установлен индукционный счетчик, мощность рассчитывается в несколько этапов.

Расчет мощности по счетчикам.

Расчет мощности потребления с помощью индукционного счетчика:

  • нужно найти на табло счетчика цифру, указывающую число оборотов диска, совершаемых за 1 кВт ч;
  • с помощью секундомера отсчитать, сколько вращений диск совершит за 15 секунд (можно взять и другой временной промежуток);
  • вычислить мощность по формуле P = (3600 x N х 1000)/(15 x n), где n – коэффициент, найденный на счетчике, N – сосчитанное число вращений диска, 15 – временной промежуток в секундах, который может быть представлен другой цифрой.

Пример. За 15 секунд диск совершил 5 вращений. Передаточный коэффициент электросчетчика – 1200. Тогда мощность будет равна:

P = (3600 x 5 х 1000)/(15 х 1200) = 1000 Вт.

Очевидно, что мощность приборов, рассчитанных на малое потребление, измерить, пользуясь индукционным счетчиком, почти невозможно. Слишком большая погрешность измерения. Если диск вращается очень медленно, невозможно корректно учесть часть оборота. На электронном счетчике результат будет немного точнее.

В сети существуют калькуляторы для расчета мощности, куда в соответствующие окна надо ввести значения токов и напряжений и получить высчитанное значение мощности. Иногда в поле калькулятора достаточно обозначить название электроприбора. Другой вариант – воспользоваться таблицами, где указаны средние значения потребляемых мощностей для различных электроприборов.

Потребляемая энергия.

Потребляемая энергия тесно связана с мощностью. Она рассчитывается, исходя из мощности прибора, умноженной на время его работы. Это именно тот показатель, по которому судят о потребительских расходах на электроэнергию. Точное значение израсходованной мощности во всей квартире или доме за определенный временной промежуток укажут данные счетчика. Для того, чтобы продумать способы уменьшения этого расхода, служат замеры мощности конкретных электроприборов.

Как рассчитать амперы.

Способы экономии электроэнергии:

  1. По возможности постараться не использовать старые модели холодильников, телевизоров и других бытовых электроприборов, которые рассчитаны на значительно большее потребление;
  2. Заменить лампы накаливания на люминесцентные, а еще лучше – на светодиодные. Для сравнения: средняя лампа накаливания потребляет 60 Вт, люминесцентная – 15 Вт, а LED лампа – всего 8 Вт. При использовании 5 ламп разного типа в течение 3-х часов в день получается суточный расход: лампы накаливания – 0,900 кВт ч, люминесцентные – 0,225 кВт ч, LED лампы – 0,120 кВт ч. Экономия значительная;

Важно! Низкая мощность энергосберегающих ламп не означает плохого освещения. Их яркость практически соответствует более мощным аналогам ламп накаливания.

  1. Большинство дисплеев телевизоров и компьютеров потребляет от 0,1 до 3 Вт электроэнергии, даже находясь в спящем режиме. Поэтому важно отключать их от сети, когда приборы не используются длительное время.

Методы расчета мощности при помощи измерений тестером дадут величины приблизительные из-за недостаточного учета реактивного мощностного показателя в электросетях переменного  тока. Самым точным является измерение потребляемой мощности ваттметром для бытового пользования.

Потребление электроэнергии

Суммарная потребляемая мощность.
Расчет потребляемой мощности — это важная процедура, так как оплата электроэнергии производится именно по этому показателю. Чем больше энергии потребляет электроприбор, тем больше придется платить. Но в быту для измерения используются не ватты, а киловатты. В одном киловатте 1 тыс. ватт.

Номинальный показатель предполагает величину, необходимую для нормального функционирования прибора, например:

  • Для обычного холодильника этот параметр составляет 0,5 киловатт. Для того чтобы экономить электроэнергию, важно уметь проводить полные расчеты. То есть важно знать суммарную мощность всех потребителей тока, находящихся в доме.
  • При применении двух осветительных приборов, обладающих величинами 80 Ватт и 20 Ватт, можно оценить экономическую целесообразность покупки лампы с наименьшей величиной. Если оба прибора будут работать одинаковое количество времени, то первый будет потреблять в четыре раза больше электроэнергии. Следовательно, платить за него также придется в 4 раза больше.

Однако в доме современного человека электроприборов много. Это не только лампочки, поэтому определять суммарную величину несколько сложнее. Нужно знать величину каждого прибора и время его работы.

Для уменьшения финансовых расходов многие устанавливают в своих домах специальные энергосберегающие лампы. Стоит иметь в виду, что некоторые электроприборы способны потреблять энергию даже тогда, когда они не работают, но при этом не отключены от сети.

Трёхфазная сеть напряжением 380 В

В трехфазном электроснабжении сила тока рассчитывается по следующей формуле:

I = P /1,73 U

P — потребляемая мощность в ватах;

U — напряжение сети в вольтах.

В техфазной схеме элетропитания 380 В, формула имеет следующий вид:

I = P /657, 4

Если к дому будет проводиться трехфазная сеть 380 В, то схема подключения будет иметь следующий вид.

В таблице ниже представлена схема сечения жил в питающем кабеле при различной нагрузке при трехфазном напряжении 380 В для скрытой проводки.

Сечение жилы провода, мм2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 2250
0,75 0,98 10 3800
1,00 1,13 14 5300
1,50 1,38 15 5700 10 3800
2,00 1,60 19 7200 14 5300
2,50 1,78 21 7900 16 6000
4,00 2,26 27 10000 21 7900
6,00 2,76 34 12000 26 9800
10,00 3,57 50 19000 38 14000
16,00 4,51 80 30000 55 20000
25,00 5,64 100 38000 65 24000

Для дальнейшего расчета питания в цепях нагрузки, характеризующейся большой реактивной полной мощностью, что характерно применению электроснабжения в промышленности:

  • электродвигатели;
  • индукционные печи;
  • дроссели приборов освещения;
  • сварочные трансформаторы.

Это явление в обязательном порядке необходимо учитывать при дальнейших расчетах. В более мощных электроприборах нагрузка идет гораздо больше, поэтому в расчетах коэффициент мощности принимают 0,8.

При подсчете нагрузки на бытовые приборы запас мощности нужно брать 5%. Для электросети этот процент становит 20%.

Однофазная сеть напряжением 220 вольт.

Формула силы тока I (A — амперы):

I=P/U

Где P — это электрическая полная нагрузка (ее обозначение обязательно указывается в техническом паспорте данного устройства), Вт — ватт;

U — напряжение электросети, В (вольт).

В таблице представлены стандартные нагрузки электроприборов и потребляемый ими ток (220 В).

Электроприбор Потребляемая мощность, Вт Сила тока, А
Стиральная машина 2000 – 2500 9,0 – 11,4
Джакузи 2000 – 2500 9,0 – 11,4
Электроподогрев пола 800 – 1400 3,6 – 6,4
Стационарная электрическая плита 4500 – 8500 20,5 – 38,6
СВЧ печь 900 – 1300 4,1 – 5,9
Посудомоечная машина 2000 — 2500 9,0 – 11,4
Морозильники, холодильники 140 — 300 0,6 – 1,4
Мясорубка с электроприводом 1100 — 1200 5,0 — 5,5
Электрочайник 1850 – 2000 8,4 – 9,0
Электрическая кофеварка 6з0 — 1200 3,0 – 5,5
Соковыжималка 240 — 360 1,1 – 1,6
Тостер 640 — 1100 2,9 — 5,0
Миксер 250 — 400 1,1 – 1,8
Фен 400 — 1600 1,8 – 7,3
Утюг 900 — 1700 4,1 – 7,7
Пылесос 680 — 1400 3,1 – 6,4
Вентилятор 250 — 400 1,0 – 1,8
Телевизор 125 — 180 0,6 – 0,8
Радиоаппаратура 70 — 100 0,3 – 0,5
Приборы освещения 20 — 100 0,1 – 0,4

На рисунке вы можете видет схему устройства электроснабжение дома при однофазном подключении к сети 220 вольт.

Схема приборов при однофазном напряжении
Схема приборов при однофазном напряжении

Как и показано на рисунке, все потребители должны быть подключены к соответствующим автоматам и счетчику, далее к общему автомату который будет выдерживать общею нагрузку дома. Кабель который будет доводит ток, должен выдерживать нагрузку всех подключенных бытовых приборов.

В таблице ниже показана скрытая проводка при однофазной схеме подключение жилища для подбора кабеля при напряжении 220 вольт.

Сечение жилы провода, мм2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 1300
0,75 0,98 10 2200
1,00 1,13 14 3100
1,50 1,38 15 3300 10 2200
2,00 1,60 19 4200 14 3100
2,50 1,78 21 4600 16 3500
4,00 2,26 27 5900 21 4600
6,00 2,76 34 7500 26 5700
10,00 3,57 50 11000 38 8400
16,00 4,51 80 17600 55 12100
25,00 5,64 100 22000 65 14300

Как и показано в таблице, сечение жил зависит и от материала из которого изготовлен.

Как и зачем экономить электроэнергию на основании данных о расходе электричества бытовыми приборами.

Есть по меньшей мере две причины, почему нужно экономить электроэнергию. Это сбережение природных ресурсов и снижение вредных выбросов в атмосферу и уменьшение денежных расходов потребителя. Проанализируйте, сколько электричества расходует каждый прибор в вашем доме и можно ли уменьшить этот показатель. Если общий расход превышает принятую в России среднестатистическую норму потребления электроэнергии 350 кВт на одного человека в месяц, достаточно принять несложные меры. За счет чего можно экономить электроэнергию:

  1. не оставлять без надобности включенным свет
  2. если электроприбор не используется, выключать его из сети;
  3. использовать только энергосберегающие лампы, их высокая стоимость быстро окупится, так как они работают значительно дольше простых ламп накаливания;
  4. установить на компьютере экономный режим ожидания, через определенное время устройство отключится автоматически, а при переводе в активный режим «съест» меньше электрической энергии;
  5. не оставлять открытыми окна при включенном кондиционере, заставляя его работать вхолостую;
  6. поставить холодильник и морозильную камеру подальше от горячей батареи и окон, чтобы уберечь от теплых солнечных лучей;
  7. размораживать холодильник, как только в морозилке образовалась наледь, она увеличивает расход электричества;
  8. по возможности не использовать переходники и удлинители;
  9. регулярно удалять в чайнике накипь, она заставляет расходовать большее количество электроэнергии на нагрев;
  10. установить многотарифные счетчики, чтобы пользоваться энергоемкой техникой в ночное время, когда тарифы ниже почти в два раза.

Отдавайте предпочтение бытовым приборам с высоким классом энергоэффективности. С 2011 года вся домашняя техника от холодильников и стиральных машин до светильников маркируется специальными индексами – A, B, C, D, E, F, G.

классы энергоэффективности

Меньше всего энергии потребляет бытовая техника с маркировкой А, А+ и А++, ее относят к 1 классу энергосбережения, она экономит до 50-80% электроэнергии. Классы В и С сберегают от 10 до 50%. Остальные индексы означают, что электроприборы экономят незначительно или являются энергозатратными.

Экономия электричества актуальна для каждой семьи, ведь расходы на него – тяжелое бремя для домашнего бюджета. Зная, как рассчитать среднесуточное потребление электричества по каждому прибору, вы сможете снизить свои затраты.

Пример расчета полной мощности для электродвигателя.

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

S = 3*Uф*Iф

В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:

Мощность и линейное напряжение

Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.

Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.

Шильд электродвигателя
Шильд электродвигателя

Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:

  • полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
  • коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
  • тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
  • напряжение, при соединении обмоток треугольником составит 220 В;
  • сила тока при том же способе соединения – 13,3 А.

С таким перечнем характеристик можно воспользоваться несколькими способами:

S = 1,732*220*13,3 = 5067 Вт

Чтобы найти искомую величину, сначала определяем активную составляющую:

P = Pполезная / КПД = 3000/0.8 = 3750 Вт

Далее полную по способу деления активной  на коэффициент cos φ:

S = P/cos φ = 3750/0.74 = 5067 Вт

Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.

Источники

  • https://www.asutpp.ru/kak-opredelit-potreblyaemuyu-moschnost-elektropribora.html
  • https://elquanta.ru/teoriya/kak-rasschitat-potreblyaemuyu-moshhnost.html
  • https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/raschet-potreblyaemoy-elektricheskoy-moschnosti-elektropriborov.html
  • https://DomStrouSam.ru/raschet-moshhnosti-po-toku-i-napryazheniyu-shema-i-tablitsyi/
  • https://knigaelektrika.ru/poleznye-sovety/kak-rasschitat-rashod-elektroenergii-potreblyaemoj-priborami-doma-i-v-ofise.html
  • https://www.asutpp.ru/kak-nayti-moschnost.html

Электричество в массовом масштабе используется во всех сферах современной жизни. Необходимая эксплуатационная гибкость электросети обеспечивается использованием розеток к которым подключаются те или иные приборы. Мощность подключаемого устройства не должна превышать определенного максимального значения.

Что такое потребляемая мощность?

Потребляемая мощность — это численная мера количества электрической энергии, необходимой для функционирования электроприбора или преобразуемой им в процессе функционирования. Для статических устройств (плита, утюг, телевизор, осветительные приборы) энергия тока при работе переходит в тепло). При преобразовании (электродвигатели) – энергия электрического тока преобразуется в механическую энергию.

Основная единица электрической мощности – Ватт, ее численное значение

Р = U × I,

где U – напряжение, Вольты, I – ток, амперы.

Иногда этот параметр указывают в В×А (V×А у импортной техники), что более правильно для переменного тока. Разница между Ваттами и В×А для бытовых сетей мала и ее можно не учитывать.

Потребляемая электрическая мощность важна при планировании проводки (от нее зависит сечение проводов, а также выбор номиналов и количество защитных автоматов). При эксплуатации она определяет затраты на содержание жилища.

Проблема правильной эксплуатации бытовой электрической сети

С конструктивной точки зрения бытовая электрическая сеть отработана до высокой степени совершенства: ее нормальная эксплуатация не требует специальных знаний.

Сеть рассчитана на определенные условия эксплуатации, нарушение которых приводит к полному или частичному отказу, а в тяжелых случаях – к возникновению пожара.

Условие правильной эксплуатации – отсутствие перегрузки.

При этом нагрузочная способность розеток и потребление подключаемой к ним техники измеряется различными единицами:

  • для розеток это максимально допустимый переменный ток (6 А у традиционных советских розеток старого жилого фонда, 10 или даже 16 А у розеток европейского стиля);
  • подключаемое оборудование характеризуются мощностью, которая измеряется в Ваттах (для мощных устройств вместо Ватт указываются более крупные единицы: киловатты (1 кВт = 1000 Вт), что позволяет не путаться в многочисленных нулях).

Отсюда возникает необходимость:

  • определения связи мощности и тока;
  • нахождения мощности отдельного электрического прибора.

Связь между Ваттами и Амперами проста и следует прямо из приведенного выше определения Ватта. Задача упрощается тем, что напряжение исправной бытовой сети всегда одинаково (220 или 230 В). Отсюда по току всегда находится мощность.

Как определить?

Для решения задачи нахождения мощности можно воспользоваться различными способами. Все они доступны для применения даже при знаниях в области физики и электротехники на уровне школьной программы.

Чаще мощность находят через определение тока, иногда можно обойтись без промежуточных процедур и определит ее сразу.

Смотрим в техпаспорт

Обычно потребляемая мощность указывается в паспорте или описании устройства и дублируется на фирменной табличке-шильдике. Последняя находится на задней стенке корпуса или его основании.

В случае отсутствия описания этот параметр можно узнать по интернету, для чего достаточно воспользоваться поиском по названию устройства.

Указываемая производителем техники мощность относится к пиковой и потребляется от сети только при полной нагрузки, что встречается достаточно редко. Образовавшаяся разница рассматривается как запас. На нормативном уровне этот запас определяют через коэффициент мощности.

Закон Ома в помощь

Мощность большинства бытовых электрических устройств можно довольно точно оценить экспериментально-расчетным путем с привлечением известного еще со средней школы закона Ома. Этот эмпирический закон связывает между собой напряжение, ток и сопротивление R нагрузки как:

P = U2/R.
U = 230 В, а сопротивление измеряется тестером. Далее следует простой расчет по формуле
P = 48 400/R Вт.

Например, при R = 200 Ом получаем мощность Р = 240 Вт.

Метод не учитывает так называемое реактивное сопротивление прибора, которое создается в первую очередь входными трансформаторами и дросселями, и поэтому получаемая оценка дает некоторое завышение.

Используем электросчетчик

При определении мощности по счетчику можно поступить двумя различными способами. В обоих случаях от бытовой сети должен питаться только тестируемый прибор. Все без исключения остальные потребители должны быть отключены.

При первом подходе для замера мощности привлекается оптический индикатор счетчика, интенсивность вспышек которого пропорциональна потребляемой мощности. Коэффициент пропорциональности указан на лицевой панели в единицах imp/kWh или имп/кВтч, рисунок 1, где imp – количество импульсов (вспышек индикатора) на один киловатт час.

Лицевая панель бытового счетчика электроэнергии с оптическим индикатором

Рисунок 1. Лицевая панель бытового счетчика электроэнергии с оптическим индикатором

После включения исследуемого устройства необходимо начать считать вспышки индикатора на протяжении 15 или 20 минут. Затем полученное значение умножается на 3 или на 4 (при 20- или 15-минутном интервале замера, соответственно) и делится на коэффициент с лицевой панели. Результат выкладки дает мощность прибора в кВт, который в ряде случаев умножением на 1000 удобно перевести в Ватты.

Пример. Для счетчика имеем k = 1600 импульсов на киловатт час. При 20 минутном интервале замера индикатор сработал (вспыхнул) 160 раз. Тогда мощность устройства составит 160*3/1600 = 0,3 кВт или 300 Вт.

При втором подходе также используется 15- или 20-минутный интервал времени, но расход электроэнергии определяется уже по цифровой шкале. Например, при разности показаний за 20 минут 0,2 кВт×час мощность агрегата составляет 0,2 × 3 = 0,6 кВт или 600 Вт.

Ваттметром

Современный бытовой измеритель мощности или ваттметр удобен для использования, так как:

  • включается непосредственно в разрыв цепи, для чего снабжен вилкой и розеткой, см. рисунок 2;
  • оборудован легко читаемым цифровым индикатором и снабжен внутренними цепями автоматической настройки, что исключает ошибки в показаниях;
  • отличается хорошими массогабаритными показателями.

Прибор готов к работе немедленно после включения.

Цифровой бытовой ваттметр

Рис. 2. Цифровой бытовой ваттметр

Единственный его недостаток – узкая специализация, поэтому этот прибор редко встречается в домашнем хозяйстве.

Прямое измерение тока

Методы той группы отличаются более высокой точностью за счет того, что основаны на прямом измерении тока. Существуют два прибора для выполнения этой процедуры в бытовых условиях.

Замер токовыми клещами

Наиболее удобны для использования токовые клещи, которые не требуют разрыва контролируемой цепи. Выполнены как ручное устройство с измерительным узлом на основе тороидального сердечника. Для замера тока узел раскрывают на манер губок клещей, после чего закрывают с охватом провода, рисунок 3. Действующее значение тока находится по изменению магнитного поля, которое фиксируется датчиком Холла.

Измерение токовыми клещами

Рис. 3. Измерение токовыми клещами

Замер тестером

Второй способ основан на применении тестера, который переключают в режим амперметра и включают в разрыв цепи. Сложности реализации этой процедуры простыми средствами делают его мало популярным на практике. Нельзя сбрасывать со счетов также то, что некоторые модели тестеров не имеют токовой защиты и выходят из строя (сгорают) при неправильном выборе диапазона (токовой перегрузке).

Заключение

Как видим, мощность электроприборов может быть определена различными способами. Выбор конкретного из них зависит от уровня технической подготовки пользователя и наличия у него необходимых приборов, а доступность нескольких из них вполне может привлекаться как средство контроля правильности выполнения расчетов и измерений.

Простота реализации любого из рассмотренных способов позволяет гарантировать отсутствие перегрузки силовых розеток и достаточно быстро и довольно точно определять фактический потребляемый ток в том случае, если у электрического устройства отсутствуют паспортные данные.

Что такое потребляемая мощность?

Потребляемая мощность — это численная мера количества электрической энергии, необходимой для функционирования электроприбора или преобразуемой им в процессе функционирования. Для статических устройств (плита, утюг, телевизор, осветительные приборы) энергия тока при работе переходит в тепло). При преобразовании (электродвигатели) – энергия электрического тока преобразуется в механическую энергию.

Основная единица электрической мощности – Ватт, ее численное значение

Р = U × I,

где U – напряжение, Вольты, I – ток, амперы.

Иногда этот параметр указывают в В×А (V×А у импортной техники), что более правильно для переменного тока. Разница между Ваттами и В×А для бытовых сетей мала и ее можно не учитывать.

Потребляемая электрическая мощность важна при планировании проводки (от нее зависит сечение проводов, а также выбор номиналов и количество защитных автоматов). При эксплуатации она определяет затраты на содержание жилища.

Происхождение единицы измерения киловатт/час

Интенсивное изучение электричества учёными Европы началось примерно в XVII веке, тогда же были сделаны основополагающие открытия, положившие началу и развитию такой науки, как электротехника. Шотландский инженер, изобретатель-механик (1736–1819 г.г.) Джеймс Уатт ввёл в обиход первую единицу мощности — лошадиную силу.

В 1782 году Британская ассоциация инженеров присвоила фамилию учёного единице измерителя мощности — Ватт. Нужно иметь в виду, что на русском языке английская буква «W» имеет двойное прочтение, как «В» или «Уа». Поэтому фамилию изобретателя читаем Уатт, а единицу измерения — Ватт. В 1889 году единица измерения получила мировое признание. Лишь в 1960 году «Ватт» официально вошёл в международную систему СИ, как измеритель мощности любого вида энергии, будь-то она тепловой, механической или электрической.

Расход электроэнергии, потреблённой за определённый промежуток времени, измеряют в Вт/ч. Чтобы сократить количество символов при обозначении мощности потребления электроприбором электроэнергии, была введена в обиход такая единица, как киловатт/час — кВт/ч (1000 Вт/ч).

Формула для определения мощности

Первое, на что надо обратить внимание, – это паспортные данные приборов. Потребляемая мощность в ваттах может быть указана и на различных табличках, прикрепленных к устройствам.

Часто показатель мощности указывается в вольтамперах (В*А). Обычно это происходит, когда потребляемая прибором энергия имеет реактивную составляющую. Тогда обозначается полная мощность электрического устройства, а она измеряется в вольтамперах.

Но не всегда эта информация доступна. Тогда на помощь приходят простая формула и измерительные приборы.

Основная формула, с помощью которой ведется расчет потребляемой мощности:

P = I * U, то есть надо перемножить напряжение и ток.

Если в паспортных данных электроприбора нет мощности, но указан ток, то ее можно узнать по этой формуле. Допустим, устройство берет ток 1 А и работает от сети 220 В. Тогда P = U * I = 1 * 220 = 220 Вт.

Цели измерения мощности бытовых электроприборов

Таблицы электрических мощностей бытовых приборов необходимы для расчёта общей нагрузки в доме и расчёта нагрузки по отдельным группам электропитания.

Значение величины общей нагрузки необходимо для расчёта мощности защитных автоматов, стабилизаторов напряжения, сечения используемых проводов.

Таблицы мощностей бытовых приборов нужны для расчета общей нагрузки и выбора сечения провода и защитной автоматики

Для определения фактической мощности электрического прибора можно использовать специальные измерители мощности ваттметры или использовать амперметр и выполнить несложный расчёт.

Приборы для расчета общей нагрузки электрических приборов

Значение мощности электроприбора можно найти в техническом паспорте изделия. Для определения приблизительного значения мощности приборов можно воспользоваться специальными таблицами.

В этой статье мы приведем значения электрической мощности некоторых моделей бытового теплового оборудования.

Как определить?

Для решения задачи нахождения мощности можно воспользоваться различными способами. Все они доступны для применения даже при знаниях в области физики и электротехники на уровне школьной программы.

Чаще мощность находят через определение тока, иногда можно обойтись без промежуточных процедур и определит ее сразу.

Смотрим в техпаспорт

Обычно потребляемая мощность указывается в паспорте или описании устройства и дублируется на фирменной табличке-шильдике. Последняя находится на задней стенке корпуса или его основании.

В случае отсутствия описания этот параметр можно узнать по интернету, для чего достаточно воспользоваться поиском по названию устройства.

Указываемая производителем техники мощность относится к пиковой и потребляется от сети только при полной нагрузки, что встречается достаточно редко. Образовавшаяся разница рассматривается как запас. На нормативном уровне этот запас определяют через коэффициент мощности.

Закон Ома в помощь

Мощность большинства бытовых электрических устройств можно довольно точно оценить экспериментально-расчетным путем с привлечением известного еще со средней школы закона Ома. Этот эмпирический закон связывает между собой напряжение, ток и сопротивление R нагрузки как:

P = U2/R.
U = 230 В, а сопротивление измеряется тестером. Далее следует простой расчет по формуле
P = 48 400/R Вт.

Например, при R = 200 Ом получаем мощность Р = 240 Вт.

Метод не учитывает так называемое реактивное сопротивление прибора, которое создается в первую очередь входными трансформаторами и дросселями, и поэтому получаемая оценка дает некоторое завышение.

Используем электросчетчик

При определении мощности по счетчику можно поступить двумя различными способами. В обоих случаях от бытовой сети должен питаться только тестируемый прибор. Все без исключения остальные потребители должны быть отключены.

При первом подходе для замера мощности привлекается оптический индикатор счетчика, интенсивность вспышек которого пропорциональна потребляемой мощности. Коэффициент пропорциональности указан на лицевой панели в единицах imp/kWh или имп/кВтч, рисунок 1, где imp – количество импульсов (вспышек индикатора) на один киловатт час.

Лицевая панель бытового счетчика электроэнергии с оптическим индикатором
Лицевая панель бытового счетчика электроэнергии с оптическим индикатором.

После включения исследуемого устройства необходимо начать считать вспышки индикатора на протяжении 15 или 20 минут. Затем полученное значение умножается на 3 или на 4 (при 20- или 15-минутном интервале замера, соответственно) и делится на коэффициент с лицевой панели. Результат выкладки дает мощность прибора в кВт, который в ряде случаев умножением на 1000 удобно перевести в Ватты.

Пример. Для счетчика имеем k = 1600 импульсов на киловатт час. При 20 минутном интервале замера индикатор сработал (вспыхнул) 160 раз. Тогда мощность устройства составит 160*3/1600 = 0,3 кВт или 300 Вт.

При втором подходе также используется 15- или 20-минутный интервал времени, но расход электроэнергии определяется уже по цифровой шкале. Например, при разности показаний за 20 минут 0,2 кВт×час мощность агрегата составляет 0,2 × 3 = 0,6 кВт или 600 Вт.

Ваттметр

Удобный прибор для расчета потребления электроэнергии. Подключается к розетке и в него вставляется вилка тестируемого оборудования.

Как посчитать потребляемую мощность приборов и расход электроэнергии

Может измерить:

  • мощность в текущий момент или в определенном диапазоне;
  • напряжение и сила тока;
  • посчитает стоимость электроэнергии, если ввести данные о тарифах.

Как посчитать потребляемую мощность приборов и расход электроэнергии

Прямое измерение тока

Методы той группы отличаются более высокой точностью за счет того, что основаны на прямом измерении тока. Существуют два прибора для выполнения этой процедуры в бытовых условиях.

Клещи токоизмерительные

Клещами можно замерить мощность и определить силу тока. Простое устройство из магнитного провода и подвижной скобой подключается перпендикулярно кабелю питания. После подсоединения к проводу показывает необходимые данные.

Как посчитать потребляемую мощность приборов и расход электроэнергии

Замер тестером

Второй способ основан на применении тестера, который переключают в режим амперметра и включают в разрыв цепи. Сложности реализации этой процедуры простыми средствами делают его мало популярным на практике. Нельзя сбрасывать со счетов также то, что некоторые модели тестеров не имеют токовой защиты и выходят из строя (сгорают) при неправильном выборе диапазона (токовой перегрузке).

Таблица мощности

Для каждого дома число электрических устройств, значение потребления ими электроэнергии и продолжительность работы будет отличаться. Нижеизложенная таблица энергопотребления бытовых приборов содержит усредненную информацию:

Наименование прибора Мощность, кВт Время работы в сутки, ч Потребление в сутки, кВт*ч Потребление в месяц, кВт*ч
Холодильник 0,15-0,6 24 3,6-8,6 10,8-25,8
Освещение (10 ламп по 20 Вт) 0,020 5 0,1 3
Стиральная машина 1-2,2 1 1-2,2 20-30
Пылесос 0,65-2,2 15 минут 0,16-0,55 1,6-5,5
Телевизор 0,1-0,3 5 0,5-1,5 15-30
Микроволновая печь 1,5 30 минут 0,75 10-15
Электрический чайник 0,7-3 15 минут 0,25-0,75 7,5-16,5
Компьютер 0,1-0,2 5 0,5-1 7-20
Утюг 1,1 15 0,3 5-8
Посудомоечная машина 0,5-2,8 1 0,5-2,8 7,5-15
Мультиварка 0,2-2,4 1 0,2-2,4 2-24
Кухонный комбайн 0,2-2,0 15 минут 0,05-0,5 0,5-3
Кондиционер 0,7-1,3 7 3,5-8 15-35
Фен 1,2-1,5 15 минут 0,3-0,4 5-7
Обогреватель 1,5 5 7,5 75
Электрическая плита 2-8,5 3 5-10 30-150
Кофеварка 1,5-3,5 15 минут 0,3-0,8 5-10
Вытяжка 0,1-0,5 3 0,3-1,5 3-4,5

Таблицы мощностей обогревательных электроприборов

Электрические нагревательные приборы используются в качестве основного и дополнительного обогрева помещений. Низкая стоимость оборудования, высокая мобильность и возможность использования без проведения монтажных работ сделали эти приборы очень популярными.

Следует помнить, что мощность электрических нагревательных приборов достаточно велика, и при их использовании следует применять проводку и автоматику, способную выдержать данную нагрузку.

Наиболее популярными электрическими нагревательными приборами являются:

  • электрические термовентиляторы;
  • электрические радиаторы отопления;
  • электрические конвекторы отопления.

Ниже приводятся таблицы мощностей бытовых электрических отопительных приборов.

Таблица мощности термовентиляторов

Наименование прибора Электрическая мощность прибора
1 Тепловентилятор Zanussi ZFH/C-410 1 500 Вт
2 Тепловентилятор VITEK VT-1759 SR 1 500 Вт
3 Тепловентилятор керамический Scarlett SC-1051 1 800 Вт
4 Тепловентилятор керамический Electrolux EFH/F-8720 2 000 Вт
5 Тепловентилятор De Longhi HVA3220 2 000 Вт

Таблица мощности масляных радиаторов отопления

Наименование прибора Электрическая мощность прибора
1 Радиатор De Longhi TRD4 1025 2 500 Вт
2 Радиатор Polaris PRE L 0715 1 500 Вт
3 Радиатор Electrolux EOH/M-6209 2 000 Вт
4 Радиатор Supra ORS-07-MN 1 500 Вт
5 Радиатор Sinbo SFH 3322 2 000 Вт

Таблица мощности конвекторов отопления

Наименование прибора Электрическая мощность прибора
1 Конвектор Electrolux Brilliant ECH/B-2000 E 2 000 Вт
2 Конвектор De Longhi HSX3320FTS 2 000 Вт
3 Конвектор Ballu Camino Eco BEC/EM-1000 1 000 Вт
4 Конвектор Scarlett SC – CH832/1500 1 500 Вт
5 Конвектор Supra ECS-520SP 2 000 Вт

Таблицы мощностей электрических нагревателей воды

Электрические бытовые нагреватели воды различного типа имеют большое распространение в нашей стране. Это удобный способ нагреть воду в домах, где нет центрального горячего водоснабжения. Электрические нагреватели также часто используются и во время проведения ремонтных работ в сетях горячего водоснабжения.

Наиболее популярными бытовыми электрическими нагревателями воды являются:

  • электрические накопительные нагреватели воды;
  • электрические проточные нагреватели воды.

Следует помнить, что мощность электрических нагревателей воды различного типа  достаточно велика, и при их использовании следует применять проводку и автоматику, способную выдержать данную нагрузку.

Таблица мощности накопительных нагревателей воды

Наименование прибора Электрическая мощность прибора
1 Водонагреватель накопительный Haier ES50V-F1 3 000 Вт
2 Водонагреватель накопительный Electrolux EWH 80 2 000 Вт
3 Водонагреватель накопительный Thermex ID 80 V 2 000 Вт
4 Водонагреватель накопительный Ariston PRO R 100 V 1 500 Вт
5 Водонагреватель накопительный Polaris OMEGA 30V 2 000 Вт

Таблица мощность проточных нагревателей воды

Наименование прибора Электрическая мощность прибора
1 Водонагреватель проточный Atmor Basic 5 кВт 5 000 Вт
2 Водонагреватель проточный Atmor Basic 3,5 кВт 3 500 Вт
3 Водонагреватель проточный Electrolux SMARTFIX 2.0 T 3 500 Вт
4 Водонагреватель проточный Electrolux SMARTFIX 2.0 5 500 Вт

Таблицы мощностей климатического оборудования

Современные сплит-системы сейчас устанавливаются во многих домах. При выборе проводки и автоматики для питания сплит-систем следует помнить, что для расчёта полной мощности таких устройств следует учитывать реактивную составляющую. Большие пусковые токи в момент запуска компрессора существенно увеличивают максимальное значение полной мощности прибора. Для простого расчёта полной мощности можно использовать увеличивающий коэффициент «4».

Следует помнить, что мощность сплит-систем достаточно велика, и для осуществления их электропитания необходимо применять проводку и автоматику, способную выдержать данную нагрузку.

Современные сплит-системы достаточно чувствительны к значению напряжения в сети питания. При низком напряжении прибор может не работать или работать неэффективно. Низкое и высокое напряжение существенно снижают срок эксплуатации климатического оборудования. В таких случаях следует использовать стабилизаторы напряжения с возможностью работы с высокими пусковыми токами.

Таблица мощности сплит-систем

Наименование прибора Электрическая мощность прибора
1 Сплит-система Samsung AR07HQFSAWK 640 Вт
2 Сплит-система Haier HSU-09HMC203/R2 880 Вт
3 Сплит-система Electrolux EACS-09HAR/N3 840  Вт
4 Сплит-система Supra US410-09HB 1 000 Вт
5 Сплит-система LG G18NHT 2 400 Вт

Таблица мощности напольных кондиционеров

Наименование прибора Электрическая мощность прибора
1 Кондиционер мобильный Zanussi ZACM-09 MP/N1 1 050 Вт
2 Кондиционер мобильный Electrolux EACM-10 DR/N3 900 Вт
3 Кондиционер мобильный Bimatek AM400 1 000 Вт
4 Кондиционер мобильный Ballu BPAM-09H 1 100 Вт
5 Кондиционер мобильный De Longhi PAC WE126 1 100 Вт

На чем можно сэкономить?

В принципе сэкономить можно на всем, если реже пользоваться. Однако мы хотим снизить растраты и при этом не потерять удобство и комфорт использования этих самых приборов, поэтому для экономии мы воспользуемся многотарифным учетом электроэнергии. Если у вас электрические плиты или вы живете в сельской местности (Московской области), тогда тарифы можете посмотреть здесь. Для примера возьмем тариф для жителей Москвы для квартир и домов с газовыми плитами. Приведенные ниже показатели в таблице приравнены к соотношению руб/кВт/ч.

Однотарифный 5,56
Двухтарифный Ночная зона Т2(23.00 — 7.00) 2,41
Дневная зона Т1(7.00 — 23.00) 6,39
Многотарифный Ночная зона Т2(23.00 — 7.00) 2,41
Полупиковая зона Т3(10.00 — 17.00, 21.00 — 23.00) 5,56
Пиковая зона Т1(7.00 — 10.00, 17.00 — 21.00) 7,23

Чтобы сэкономить, нам необходимо задействовать как можно больше приборов ночью в зоне Т2. Устройствами, которые будет удобно использовать ночью, являются: электрокотел, умный электрочайник, электромобиль, стиральная машина. Остальные приборы довольно неудобно использовать ночью (только если вы не ведете ночную жизнь).

Котел

Сколько электричества «едят» бытовые приборы и на чем можно сэкономить?
Предположим у вас отопительный котел мощностью 9 кВт. Если в доме хорошее утепление, тогда достаточно включать его на максимальную мощность на 8 часов с 23:00 по 7:00. В этом случае стоимость эксплуатации будет следующим: 9 * 8 * 2,41 = 173, 52 руб/день. Месяц такого использования будет стоить 5205,6 руб, тогда как при обычном дневном тарифе 12009,6 руб — весьма немаленькая экономия. Отметим, что это мы считаем работу котла на максимальной мощности все часы в зоне Т2. В теплые дни можно включать на меньшее время, и естественно «накрутит» котел меньше.

Умный чайник

Умный чайник, например, Xiaomi Smart Kettle, имеет функцию отложенного старта, благодаря которой можно выставить нагрев прямо перед пробуждением. Например, если греть чайник каждый день до 7:00 и устанавливать функцию подогрева, тогда на таких утренних включениях можно сэкономить следующее: 1800/60 * 4= 120 Вт/ч, где 4 минуты — это среднее время нагрева полного чайника воды. В месяц такой утренний расход составит 120 * 30 = 3,6 кВт, что по ночной зоне Т2 составит: 3,6 * 2,41 = 8,676 руб. На наш взгляд экономия 4,3 рубля в месяц не стоит таких усилий. Поэтому пытаться экономить на электрочайнике нет смысла.

Стиральная машина

Сколько электричества «едят» бытовые приборы и на чем можно сэкономить?
Возьмем стиральную машину из нашей таблицы. За месяц она потребляет в среднем 25,5 кВт электроэнергии, что по дневному тарифу составит 25,5 * 5,56 = 141,78 рубля. В год это будет 141,78 * 12 = 1701,36 рубля. Если ставить стирку после 23:00, тогда мы получим следующую сумму: 25,5 * 2,41 * 12 = 737,5 рубля, что сэкономит нам в год порядка 963,9 рублей. Вроде бы сумма и немаленькая, но вот есть ли смысл ради нее заморачиваться и ложится спать позже обычного, решать вам. Плюс некоторые стиралки сильно шумят, поэтому проблематично будет заснуть.

Электромобиль

При том потреблении электромобиля, что мы писали выше, его нужно будет заряжать раз в два дня по 7 — 8 часов, что как раз подходит для ночного тарифа. Итак, за год по ночному тарифу мы потратим 2700 * 2,41 = 6507 рублей, что на 8505 рублей меньше, чем по дневному тарифу. Здесь экономия более чем в два раза, поэтому экономить на заряде электромобиля ночью стоит.

Как рассчитать, сколько нужно платить за электричество

Чтобы посчитать стоимость электроэнергии, которую вы потребили в прошлом месяце, нужно:

  • каждый месяц в один и тот же день (например, 25-го числа) записывать показания электросчётчика. К примеру, 25-го января показания были равны 5500,1 кВт·ч, а 25-го февраля — 5750,6;
  • вычесть от последнего показания предыдущее. В нашем примере: 5750,6 — 5500,1 = 250,5 кВт·ч. Столько электричества вы потребили за месяц;
  • передавать компаниям-поставщикам нужно цифры, которые вы переписываете каждый месяц (5500,1 — за январь, 5750,6 — за февраль).

Как снизить потребление

Для снижения расхода электрической энергии, которую расходуют бытовые приборы, существует несколько действенных приемов. Хороший результат дает использование энергосберегающего холодильника, который может работать в таком режиме круглый год, независимо от погодных условий.

Систему освещения в доме лучше организовать с использованием современных светодиодных или энергосберегающих ламп. Их установка позволит не только экономить электроэнергию, они также характеризуются более длительным периодом работы. Хороший эффект дает установка местного освещения на кухне, в спальне, прихожей, в гостиной, что также позволяет экономить электроэнергию.

Обратите внимание! Использование удлинителей и переходников увеличивает потребление электроэнергии.

Холодильники и морозильные камеры следует своевременно размораживать. Наличие излишков льда на внутренних стенках устройств способствует увеличению расхода электроэнергии.

tablicza-potrebleniya-elektroenergii-bytovymi-priborami-26
Советы по экономии потребления электроэнергии.

Во время работы компьютера можно выбрать для него оптимальный режим энергопотребления. Он будет автоматически выключаться, когда будет находиться в бездействии определенное время. При выходе из режима сна энергии понадобится намного меньше, в сравнении с обычным включением.

На заметку! Снизить затраты на электроэнергию удастся при установке многотарифного счетчика, ночные и дневные показания которого исчисляются по разным тарифам. Ночью стоимость электричества ниже.

При работе обогревательных приборов можно использовать теплоотражающие экраны, которые способствуют увеличению теплоотдачи и снижению потребления электроэнергии.

При выборе бытовой техники следует учитывать, сколько ватт (киловатт) расходует прибор в час. Лучше отдавать предпочтение экономичным устройствам, которые будут удовлетворять заявленным требованиям, при этом экономить энергоресурс, необходимый для их функционирования.

Проблема правильной эксплуатации бытовой электрической сети

С конструктивной точки зрения бытовая электрическая сеть отработана до высокой степени совершенства: ее нормальная эксплуатация не требует специальных знаний.

Сеть рассчитана на определенные условия эксплуатации, нарушение которых приводит к полному или частичному отказу, а в тяжелых случаях – к возникновению пожара.

Условие правильной эксплуатации – отсутствие перегрузки.

При этом нагрузочная способность розеток и потребление подключаемой к ним техники измеряется различными единицами:

  • для розеток это максимально допустимый переменный ток (6 А у традиционных советских розеток старого жилого фонда, 10 или даже 16 А у розеток европейского стиля);
  • подключаемое оборудование характеризуются мощностью, которая измеряется в Ваттах (для мощных устройств вместо Ватт указываются более крупные единицы: киловатты (1 кВт = 1000 Вт), что позволяет не путаться в многочисленных нулях).

Отсюда возникает необходимость:

  • определения связи мощности и тока;
  • нахождения мощности отдельного электрического прибора.

Связь между Ваттами и Амперами проста и следует прямо из приведенного выше определения Ватта. Задача упрощается тем, что напряжение исправной бытовой сети всегда одинаково (220 или 230 В). Отсюда по току всегда находится мощность.

Советы по экономии

Ежегодное увеличение стоимости электрической энергии заставляет пользователей задумываться над методами контроля ее расхода и способами экономии. В инструкции к любой технике указана мощность устройства. Однако это усредненное значение, которое может варьироваться в зависимости от определенных факторов. Как правильно рассчитать потребление электроэнергии бытовыми приборами можно узнать из данной статьи.

tablicza-potrebleniya-elektroenergii-bytovymi-priborami-1
Чем большее количество бытовых приборов используется в доме, тем выше будут расходы на электроэнергию.

Заключение

Как видим, мощность электроприборов может быть определена различными способами. Выбор конкретного из них зависит от уровня технической подготовки пользователя и наличия у него необходимых приборов, а доступность нескольких из них вполне может привлекаться как средство контроля правильности выполнения расчетов и измерений.

Простота реализации любого из рассмотренных способов позволяет гарантировать отсутствие перегрузки силовых розеток и достаточно быстро и довольно точно определять фактический потребляемый ток в том случае, если у электрического устройства отсутствуют паспортные данные.

Предыдущая

электрика домаСистема заземления TT в частном доме

Следующая

ПрактикаЧто называется защитным заземлением?

Добавить комментарий