Как найти мощность электросети

С помощью калькулятора мощности вы можете самостоятельно выполнить расчет мощности по току и напряжению для однофазных (220 В) и трехфазных сетей (380 В). Программа также рассчитывает мощность через сопротивление и напряжение, или через ток и сопротивление согласно закону Ома. Значение cos φ принимается согласно указаниям технического паспорта прибора, усредненным значениям таблиц ниже или рассчитываются самостоятельно по формулам. Без необходимости рекомендуем не изменять коэффициент и оставлять равным 0.95. Чтобы получить результат расчета, нажмите кнопку «Рассчитать».

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета мощности

Мощность — это физическая величина, равная отношению количества работы ко времени совершения этой работы.
Мощность электрического тока (P) — это величина, характеризующая скорость преобразования электрической энергии в другие виды энергии. Международная единица измерения — Ватт (Вт/W).

— Мощность по току и напряжению (постоянный ток): P = I × U
— Мощность по току и напряжению (переменный ток однофазный): P = I × U × cos φ
— Мощность по току и напряжению (переменный ток трехфазный): P = I × U × cos φ × √3
— Мощность по току и сопротивлению: P = I2 × R
— Мощность по напряжению и сопротивлению: P = U2 / R

  • I – сила тока, А;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Расчет мощности (закон Ома)

Расчет косинуса фи (cos φ)

φ – угол сдвига между фазой тока и напряжения, причем если последний опережает ток сдвиг считается положительным, если отстает, то отрицательным.

cos φ – безразмерная величина, которая равна отношению активной мощности к полной и показывает насколько эффективно используется энергия.

Формула расчета косинуса фи: cos φ = S / P

  • S – полная мощность, ВА (Вольт-ампер);
  • P – активная мощность, Вт.

Активная мощность (P) — реальная, полезная, настоящая мощность, эта нагрузка поглощает всю энергию и превращает ее в полезную работу, например, свет от лампочки. Сдвиг по фазе отсутствует.

Формула расчета активной мощности: P (Вт) = I × U × cos φ

Реактивная мощность (Q) — безваттная (бесполезная) мощность, которая характеризуется тем, что не участвует в работе, а передается обратно к источнику. Наличие реактивной составляющей считается вредной характеристикой цепи, поскольку главная цель существующего электроснабжения — это сокращение издержек, а не перекачивание ее туда и обратно. Такой эффект создают катушки и конденсаторы.

Формула расчета реактивной мощности: P (ВАР) = I × U × sin φ

Полная мощность электроприбора (S) — это суммарная величина, которая включает в себе как активную, так и реактивную составляющие мощности. 

Формула расчета полной мощности: S (ВА) = I × U или S = √( P2 + Q2)

Полная, активная и реактивная мощность

Косинус фи для различных потребителей – таблица

Наименование электроприбора cos φ
Бойлер 1
Болгарка 0.8
Вакуумный насос 0.85
Индукционные печи 0.85
Компрессор 0.7
Компьютер 0.95
Кофеварка 1
Лампы газоразрядные 0.4-0.6
Лампы люминисцентные 0.95
Лампы накаливания 1
Обогреватель 1
Перфоратор 0.85
Пылесос 0.9
СВЧ-печь 1
Стиральная машина 0.9
Телевизор 1
Утюг 1
Фен 1
Холодильник 0.95
Электродрель 0.85
Электромоторы 0.7-0.8
Электроплита 1
Электросварка дуговая 0.3-0.6
Электрочайник 1
Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм

Электростатика

Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал

Магнитостатика

Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Магнитная индукция

Электродинамика

Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле

Электрическая цепь

Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс

Ковариантная формулировка

Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток

См. также: Портал:Физика

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Единицей измерения в Международной системе единиц (СИ) является ватт (русское обозначение: Вт, международное: W).

Мгновенная электрическая мощность[править | править код]

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение численно равно работе по переносу единичного заряда из точки A в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу или над ним будет совершена работа, численно равная электрическому напряжению, действующему на участке цепи. Умножив напряжение на количество единичных зарядов, мы, таким образом, получаем работу, которую совершает электрическое поле по перемещению этих зарядов от начала участка цепи до его конца.
Мощность, по определению — это работа в единицу времени.

Введём обозначения:

U — напряжение на участке A-B (принимаем его постоянным на интервале Delta t);
Q — количество зарядов, прошедших от A к B за время Delta t;
A — работа, совершённая зарядом Q при движении по участку A-B;
P — мощность.

Записывая вышеприведённые рассуждения, получаем:

{displaystyle P_{A-B}={frac {A}{Delta t}}~.}

Для единичного заряда на участке A-B:

{displaystyle P_{e(A-B)}={frac {U}{Delta t}}~.}

Для всех зарядов:

{displaystyle P_{A-B}={frac {U}{Delta t}}cdot {Q}={U}cdot {frac {Q}{Delta t}}~.}

Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть {displaystyle textstyle I={frac {Q}{Delta t}}} по определению, в результате получаем:

{displaystyle P_{A-B}=Ucdot I~.}

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

{displaystyle p(t)=u(t)cdot i(t)~.}

Если участок цепи содержит резистор c электрическим сопротивлением R, то:

{displaystyle p(t)=i(t)^{2}cdot R={frac {u(t)^{2}}{R}}~.}

Дифференциальные выражения для электрической мощности[править | править код]

Мощность, выделяемая в единице объёма, равна:

{displaystyle w={frac {dP}{dV}}=mathbf {E} cdot mathbf {j} ~,}

где:

mathbf {E}  — напряжённость электрического поля;
{mathbf  j} — плотность тока.

Отрицательное значение скалярного произведения (векторы mathbf {E} и {mathbf  j} противонаправлены или образуют тупой угол) означает, что в данной точке электрическая мощность не рассеивается, а генерируется за счёт работы сторонних сил.

В случае изотропной среды в линейном приближении:

{displaystyle w=sigma E^{2}={frac {E^{2}}{rho }}=rho j^{2}={frac {j^{2}}{sigma }}~,}

где {displaystyle textstyle sigma ,{overset {underset {mathrm {def} }{}}{=}},{frac {1}{rho }}} — удельная проводимость, величина, обратная удельному сопротивлению.

В случае наличия анизотропии (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла) в линейном приближении:

{displaystyle w=sigma _{alpha beta }E_{alpha }E_{beta }~,}

где sigma _{{alpha beta }} — тензор проводимости.

Мощность постоянного тока[править | править код]

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

{displaystyle P=Icdot U~.}

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

{displaystyle P=I^{2}cdot R={frac {U^{2}}{R}}~,}

где R — электрическое сопротивление.

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

{displaystyle P=Icdot {mathcal {E}}~,}

где {mathcal {E}} — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность p=I^{2}cdot r прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока[править | править код]

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для большинства простых практических расчётов не слишком полезна непосредственно. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол varphi (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность[править | править код]

Единица измерения в СИ — ватт[1].

{displaystyle P=Ucdot Icdot cos varphi ~.}

Среднее за период T значение мгновенной мощности называется активной электрической мощностью или электрической мощностью:

{displaystyle P={frac {1}{T}}int limits _{0}^{T}p(t)dt~.}

В цепях однофазного синусоидального тока P=Ucdot Icdot cos varphi , где U и I — среднеквадратичные значения напряжения и тока, varphi  — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P=I^{2}cdot r=U^{2}cdot g. В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением P=Scdot cos varphi .

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отражённой мощностью.

Реактивная мощность[править | править код]

Единица измерения, по предложению Международной электротехнической комиссии, – вар (вольт-ампер реактивный); (русское обозначение: вар; международное: var). В терминах единиц СИ, как отмечено в 9-ом издании Брошюры СИ, вар когерентен произведению вольт-ампер. В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения в области «электротехника»[1][2]:

{displaystyle Q=Ucdot Icdot sin varphi ~.}

Вар определяется как реактивная мощность цепи с синусоидальным переменным током при действующих значениях напряжения 1 В и тока 1 А, если сдвиг фазы между током и напряжением {displaystyle textstyle {frac {pi }{2}}}[3].

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз varphi между ними: Q=Ucdot Icdot sin varphi (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью P соотношением:

{displaystyle |Q|={sqrt {S^{2}-P^{2}}}~.}

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin varphi для значений varphi от 0 до плюс 90° является положительной величиной. Величина sin varphi для значений varphi от 0 до −90° является отрицательной величиной. В соответствии с формулой Q=UIsin varphi , реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии, возвращаемой от индуктивной и ёмкостной нагрузки в источник переменного напряжения.

Полная мощность[править | править код]

Единица измерения — В·А, вольт-ампер (русское обозначение: В·А; международное: V·A). В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «электротехника»[1][2].

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах S=Ucdot I связана с активной и реактивной мощностями соотношением:

{displaystyle S={sqrt {P^{2}+Q^{2}}}~,}

где:

P — активная мощность;
Q — реактивная мощность (при индуктивной нагрузке {displaystyle Q>0}, а при ёмкостной {displaystyle Q<0}).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

{displaystyle {vec {S}}={vec {P}}+{vec {Q}}~.}

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность[править | править код]

Мощность, аналогично импедансу, можно записать в комплексном виде:

{displaystyle {dot {S}}={dot {U}}{dot {I}}^{*}=I^{2}mathbb {Z} ={frac {U^{2}}{mathbb {Z} ^{*}}}~,}

где:

{dot  {U}} — комплексное напряжение;
{dot  {I}} — комплексный ток;
mathbb {Z}  — импеданс;
* — оператор комплексного сопряжения.

Модуль комплексной мощности left|{dot  {S}}right| равен полной мощности S. Действительная часть {mathrm  {Re}}({dot  {S}}) равна активной мощности P, а мнимая {mathrm  {Im}}({dot  {S}}) — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.

Измерения[править | править код]

  • Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра, амперметра и фазометра.
  • Для измерения коэффициента реактивной мощности применяют фазометры
  • Государственный эталон мощности — ГЭТ 153—2012 Государственный первичный эталон единицы электрической мощности в диапазоне частот от 1 до 2500 Гц. Институт-хранитель: ВНИИМ

Потребление мощности некоторыми электроприборами[править | править код]

Значения потребляемой электрической мощности некоторых потребителей

Электрический прибор Мощность,Вт
Лампочка фонарика 1
Сетевой роутер, хаб 10…20
Системный блок ПК 100…1700
Системный блок сервера 200…1500
Монитор для ПК ЭЛТ 15…200
Монитор для ПК ЖК 2…40
Лампа люминесцентная бытовая 5…30
Лампа накаливания бытовая 25…150
Холодильник бытовой 15…700
Электропылесос 100… 3000
Электрический утюг 300…2 000
Стиральная машина 350…2 000
Электрическая плитка 1000…2000
Сварочный аппарат бытовой 1000…5500
Двигатель лифта невысокого дома 3 000…15 000
Двигатель трамвая 45 000…75 000
Двигатель электровоза 650 000
Электродвигатель шахтной подъёмной машины 1 000 000…5 000 000
Электродвигатель прокатного стана 6 000 000…32 000 000

Выходная мощность[править | править код]

Измеряется как долговременная (RMS[en]), так и кратковременная (PMO, PMPO) мощности, способные отдавать усилителями мощности.

также см.: КПД

См. также[править | править код]

  • Ваттметр
  • Электрический ток
  • Коэффициент мощности
  • Список параметров напряжения и силы электрического тока
  • Закон Ома
  • КПД

Примечания[править | править код]

  1. 1 2 3 Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 26—27. — 240 с. — ISBN 5-7050-0118-5.
  2. 1 2 Положение о единицах величин, допускаемых к применению в Российской Федерации Архивная копия от 2 ноября 2013 на Wayback Machine Утверждено Постановлением Правительства РФ от 31 октября 2009 г. N 879.
  3. Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1977. — С. 213.

Литература[править | править код]

  • ГОСТ 8.417-2002 Единицы величин.
  • ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации.
  • Л. А. Бессонов . Теоретические основы электротехники. Электрические цепи: учебник

для бакалавров. — 12-е изд., испр. и доп. — М.: Юрайт, 2016. — 702 с. — (Бакалавр. Углубленный курс). — 1000 экз. — ISBN 978-5-9916-3210-2.

  • Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193 — 2009. — 146 с.

Ссылки[править | править код]

  • Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока. ToeHelp.Ru. Дата обращения: 7 марта 2022.
  • Для чего нужна компенсация реактивной мощности. Школа для электрика (2010). Дата обращения: 7 марта 2022.
  • . ред. Д. Макаров : Как рассчитать мощность электрического тока? Заметки электрика. ASUTPP. Дата обращения: 7 марта 2022.

калькулятор расчета мощности по току и напряжению

Данный онлайн калькулятор позволяет произвести расчет мощности (активной, реактивной и полной) однофазных и трехфазных сетей по току и напряжению. (В случае необходимости вы можете так же воспользоваться нашим калькулятором расчета тока сети).

Мощность сети определяется по формулам:

P=U*I*cosφ — для однофазных сетей;

P=√3*U*I*cosφ — для трехфазных сетей;

где:

  • U — напряжение сети (электроприбора);
  • I — ток сети (электроприбора);
  • cosφ — коэффициент мощности.

Инструкция по использованию калькулятора расчета мощности по току:

  1. Выбираем тип электросети: однофазная или трехфазная.
  2. Вводим значение силы тока в одной из следующих величин, миллиамперы, Амперы, килоамперы, после чего указываем в какой именно величине введено данное значение.
  3. Вводим напряжение сети, как правило оно составляет 220 Вольт — для однофазной сети, либо 380 Вольт — для трехфазной, однако в калькуляторе имеется возможность указать любое значение напряжения, после чего, как и в предыдущем случае,  указываем в какой именно величине введено данное значение.
  4. Вводим значение коэффициента мощности, при отсутствии данных он принимается от 0,95 до 1 — для бытовых электросетей, либо от 0,75 до 0,85 — для промышленных электросетей. При расчетах мощности бытовых электросетей и электроприборов значением cosφ допускается пренебречь, в этом случае его значение принимается равным 1.
  5. Нажимаем кнопку «РАСЧИТАТЬ»

В результате расчета мы получаем значение всех мощностей сети в двух величинах:

  • Активной мощности — в Ваттах (Вт) и киловаттах (кВт).
  • Реактивной мощности — в Вольт-амперах реактивных (ВАр) и Киловольт-амперах реактивных (кВАр)
  • Полной мощности — в Вальт-амперах (ВА) и Киловольт-амперах (кВА)

Примечание: при необходимости произвести расчет мощности эл. двигателя необходимо пользоваться этим калькулятором.


Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросыНапишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Как рассчитать мощность для техприсоединения?

Главное – не указать в заявке меньше, чем будете использовать

Представим, вам нужно подключить дом площадью 50 квадратных метров с самыми необходимыми потребителями электроэнергии. Вот они:

  • Работает электрокотел – 5 кВт (из расчета 1 киловатт на 10 кв. метров) или 3 конвектора мощностью по 2 кВт каждый
  • Включен холодильник и осветительные приборы – 1 кВт
  • Включен теплый пол – 1,5 кВт
  • Бойлер греет воду для душа – 2 кВт
  • Электроплитка греет еду – 2 кВт

А если одновременно с этим включены пылесос, тостер, чайник, кондиционер и другие бытовые приборы? Потребляемая мощность уже точно больше 10 кВт.

Что будет, если подать меньше? Например, 5

В лучшем случае нагрузка на сеть приведет к снижению напряжения. Сопровождаться это будет светомузыкой и неправильной работой оборудования.

В худшем – полным отключением электроэнергии в вашем коттеджном поселке. Хуже – поломкой дорогостоящих бытовых приборов и даже возгоранием проводки. Такое часто случается.

При усугублении ситуации энергетикам приходится устанавливать ограничители потребления мощности согласно данным, указанным в документах о техприсоединении. Чтобы выровнять нагрузку в сети, такие устройства просто отключают те дома, которые потребляют выше указанной мощности.

Как рассчитать мощность для техприсоединения?

Почему так происходит?

Вы заселяетесь в новый коттеджный поселок, где каждый из ваших соседей подает заявку на 5 киловатт. Энергокомпания получает эти заведомо ложные данные. С учетом этого строятся электрические сети. И всё работает, пока количество домов не достигает предела. Электрические сети не выдерживают нагрузки. Очевидно, что энергетикам нужно строить новое, более мощное оборудование. Но на основе чего? Как обосновать такую необходимость и сделать это на перспективу, не имея реальных данных?

Каждое мероприятие в инвестпрограмме должно основываться на реальных перспективах территории и технической обоснованности.

Как рассчитать мощность правильно?

Чтобы не ошибиться, воспользуйтесь калькулятором мощности на сайте нашей компании.

Укажите площадь объекта, количество потребителей энергии и нажмите “Рассчитать нагрузку”. В итоге вы получите точную цифру для техприсоединения.

Если вы уже подключены к электросетям и мощности вам не хватает – подайте заявку на увеличение мощности.

Если еще не подключены – укажите необходимую мощность в новой заявке на техприсоединение!

Мощность электрической сети Чтобы определить сущность понятия мощности электрической сети, необходимо дать обозначения мощности электрического Чтобы определить сущность понятия мощности электрической сети, необходимо дать обозначения мощности электрического тока как такового.

Под мощностью электрического тока считают ту количественную меру, которой он непосредственно и характеризуется. Определить ее можно сложив основные параметры — силу тока и его напряжение. Обозначается данное выражение мощности в Ваттах и измеряется специальным прибором – Ваттметром.

Как определить мощность электрической сети

Мощность электрической сети, внешней или внутренней, определяется этими соотношениями — величиной тока и временем произведенной работы за определенную единицу времени. Работы современных энергосистем разрешают не только генерировать, но и передавать на расстояние практически любые мощности, вопрос лишь в непосредственной нуждаемости в них и в необходимых ресурсах для производства электрической энергии.

Так рядовой потребитель обычно использует мощность, которую ему передает поставщик электроэнергии, в размере от 5 до 10Кв. Как правило, данной мощности потребителю с лихвой хватает для своего жизнеобеспечения и для работы всех необходимых электроприборов бытовой техники. Понятно, что энергонасыщенному производству для эффективной работы нужны будут совсем иные значения мощностей, на сотни порядков выше.

От чего зависит мощность электрической сети?

Смена мощностей электрической сети зависит и от внешних условий их поступления, и от установки ограничительных устройств (автоматов, полуавтоматов), которые регулируют поступление емкостных мощностей к источнику потребления. Делаться это может на разных уровнях, от бытового щитка в доме до центральных устройств электрораспределения.

Мощность электрической сети можно определить специальным прибором или рассчитать посредством математических вычислений (если знать параметры силы тока и напряжения).

Для измерения мощности прибором, нужно подключить тестер к источнику тока, настроить его именно на получение нужных данных, ведь тестер работает как в режиме ваттметра, так в режиме и амперметра. Поэтому можно узнать мощность сети и иным способом. Измерив силу тока и зная рабочее напряжение сети 220В, можно умножить данные значения и получить нужную сумму в Ватах.

Пропуск определенного объема мощностей через электрическую сеть требуют применения в обустройстве электроснабжения, комплектации энергосети материалами, которые будут соответствовать требованиям необходимых номинальных значений.

Добавить комментарий