Как найти мощность если известен ток

Как посчитать мощность тока

  1. Главная
  2. /
  3. Физика
  4. /
  5. Как посчитать мощность тока

Чтобы посчитать мощность тока (электрическую мощность) воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Мощность тока (Р) или электрическая мощность — физическая величина, которая характеризует скорость передачи или преобразования электрической энергии. В системе СИ единицей измерения мощности тока является ватт (Вт).

Найти мощность зная ток и напряжение

Напряжение: U =В
Сила тока: I =A

Мощность тока: P =

0

Вт

Формула

P = U ⋅ I

Пример

Если электрическое напряжение U = 12 В, а сила тока I = 5 А, то:

Электрическая мощность P = 12 ⋅ 5 = 60 Вт

Найти мощность зная ток и сопротивление

Сила тока: I =A
Сопротивление: R =Ом

Мощность тока: P =

0

Вт

Формула

P = I² ⋅ R

Пример

Если сила тока I = 5 А, а электрическое сопротивление R = 2 Ом, то:

Электрическая мощность P = 5² ⋅ 2 = 50 Вт

Найти мощность зная сопротивление и напряжение

Напряжение: U =В
Сопротивление: R =Ом

Мощность тока: P =

0

Вт

Формула

P = /R

Пример

Если электрическое напряжение U = 12 В, а электрическое сопротивление R = 2 Ом, то:

Электрическая мощность P = 12² : 2 = 72 Вт

См. также

Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм

Электростатика

Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал

Магнитостатика

Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Магнитная индукция

Электродинамика

Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле

Электрическая цепь

Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс

Ковариантная формулировка

Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток

См. также: Портал:Физика

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Единицей измерения в Международной системе единиц (СИ) является ватт (русское обозначение: Вт, международное: W).

Мгновенная электрическая мощность[править | править код]

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение численно равно работе по переносу единичного заряда из точки A в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу или над ним будет совершена работа, численно равная электрическому напряжению, действующему на участке цепи. Умножив напряжение на количество единичных зарядов, мы, таким образом, получаем работу, которую совершает электрическое поле по перемещению этих зарядов от начала участка цепи до его конца.
Мощность, по определению — это работа в единицу времени.

Введём обозначения:

U — напряжение на участке A-B (принимаем его постоянным на интервале Delta t);
Q — количество зарядов, прошедших от A к B за время Delta t;
A — работа, совершённая зарядом Q при движении по участку A-B;
P — мощность.

Записывая вышеприведённые рассуждения, получаем:

{displaystyle P_{A-B}={frac {A}{Delta t}}~.}

Для единичного заряда на участке A-B:

{displaystyle P_{e(A-B)}={frac {U}{Delta t}}~.}

Для всех зарядов:

{displaystyle P_{A-B}={frac {U}{Delta t}}cdot {Q}={U}cdot {frac {Q}{Delta t}}~.}

Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть {displaystyle textstyle I={frac {Q}{Delta t}}} по определению, в результате получаем:

{displaystyle P_{A-B}=Ucdot I~.}

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

{displaystyle p(t)=u(t)cdot i(t)~.}

Если участок цепи содержит резистор c электрическим сопротивлением R, то:

{displaystyle p(t)=i(t)^{2}cdot R={frac {u(t)^{2}}{R}}~.}

Дифференциальные выражения для электрической мощности[править | править код]

Мощность, выделяемая в единице объёма, равна:

{displaystyle w={frac {dP}{dV}}=mathbf {E} cdot mathbf {j} ~,}

где:

mathbf {E}  — напряжённость электрического поля;
{mathbf  j} — плотность тока.

Отрицательное значение скалярного произведения (векторы mathbf {E} и {mathbf  j} противонаправлены или образуют тупой угол) означает, что в данной точке электрическая мощность не рассеивается, а генерируется за счёт работы сторонних сил.

В случае изотропной среды в линейном приближении:

{displaystyle w=sigma E^{2}={frac {E^{2}}{rho }}=rho j^{2}={frac {j^{2}}{sigma }}~,}

где {displaystyle textstyle sigma ,{overset {underset {mathrm {def} }{}}{=}},{frac {1}{rho }}} — удельная проводимость, величина, обратная удельному сопротивлению.

В случае наличия анизотропии (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла) в линейном приближении:

{displaystyle w=sigma _{alpha beta }E_{alpha }E_{beta }~,}

где sigma _{{alpha beta }} — тензор проводимости.

Мощность постоянного тока[править | править код]

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

{displaystyle P=Icdot U~.}

Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:

{displaystyle P=I^{2}cdot R={frac {U^{2}}{R}}~,}

где R — электрическое сопротивление.

Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:

{displaystyle P=Icdot {mathcal {E}}~,}

где {mathcal {E}} — ЭДС.

Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность p=I^{2}cdot r прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока[править | править код]

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для большинства простых практических расчётов не слишком полезна непосредственно. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол varphi (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность[править | править код]

Единица измерения в СИ — ватт[1].

{displaystyle P=Ucdot Icdot cos varphi ~.}

Среднее за период T значение мгновенной мощности называется активной электрической мощностью или электрической мощностью:

{displaystyle P={frac {1}{T}}int limits _{0}^{T}p(t)dt~.}

В цепях однофазного синусоидального тока P=Ucdot Icdot cos varphi , где U и I — среднеквадратичные значения напряжения и тока, varphi  — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P=I^{2}cdot r=U^{2}cdot g. В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением P=Scdot cos varphi .

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отражённой мощностью.

Реактивная мощность[править | править код]

Единица измерения, по предложению Международной электротехнической комиссии, – вар (вольт-ампер реактивный); (русское обозначение: вар; международное: var). В терминах единиц СИ, как отмечено в 9-ом издании Брошюры СИ, вар когерентен произведению вольт-ампер. В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения в области «электротехника»[1][2]:

{displaystyle Q=Ucdot Icdot sin varphi ~.}

Вар определяется как реактивная мощность цепи с синусоидальным переменным током при действующих значениях напряжения 1 В и тока 1 А, если сдвиг фазы между током и напряжением {displaystyle textstyle {frac {pi }{2}}}[3].

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз varphi между ними: Q=Ucdot Icdot sin varphi (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью P соотношением:

{displaystyle |Q|={sqrt {S^{2}-P^{2}}}~.}

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin varphi для значений varphi от 0 до плюс 90° является положительной величиной. Величина sin varphi для значений varphi от 0 до −90° является отрицательной величиной. В соответствии с формулой Q=UIsin varphi , реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии, возвращаемой от индуктивной и ёмкостной нагрузки в источник переменного напряжения.

Полная мощность[править | править код]

Единица измерения — В·А, вольт-ампер (русское обозначение: В·А; международное: V·A). В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «электротехника»[1][2].

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах S=Ucdot I связана с активной и реактивной мощностями соотношением:

{displaystyle S={sqrt {P^{2}+Q^{2}}}~,}

где:

P — активная мощность;
Q — реактивная мощность (при индуктивной нагрузке {displaystyle Q>0}, а при ёмкостной {displaystyle Q<0}).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

{displaystyle {vec {S}}={vec {P}}+{vec {Q}}~.}

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность[править | править код]

Мощность, аналогично импедансу, можно записать в комплексном виде:

{displaystyle {dot {S}}={dot {U}}{dot {I}}^{*}=I^{2}mathbb {Z} ={frac {U^{2}}{mathbb {Z} ^{*}}}~,}

где:

{dot  {U}} — комплексное напряжение;
{dot  {I}} — комплексный ток;
mathbb {Z}  — импеданс;
* — оператор комплексного сопряжения.

Модуль комплексной мощности left|{dot  {S}}right| равен полной мощности S. Действительная часть {mathrm  {Re}}({dot  {S}}) равна активной мощности P, а мнимая {mathrm  {Im}}({dot  {S}}) — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.

Измерения[править | править код]

  • Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра, амперметра и фазометра.
  • Для измерения коэффициента реактивной мощности применяют фазометры
  • Государственный эталон мощности — ГЭТ 153—2012 Государственный первичный эталон единицы электрической мощности в диапазоне частот от 1 до 2500 Гц. Институт-хранитель: ВНИИМ

Потребление мощности некоторыми электроприборами[править | править код]

Значения потребляемой электрической мощности некоторых потребителей

Электрический прибор Мощность,Вт
Лампочка фонарика 1
Сетевой роутер, хаб 10…20
Системный блок ПК 100…1700
Системный блок сервера 200…1500
Монитор для ПК ЭЛТ 15…200
Монитор для ПК ЖК 2…40
Лампа люминесцентная бытовая 5…30
Лампа накаливания бытовая 25…150
Холодильник бытовой 15…700
Электропылесос 100… 3000
Электрический утюг 300…2 000
Стиральная машина 350…2 000
Электрическая плитка 1000…2000
Сварочный аппарат бытовой 1000…5500
Двигатель лифта невысокого дома 3 000…15 000
Двигатель трамвая 45 000…75 000
Двигатель электровоза 650 000
Электродвигатель шахтной подъёмной машины 1 000 000…5 000 000
Электродвигатель прокатного стана 6 000 000…32 000 000

Выходная мощность[править | править код]

Измеряется как долговременная (RMS[en]), так и кратковременная (PMO, PMPO) мощности, способные отдавать усилителями мощности.

также см.: КПД

См. также[править | править код]

  • Ваттметр
  • Электрический ток
  • Коэффициент мощности
  • Список параметров напряжения и силы электрического тока
  • Закон Ома
  • КПД

Примечания[править | править код]

  1. 1 2 3 Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 26—27. — 240 с. — ISBN 5-7050-0118-5.
  2. 1 2 Положение о единицах величин, допускаемых к применению в Российской Федерации Архивная копия от 2 ноября 2013 на Wayback Machine Утверждено Постановлением Правительства РФ от 31 октября 2009 г. N 879.
  3. Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1977. — С. 213.

Литература[править | править код]

  • ГОСТ 8.417-2002 Единицы величин.
  • ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации.
  • Л. А. Бессонов . Теоретические основы электротехники. Электрические цепи: учебник

для бакалавров. — 12-е изд., испр. и доп. — М.: Юрайт, 2016. — 702 с. — (Бакалавр. Углубленный курс). — 1000 экз. — ISBN 978-5-9916-3210-2.

  • Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193 — 2009. — 146 с.

Ссылки[править | править код]

  • Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока. ToeHelp.Ru. Дата обращения: 7 марта 2022.
  • Для чего нужна компенсация реактивной мощности. Школа для электрика (2010). Дата обращения: 7 марта 2022.
  • . ред. Д. Макаров : Как рассчитать мощность электрического тока? Заметки электрика. ASUTPP. Дата обращения: 7 марта 2022.

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

Понятие электрической мощности и способы ее расчета

С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.

В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.

Через напряжение и ток

Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I

Где:

  • P – активная мощность;
  • U – напряжение приложенное к участку цепи;
  • I  — сила тока, протекающего через соответствующий участок.

Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.

Через напряжение и сопротивление

Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома для участка цепи, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:

I = U/R

Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:

P = U*(U/R)=U2/R

Где,

  • P – величина нагрузки;
  • U – приложенная разность потенциалов;
  • R – сопротивление нагрузки.

Через ток и сопротивление

Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.

Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:

U=I*R

после того как выражение подставить в формулу мощности, получим:

P = (I*R)*I =I2*R

Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.

Полная мощность в цепи переменного тока

Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:

Суммарная мощность

Где,

  • S – полная мощность
  • P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
  • Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.

Также составляющие вычисляются через тригонометрические функции, так:

P = U*I*cosφ

Q = U*I*sinφ

что активно используется в расчете электрических машин.

Треугольник мощностей

Рис. 1. Треугольник мощностей

Пример расчета полной мощности для электродвигателя

Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.

Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:

S = 3*Uф*Iф

В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:

Мощность и линейное напряжение

Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.

Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.

Шильд электродвигателя

Рис. 2. Шильд электродвигателя

Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:

  • полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
  • коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
  • тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
  • напряжение, при соединении обмоток треугольником составит 220 В;
  • сила тока при том же способе соединения – 13,3 А.

С таким перечнем характеристик можно воспользоваться несколькими способами:

S = 1,732*220*13,3 = 5067 Вт

Чтобы найти искомую величину, сначала определяем активную составляющую:

P = Pполезная / КПД = 3000/0.8 = 3750 Вт

Далее полную по способу деления активной  на коэффициент cos φ:

S = P/cos φ = 3750/0.74 = 5067 Вт

Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.

Примеры задач

Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.

Последовательная расчетная цепь

Рис. 3. Последовательная расчетная цепь

Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:

P = U2/R = 81 / (10+20+30) = 1.35 Вт

Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:

Параллельная схема подключения

Рис. 4. Параллельная схема подключения

Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:

Rобщ = (R1*R2) / (R1+R2) = (10*15) / (10+15) = 6 Ом

Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:

P = I2*R = 25*6 = 150 Вт

Видео по теме

Калькулятор мощности тока

Рассчитайте онлайн мощность электрического тока в ваттах (Вт) в зависимости от силы тока, напряжения и сопротивления.

Что известно

Тип сети

Сила тока (амперы)

А

Сопротивление (омы)

Ом

Напряжение (вольты)

В

Раcсчитать

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

Что считает калькулятор

Калькулятор мощности тока

Калькулятор мощности электрического тока может рассчитывать мощность электрического тока, проходящего через нагрузку с определенным напряжением, используя формулу:

P = U x I

где P измеряется в ваттах (Вт), U – напряжение в вольтах (В), а I – сила тока в амперах (А). Таким образом, калькулятор мощности тока использует значения напряжения и силы тока, чтобы рассчитать мощность, используемую в электрической цепи.

Как использовать калькулятор

Укажите значение известных параметров, например, силу тока и напряжение, после этого калькулятор произведет расчёт значения мощности тока и выдаст его в указанных единицах измерения.

Что влияет на точность расчетов калькулятора

Точность расчетов калькулятора мощности электрического зависит от нескольких факторов:

  1. Точность измерительных приборов: точность измерения сопротивления, напряжения или силы тока влияет на точность расчетов. Если измерительные приборы не точны, то и результаты расчетов будут неточными.
  2. Точность данных: данные, используемые для расчета, такие как сопротивление проводника и напряжение, должны быть точными. Если данные неточные, то и результаты расчетов будут неточными.
  3. Температура: температура проводника может влиять на точность расчетов, так как сопротивление проводника меняется с температурой.
  4. Состояние проводника: качество проводника может влиять на точность расчетов. Например, если проводник окислился или поврежден, то его сопротивление может измениться и привести к неточным результатам.
  5. Влияние других элементов в цепи: на точность расчетов могут влиять другие элементы в цепи, такие как резисторы, конденсаторы и индуктивности. Если эти элементы не учитываются при расчете, то результаты могут быть неточными.
  6. Напряжение питания: точность расчетов также может зависеть от напряжения питания и его устойчивости.
  7. Условия окружающей среды: окружающая среда может влиять на точность измерений и, следовательно, на точность расчетов. Например, высокая влажность может повредить измерительные приборы и привести к неточным результатам.

Учитывая все эти факторы, следует стремиться к использованию точных измерительных приборов и точных данных для расчета. Кроме того, необходимо учитывать все элементы в цепи и условия окружающей среды, чтобы получить наиболее точные результаты.

Где можно применить калькулятор

Калькулятор мощности электрического тока можно применить во многих областях, где необходимо рассчитывать электрическую мощность или силу тока. Некоторые примеры:

  1. Для расчета мощности электропотребления домашних приборов, таких как холодильники, кондиционеры, компьютеры и другие устройства.
  2. В инженерии и строительстве, для расчета мощности электрооборудования и распределения нагрузки на электрические системы.
  3. В промышленности, для расчета мощности электродвигателей, генераторов и другого оборудования.
  4. В научных исследованиях, для измерения силы тока в электрических цепях и для расчета мощности, потребляемой электронными устройствами.
  5. В обучении и образовании, для демонстрации принципов электрической мощности и силы тока, а также для проведения лабораторных работ.

Калькулятор мощности электрического тока может быть полезным инструментом во многих сферах жизни и работы, где требуется работа с электроэнергией.

Как вычислить мощность электрического тока самостоятельно

Мощность тока в ваттах

Мощность электрического тока может быть вычислена с использованием формулы:

P = I * V

где P – мощность, измеряемая в ваттах (W), I – сила тока, измеряемая в амперах (A), V – напряжение, измеряемое в вольтах (V).

Для того, чтобы вычислить мощность, необходимо знать значения силы тока и напряжения.

Если у вас есть информация о силе тока, вы можете вычислить мощность, умножив значение силы тока на значение напряжения. Например, если сила тока равна 5 амперам, а напряжение равно 10 вольтам, мощность равна:

P = 5 A * 10 V = 50 Вт

Если у вас есть информация только о напряжении и сопротивлении, вы можете использовать закон Ома для вычисления силы тока, а затем использовать полученное значение для расчета мощности. Формула закона Ома выглядит следующим образом:

I = V / R

где R – сопротивление, измеряемое в омах (Ω).

Например, если напряжение равно 10 вольтам, а сопротивление равно 2 омам, сила тока равна:

I = 10 V / 2 Ω = 5 A

Затем, используя значение силы тока и значение напряжения, можно вычислить мощность, как описано выше.

Но в любом случае, для безопасной работы с электрическими цепями, лучше обратиться к профессионалам, особенно если вы не имеете достаточных знаний в этой области.

Полезные советы

Несколько советов, которые могут помочь при расчете мощности тока:

  1. Убедитесь, что вы знаете значение напряжения: мощность электрического тока вычисляется путем умножения напряжения на ток. Поэтому, чтобы правильно рассчитать мощность, необходимо знать значение напряжения.
  2. Измерьте ток: используйте амперметр для измерения тока в электрической цепи. Убедитесь, что амперметр подключен правильно и что вы используете правильный диапазон измерений.
  3. Вычислите мощность: умножьте значение напряжения на значение тока, чтобы получить мощность. Например, если напряжение составляет 220 вольт, а ток – 10 ампер, мощность равна 220 В * 10 А = 2200 Вт.
  4. Учитывайте мощность потерь: электрические системы могут иметь потери мощности в виде тепла или шума. При расчете мощности учтите такие потери, чтобы получить более точный результат.
  5. Проверьте единицы измерения: убедитесь, что значения напряжения, тока и мощности измеряются в правильных единицах измерения. Например, напряжение измеряется в вольтах, ток – в амперах, а мощность – в ваттах.
  6. Используйте правильные формулы: существуют различные формулы для расчета мощности в зависимости от типа цепи. Например, для постоянного тока мощность вычисляется по формуле P = VI, где P – мощность, V – напряжение, а I – ток. Для переменного тока используется другая формула.
  7. Убедитесь, что электрическая цепь безопасна: прежде чем измерять ток и рассчитывать мощность, убедитесь, что электрическая цепь безопасна. Никогда не работайте с электрическими системами, если вы не знаете, как это делать безопасно.

❓ Вопросы и ответы

А вот несколько ответов на часто задаваемые вопросы про вычисление мощности электрического тока.

Что такое мощность электрического тока?

Мощность электрического тока – это количество электрической энергии, которое передается по проводнику за определенное время. Единицей измерения мощности является ватт (Вт), которая определяется как джоуль (Дж) в секунду.

Как рассчитать мощность электрического тока?

Мощность электрического тока можно рассчитать по формуле P = VI, где P – мощность в ваттах, V – напряжение в вольтах и I – сила тока в амперах.

Как измерить мощность электрического тока?

Мощность электрического тока может быть измерена при помощи специального прибора, называемого ваттметром. Этот прибор подключается к цепи электропитания и измеряет силу тока и напряжение, необходимые для вычисления мощности.

Какие факторы влияют на мощность электрического тока?

Мощность электрического тока зависит от силы тока и напряжения, которые передаются по проводнику. При изменении любого из этих параметров меняется и мощность.

Зачем нужно знать мощность электрического тока?

Знание мощности электрического тока позволяет оптимизировать электрическую систему и уменьшить расход электроэнергии. Это также необходимо для проектирования и монтажа электрооборудования, так как это позволяет выбрать правильный кабельный сечение и гарантировать безопасную работу системы.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор закона Ома. Рассчитайте сопротивление, силу тока и напряжение в зависимости от известных параметров.
  • Калькулятор коэффициента трения. Рассчитайте коэффициент трения по углу наклона или через массу силу трения.
  • Калькулятор средней скорости. Рассчитайте онлайн среднюю скорость автомобиля или бегуна по времени и расстоянию.
  • Калькулятор объема трубы. Рассчитайте онлайн объем трубы в куб. м. или литрах в зависимости от диаметра и длины трубопровода.
  • Калькулятор перевода в тонны. Иногда может потребовать перевести одну единицу веса в другую, например, в тонны. И для этой цели очень пригодится специальный калькулятор.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Мощность электрического тока является величиной, которая характеризует его свойства. Она определяется силой тока и напряжением. Единицей измерения является Ватт, в честь первооткрывателя этой величины. Обозначается она буквами Вт, в английском языке буквой W. В формулах эта характеристика имеет другое условное обозначение – латинская буква Р. Измеряется мощность тока ваттметром. Найти мощности нужно умножив силу тока на напряжение, то есть амперы на вольты получаем Ватты.

В статье будет рассказано подробно, о том, что такое мощность, как ее можно определить, от чего зависит и на что влияет.

Что такое мощность электрического тока и как ее рассчитать

Что такое мощность в электричестве

Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий. Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.

Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт).

Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе. Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.

Наука подразделяет электрическую мощность на:

  • активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
  • реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.

Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.

Как измерить мощность

Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрификации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.

Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.

Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах. Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.

Мощность электрического тока расчет и формулы

Для вычисления мощности тока в ваттах, силу тока в амперах умножаем на напряжение в вольтах. Обозначить мощность электрического тока латинским символом P, то приведенное выше правило можно записать в виде математической формулы P = I × U (1).

Воспользуемся этой формулой на практике. Необходимо вычислить, какая мощность электрического тока требуется для накала нити лампы, если напряжение накала равно 4 в, а ток накала 75 мА. Р= 0,075 А × 4 В = 0,3 Вт Мощность электрического тока можно определить и другим способом. Например, нам известны сила тока и сопротивление цепи, а напряжение величина неизвестная, тогда мы воспользуемся соотношением из закона Ома: U=I × R Подставим правую часть формулы (1) IR вместо напряжения U. P = I× U = I×IR или Р = I2×R.

Рассмотрим пример расчета: какая мощность теряется в реостате сопротивлением в 5 Ом, если через него идет ток, силой 0,5 А. Пользуясь формулой (2), вычислим:. P= I2 × R = 0,52×5 =0,25×5 = 1,25 Вт. Кроме того, мощность электрического тока можно рассчитать если известны напряжение и сопротивление, а сила тока величина неизвестна.

Для этого вместо силы тока I в формулу подставляется отношение U/R и тогда формула приобретает следующий вид: Р = I × U=U2/R (3) Разберем очередной практический пример с использованием этой формулы, при 2,5 вольта падения напряжения на реостате сопротивлением в 5 Ом поглощаемая реостатом мощность будет определяться: Р = U2/R=(2,5)2/5=1,25 Вт; Выводы: Для нахождения мощности необходимо знать любые две из величин, из закона Ома. Мощность электрического тока равна работе тока, производимой в течение времени. P = A/t

Основные электротехнические формулы
Основные электротехнические формулы

Проходя по цепи, ток совершает работу. Как например, водный поток направить течь, на лопасти генератора, то пон будет совершать работу, вращая лопасти. Так же и ток совершает работу, двигаясь по проводнику. И эта работа тем выше, чем больше величина сила тока и напряжения. Работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока, напряжению и времени действия тока. Работа электрического тока обозначается латинским символом A. Так как, произведение I×U есть мощность, то формулу работы электрического тока можно записать: A = P×t

Единицей измерения работы электрического тока, является ватт в секундах или в джоулях. Поэтому, если мы хотим вычислить, какую работу осуществил ток, идя по цепи в течение временного интервала, мы должны умножить мощность на время Рассмотрим практический пример, через реостат с сопротивлением 5 Ом идет ток силой 0,5 А. Нужно вычислить, какую работу совершит ток в течение четырех часов. Работа в течение одной секунды будет: P=I2R = 0,52×5= 0,25×5 =1,25 Вт,

Тогда за 4 часа t=14400 секунд. Следовательно: А = Р×t= 1,25×14 400= 18 000 вт-сек. Ватт-секунда или один джоуль считаетсяя слишком малой велечиной для измерения работы. Поэтому на практике применяют единицу, называемую ватт-час (втч). Один ватт-час это эквивалентно 3 600 Дж. В электротехнике используются и еще большие единицы, гектоваттчас (гвтч) и киловаттчас (квтч): 1 квтч =10 гвтч =1000 втч = 3600000 Дж, 1 гвтч =100 втч = 360 000 Дж, 1 втч = 3 600 Дж.

Мощность электрического тока
Мощность электрического тока

Как рассчитать сопротивление и мощность

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом. На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой Р=24х0,5=12 Вт.

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит. Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

Мощность тока

Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать  U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».

Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

Расчетные формулы мощности тока
Расчетные формулы мощности тока

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.

Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления, тем больше я понимаю что  делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.

Добавить комментарий