Всего: 25 1–20 | 21–25
Добавить в вариант
Сколько времени потребуется электрическому нагревателю, чтобы довести до кипения 2,2 кг воды, начальная температура которой 10 °C? Сила тока в нагревателе 7 А, напряжение в сети 220 В, КПД нагревателя равен 45%.
Электрический нагреватель за 20 мин доводит до кипения 2,2 кг воды, начальная температура которой 10 °С. Сила тока в нагревателе 7 А, КПД нагревателя равен 45%. Чему равно напряжение в электрической сети? Ответ дайте в вольтах.
В алюминиевый калориметр массой 50 г налито 120 г воды и опущен электрический нагреватель мощностью 12,5 Вт. На сколько градусов нагреется калориметр с водой за 22 мин, если тепловые потери в окружающую среду составляют 20%? (Удельная теплоёмкость воды — 4200 Дж/(кг·°С), алюминия — 920 Дж/(кг·°С).)
В алюминиевый калориметр массой 50 г налито 120 г воды и опущен электрический нагреватель мощностью 12,5 Вт. За какое время калориметр с водой нагреется на 24 °C, если тепловые потери в окружающую среду составляют 20 %? (Удельная теплоёмкость алюминия — 920 Дж/(кг · °С), воды — 4200 Дж/(кг · °С).)
Чему равна масса воды, которую нагревают от 20 до 100 °C с помощью электронагревателя мощностью 500 Вт в течение 35 мин, если известно, что КПД нагревателя 64%?
При прохождении электрического тока 5,5 А через спираль нагревателя, изготовленную из никелиновой проволоки площадью поперечного сечения 0,84 мм2, за 10 мин выделилось количество теплоты 726000 Дж. Чему равна длина проволоки, из которой изготовлена спираль? (Удельное сопротивление никелина — 0,4 Ом·мм2/м.)
При прохождении электрического тока через спираль нагревателя, изготовленную из никелиновой проволоки длиной 80 м и площадью поперечного сечения 0,84 мм2, за 10 мин выделилось количество теплоты 726 000 Дж. Чему равно напряжение сети, в которую включили нагреватель?
На рисунке представлен график зависимости температуры t от времени τ, полученный при равномерном нагревании вещества нагревателем постоянной мощности. Первоначально вещество находилось в твёрдом состоянии.
Используя данные графика, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) Точка 2 на графике соответствует жидкому состоянию вещества.
2) Внутренняя энергия вещества при переходе из состояния 3 в состояние 4 увеличивается.
3) Удельная теплоёмкость вещества в твёрдом состоянии равна удельной теплоёмкости этого вещества в жидком состоянии.
4) Испарение вещества происходит только в состояниях, соответствующих горизонтальному участку графика.
5) Температура t2 равна температуре плавления данного вещества.
Имеется два электрических нагревателя одинаковой мощности по 800 Вт каждый. Сколько времени потребуется для нагревания 1 л воды на 80 °C, если нагреватели будут включены параллельно? Потерями энергии пренебречь.
Источник: ЕГЭ – 2013, вариант 1326
Имеется два электрических нагревателя одинаковой мощности — по 400 Вт. Сколько времени потребуется для нагревания 1 л воды на 40 °C, если нагреватели будут включены в электросеть параллельно? Потерями энергии пренебречь.
Источник: ЕГЭ – 2013, вариант 1331
Имеется два электрических нагревателя одинаковой мощности — по 400 Вт. Сколько времени потребуется для нагревания 1 л воды на 40 °C, если нагреватели будут включены в электросеть последовательно? Потерями энергии пренебречь.
Источник: ЕГЭ – 2013, вариант 1332
КПД тепловой машины равен 25%. Это означает, что при выделении энергии Q при сгорании топлива на совершение полезной работы не используется энергия, равная
1) 0,75Q
2) 0,6Q
3) 0,4Q
4) 0,25Q
С помощью электрического нагревателя сопротивлением 200 Ом нагревают 440 г молока. Электронагреватель включён в сеть с напряжением 220 В. За какое время молоко в сосуде нагреется на 55 °C? Удельную теплоёмкость молока принять равной 3900 Дж/(кг · °С). Теплообменом с окружающей средой пренебречь.
Имеется два электрических нагревателя одинаковой мощности – по 400 Вт. Сколько времени потребуется для нагревания 1 л воды на 40 ºС, если нагреватели будут включены в электросеть последовательно? Потерями энергии пренебречь.
На рисунке представлен график зависимости температуры t от времени τ, полученный при равномерном нагревании вещества нагревателем постоянной мощности. Первоначально вещество находилось в твёрдом состоянии.
Используя данные графика, выберите из предложенного перечня два верных утверждения. Укажите их номера.
1) Точка 2 на графике соответствует жидкому состоянию вещества.
2) Внутренняя энергия вещества при переходе из состояния 3 в состояние 4 увеличивается.
3) Удельная теплоёмкость вещества в твёрдом состоянии равна удельной теплоёмкости этого вещества в жидком состоянии.
4) Испарение вещества происходит только в состояниях, соответствующих горизонтальному участку графика.
5) Температура t2 равна температуре плавления данного вещества.
Задания Д16 № 1695
i
Рассчитайте длину нихромовой проволоки площадью поперечного сечения 0,05 мм2, необходимой для изготовления спирали нагревателя мощностью 275 Вт, работающего от сети постоянного напряжения 220 В.
Имеются два одинаковых электрических нагревателя мощностью 600 Вт каждый. На сколько градусов можно нагреть 2 л воды за 7 мин, если нагреватели будут включены параллельно в электросеть с напряжением, на которое рассчитан каждый из них? Потерями энергии пренебречь.
Имеется два электрических нагревателя одинаковой мощности — по 400 Вт. Сколько времени потребуется для нагревания 1 л воды на 40 ºС, если нагреватели будут включены в электросеть последовательно? Потерями энергии пренебречь.
В алюминиевый калориметр массой 50 г налито 120 г воды и опущен электрический нагреватель мощностью 12,5 Вт. На сколько градусов нагреется калориметр с водой за 22 мин, если тепловые потери в окружающую среду составляют 20%?
Имеются два одинаковых электрических нагревателя мощностью 600 Вт каждый. На сколько градусов можно нагреть 2 л воды за 7 мин, если нагреватели будут включены последовательно в электросеть с напряжением, на которое рассчитан каждый из них? Потерями энергии пренебречь.
Всего: 25 1–20 | 21–25
Определение мощности ЭНГЛ
В данном разделе представлены рекомендации по определению мощности нагревателей при обогреве металлических трубопроводов, При обогреве других объектов мощность нагревателей определяется на основании теплотехнических расчетов.
Мощность, необходимая для подогрева трубопровода, зависит от режима подогрева, вида продукта, диаметра трубопровода, разности температур между продуктом и окружающей средой и эффективности теплоизоляции.
В практике наибольшее применение имеют два режима подогрева – непрерывный и периодический.
Непрерывный режим подогрева имеет место при необходимости поддержания определенной температуры продукта, постоянно перекачиваемого по трубопроводу. Мощность нагревателей должна быть достаточной для компенсации тепловых потерь.
Периодически и режим характеризуется частыми перерывами перекачки, во время которых температура продукта в трубопроводе снижается до температуры окружающей среды. При периодическом режиме необходимо создать тепловой поток, достаточный для разогрева трубопровода, продукта для компенсации тепловых потерь.
Мощность нагревателей при непрерывном режиме определяется по графику (рис. 1), при периодическом – по графику (рис. 2).
Графики построены для следующих параметров:
а) толщина теплоизоляции, мм – 25
б) коэффициент теплопроводности, ккал/м2*ч*°С – 0,04
в) теплоемкость продукта, ккал/кг – 0,5
Мощность Pe, необходимая для компенсации тепловых потерь 1 метра теплоизолированного трубопровода при непрерывном режиме подогрева в зависимости от разности температур Δt (продукт-окружающая среда).
Рисунок 1
Мощность Ре, необходимая для разогрева одного метра теплоизолированного трубопровода в течение одного часа при периодическом режиме подогрева в зависимости от разности температур Δt (продукт- окружающая среда).
Рисунок 2
При толщине тепловой изоляции большей чем 25 мм, значение мощности следует умножить на коэффициент тепловой изоляции.
Значение коэффициента тепловой изоляции приведены в таблице 2.
Таблица 2
Разница температур между продуктом и окружающей средой, °С |
Толщина тепловой изоляции, мм | |||
25 | 38 | 50 | 75 | |
1 – 150 150 – 200 |
1 – |
0,8 0,8 |
0,7 0,7 |
– 0,5 |
При установке нагревателей на открытом воздухе значение мощности следует умножить на коэффициент дополнительных потерь -1,15, учитывающий дополнительные потери от воздействия атмосферных осадков, ветра и т.п.
Уменьшение или увеличение времени разогрева при периодическом режиме приводит к пропорциональному увеличению или уменьшению значения установленной мощности нагревателей. График (рисунок 2) построен для времени разогрева 1 час.
Рекомендации по выбору типа нагревателей и способа прокладки в случае использования графиков по рис. 1 или рис. 2.
Мощность определяется по формулам:
1) при режиме компенсации теплопотерь (непрерывный режим), график по рис. 1
P = qc x Kн x Kиз (1)
где:
qc – тепловые потери с метра трубопровода, Вт/м
Kн– коэффициент неучтенных потерь от влияния колебаний напряжения и т.д.
Киз – коэффициент тепловой изоляции (см. табл. 2)
2) при режиме разогрева (периодический режим), график по рис. 2
P = Pе/t + 2/3 x qc x Kн x Kиз (2)
где:
Pc – мощность, потребляемая для разогрева 1 метра трубопровода (график по рис. 2)
t – время разогрева, ч
Выбор типа нагревателя для режима компенсации теплолотерь (непрерывный режим) рассмотрим на следующем примере:
-длина трубопровода, м – 100
-диаметр трубопровода (наружный), мм – 100
-температура продукта, °С – минус 10
Из графика (рис. 1) для диаметра трубопровода 100 мм при Δt = 50-(-10) = 60°С, тепловые потери qc = 50 Вт/м.
По формуле (1) P= qc x Kн x Kиз
где:
Kн принимаем равным 1,2,
Kиз = 1 (по табл. 2),
P= 50×1,2х1 =60 Вт/м.
Общая мощность нагревателей на весь трубопровод
Pобщ = 60×100 = 6000 Вт.
При выборе нагревателя следует руководствоваться следующими рекомендациями:
– применять линейный способ прокладки сокращения мест подключения;
– применять нагреватели максимальной длины;
– при возможности сокращать номенклатуру нагревателей;
– выбирать нагреватели с максимальной удельной мощностью.
Для данного примера выбираем нагреватель типа 2 ЭНГЛ-1-1,61/220(180°С)-26,96 в количестве 3-х штук для линейного способа прокладки.
Длина нагревателя будет равна
26,96×3 = 80,88м
Мощность нагревателя равна
1,61 хЗ = 4,83кВт
Не обогреваемым остается участок
100-80,88= 19,12м
Мощность для лого участка должна быть равна
6,0-4,83=1,17кВт
Для обогрева оставшегося участка выбираем нагреватель типа 2ЭНГЛ-1 – 1,32Я20(180°С)-32,96.
Способ прокладки спиральный.
Шаг спирали определяется по формуле:
t = (П x Дн x lm)/(lн2 – lm2)1/2
Дн – наружный диаметр трубопровода, м – 0,1
lн – длина участка трубопровода, м – 19,12
lm – длина нагревателя, м – 32,96
t = (3.14 x 0.1 x 19.12)/(32.962 – 19.122)1/2 = 6.0/(720)1/2 = 0.22 м
Выбор типа нагревателя для режима разогрева (периодический режим) рассмотрим на следующем примере:
– длина трубопровода, м – 100
– диаметр трубопровода (наружный), мм – 100
-температура продукта,°С – минус 10
Из графика (рис. 1) для диаметра трубопровода 100 мм при Δt = 50-(-10) = 60°С тепловые потери qc = 50 Вт/м.
Из графика (рис. 2) для диаметра трубопровода 100 мм при Δt = 60°С, мощность, потребляемая на разогрев 1 метра трубопровода Pе = 400 Вт/м.
По формуле (2)
P = Pе/t + 2/3 x qc x Kн x Kиз
где:
Кн – принимаем равным 1,2,
Киз = 1 (по табл. 2),
t = 1 ч,
P = 400/1 + 2/3 * 50 * 1.2 * 1 = 440 Вт/м
Общая мощность нагревателей на весь трубопровод
Pобщ = 440×100 = 44000 Вт.
Для данного примера выбираем нагреватель типа 2 ЭНГЛ-1-2,08/220(180°С)-20,88.
Определяем необходимое количество нагревателей
44000:2080 = 21,15
Для монтажа берем 22 нагревателя. Суммарная мощность нагревателей
22 х 2080 = 45760 Вт.
Шаг спирали для намотки 22 нагревателей
= (3,14 x 0.1 x 100)/((20.88 x 22)2 – 1002)1/2 = 31.4/(211012 – 10000)1/2 = 31.4/448.3 = 0.07м
О тепловой энергии простым языком!
Опубликовано 13 Окт 2013
Рубрика: Теплотехника | 117 комментариев
Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,…
…энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.
Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.
Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.
Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!
Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!
Количество теплоты при различных физических процессах.
Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.
Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q, подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.
1. Твердое тело, имеющее температуру T1, нагреваем до температуры Tпл, затрачивая на этот процесс количество теплоты равное Q1.
2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2— Q1.
3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп, затрачивая на это количество теплоты равное Q3–Q2.
4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4–Q3.
5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2. При этом затраты количества теплоты составят Q5–Q4. (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)
Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5, переводя вещество через три агрегатных состояния.
Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5, пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до температуры Т1. Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.
Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.
Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.
Главные формулы теплопередачи.
Формулы очень просты.
Количество теплоты Q в Дж рассчитывается по формулам:
1. Со стороны потребления тепла, то есть со стороны нагрузки:
1.1. При нагревании (охлаждении):
Q=m*c*(Т2–Т1)
Здесь и далее:
m – масса вещества в кг
с – удельная теплоемкость вещества в Дж/(кг*К)
1.2. При плавлении (замерзании):
Q=m*λ
λ – удельная теплота плавления и кристаллизации вещества в Дж/кг
1.3. При кипении, испарении (конденсации):
Q=m*r
r – удельная теплота газообразования и конденсации вещества в Дж/кг
2. Со стороны производства тепла, то есть со стороны источника:
2.1. При сгорании топлива:
Q=m*q
q – удельная теплота сгорания топлива в Дж/кг
2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):
Q=t*I*U=t*R*I^2=(t/R)*U^2
t – время в с
I – действующее значение тока в А
U – действующее значение напряжения в В
R – сопротивление нагрузки в Ом
Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c, λ, r, q) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).
Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:
N=Q/t
Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.
В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…
Условия задачи:
В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)
Расчет выполним в программе MS Excel или в программе OOo Calc.
С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге».
Исходные данные:
1. Названия веществ пишем:
в ячейку D3: Сталь
в ячейку E3: Лед
в ячейку F3: Лед/вода
в ячейку G3: Вода
в ячейку G3: Воздух
2. Названия процессов заносим:
в ячейки D4, E4, G4, G4: нагрев
в ячейку F4: таяние
3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем для стали, льда, воды и воздуха соответственно
в ячейку D5: 460
в ячейку E5: 2110
в ячейку G5: 4190
в ячейку H5: 1005
4. Удельную теплоту плавления льда λ в Дж/кг вписываем
в ячейку F6: 330000
5. Массу веществ m в кг вписываем соответственно для стали и льда
в ячейку D7: 3000
в ячейку E7: 20
Так как при превращении льда в воду масса не изменяется, то
в ячейках F7 и G7: =E7=20
Массу воздуха находим произведением объема помещения на удельный вес
в ячейке H7: =24*15*7*1,23=3100
6. Время процессов t в мин пишем только один раз для стали
в ячейку D8: 60
Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно
в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8)=9,7
в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8)=41,0
в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8)=9,4
Воздух также должен прогреться за это же самое отведенное время, читаем
в ячейке H8: =D8=60,0
7. Начальную температуру всех веществ T1 в ˚C заносим
в ячейку D9: -37
в ячейку E9: -37
в ячейку F9: 0
в ячейку G9: 0
в ячейку H9: -37
8. Конечную температуру всех веществ T2 в ˚C заносим
в ячейку D10: 18
в ячейку E10: 0
в ячейку F10: 0
в ячейку G10: 18
в ячейку H10: 18
Думаю, вопросов по п.7 и п.8 быть недолжно.
Результаты расчетов:
9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем
для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000=75900
для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000= 1561
для плавления льда в ячейке F12: =F7*F6/1000= 6600
для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000= 1508
для нагрева воздуха в ячейке H12: =H7*H5*(H10-H9)/1000= 171330
Общее количество необходимой для всех процессов тепловой энергии считываем
в объединенной ячейке D13E13F13G13H13: =СУММ(D12:H12) = 256900
В ячейках D14, E14, F14, G14, H14, и объединенной ячейке D15E15F15G15H15 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).
10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается
для нагрева стали в ячейке D16: =D12/(D8*60)=21,083
для нагрева льда в ячейке E16: =E12/(E8*60)= 2,686
для плавления льда в ячейке F16: =F12/(F8*60)= 2,686
для нагрева воды в ячейке G16: =G12/(G8*60)= 2,686
для нагрева воздуха в ячейке H16: =H12/(H8*60)= 47,592
Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается
в объединенной ячейке D17E17F17G17H17: =D13/(D8*60) = 71,361
В ячейках D18, E18, F18, G18, H18, и объединенной ячейке D19E19F19G19H19 тепловая мощность приведена в дугой единице измерения – в Гкал/час.
На этом расчет в Excel завершен.
Выводы:
Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.
При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).
Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.
Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост и понятен.
Ссылка на скачивание файла: raschet-teplovoy-moshchnosti (xls 19,5KB).
Другие статьи автора блога
На главную
Статьи с близкой тематикой
Отзывы
V * T * k / 860 ккал/ч = Q
Q — необходимая тепловая мощность (кВт). V — объем помещения (м³). Рассчитывается как произведение длины, ширины и высоты. T — разница между температурой воздуха на улице и желательной температурой в помещении (C°).
Как найти мощность через кпд?
Коэффициент полезного действия (КПД) обозначается буквой η и определяется, как отношение полезной работы (или мощности) к затраченной: η = W 2 /W 1 = P 2 /P 1 . Если коэффициент полезного действия учитывает только механические потери, то его называют механическим КПД .
Как найти мощность нагревателя физика?
Например: Напряжение в сети 220 Вольт, измеренное сопротивление равно 22 Ом. Тогда мощность тэна имеет значение: Р=220*220/22=2200 Вт=2.2 кВт.
Как найти мощность тепловых потерь на резисторе?
Мощность тепловых потерь пропорциональна разности температур резистора и окружающего воздуха: PП = a(T – T0).
Как рассчитать тепловую мощность для помещения?
Расчет тепловой мощности для обогрева помещения
- Точный расчет тепловой мощности обогревателя.
- V *T * K = ккал/час, или
- V *T *K / 860 = кВт, где
- V — Объем обогреваемого помещения в кубических метрах;
- T — Разница между температурами воздуха внутри и снаружи.
- K — Коэффициент теплоизоляции помещения.
Сколько нужно ватт тепла на 1 квадратный метр?
Согласно норме, считается, что для нагрева одного квадратного метра пространства требуется тепловая энергия 100 Вт. Количество тепла, требуемое на 1 кубический метр, составляет не менее 41 Вт.
Как примерно оценить необходимую мощность нагревательного прибора для бытового помещения?
Формула определяемой производительности выглядит так: W=s*h/30. Например: площадь комнаты – 18 кв. м, высота ее стен – 2,8 м.
Как перевести электроэнергию в тепловую энергию?
Тепловая мощность равна электрической*(1-КПД)* коефф.
Сколько нужно квт на один м3?
Расчет количества секций радиатора
Например, 1 кубический метр площади в панельном доме требует 0,041 кВт тепловой энергии. Кирпичный дом с тепловой реабилитацией и установленными оконными стеклопакетами потребует 0,034 кВт тепловой энергии, а современные дома потребляют 0,020 кВт тепловой энергии на квадратный метр.
Сколько в 1 кВт Гкал?
Онлайн калькулятор выполнит перевод единиц измерения энергии из Киловатт час (кВт*час) в Гигакалории (Гкал) и наоборот, поможет выразить сколько Гкал в кВт*час. 1 кВт*час = 0.0008598 Гкал/час; 1 Гкал = 1.163 кВт*час.
Как перевести Гкал в кВт?
(1 гигакалория в час = 1163 киловатт)
С помощью этого калькулятора вы в один клик сможете перевести гкал/ч в кВт (гигакалории в час в киловатты) и обратно.
Чему равен 1 кВт тепловой энергии?
1 киловатт-час равен количеству энергии, потребляемой (произведённой) электрическим устройством мощностью 1 киловатт: за 1 час своей работы. 1 кВт⋅ч = 10³ Вт × 3600 с = 3,6 МДж.
Сколько Гкал нужно для отопления 1 кв м?
0,0145 Гкал
Чему равен 1 гигакалорий?
1 Гигакалория = 1 000 000 000 (1×109) калорий. Гигакалория на квадратный метр (общей площади помещения) — это величина расхода тепловой энергии на отопление помещения. Такая единица измерения предусмотрена Правилами предоставления коммунальных услуг для применения в расчётах.
Чему равна 1 Гкал час?
Поскольку величины имеют постоянное значение, то это несложно – 1 Гкал/ч равен 1162,7907 кВт. Если величина представлена в мегаваттах, её можно перевести обратно в Гкал/ч, умножив на постоянное значение 0,85984.
Как рассчитать мощность на резисторе?
Что такое мощность резистора
Мощность определяется как произведение силы тока на напряжение: P = I * U и измеряется в ваттах (закон Ома). Рассеиваемая мощность резистора — это максимальный ток, который сопротивление может выдерживать длительное время без ущерба для работоспособности.
Как найти среднюю мощность нагревателя?
Зависимость следующая: P = U * I , где P — мощность, U — напряжение между концами нагревательной спирали, I — протекающий по спирали ток.
Как найти мощность в физике?
Чтобы вычислить мощность, надо работу разделить на время, в течение которого совершена эта работа. мощность = работа/время. N = A/t, где N – мощность, A – работа, t – время выполненной работы.
Какой мощности должен быть Конвекторный обогреватель?
м., лучше взять 2 прибора мощностью 1 кВт, чем один прибор мощностью 2 кВт (иначе в одной комнате будет слишком жарко, а другая – не прогреется).
…
Мощность конвектора – как выбрать?
Площадь обогрева, кв.м. | Мощность прибора, Вт |
---|---|
5 – 6 | 500 |
7 – 9 | 750 |
10 – 12 | 1000 |
12 – 14 | 1250 |
Как рассчитать площадь обогрева конвектора?
Конвектор размерами 200 х 80 мм имеет теплоотдачу с одного метра длины 340 Вт. Умножаем площадь помещения на 100, получая таким образом общую потребность помещения в тепловой энергии. Полученный результат делим на 340 – в итоге мы видим, какова должна быть общая длина конвекторов.
Какая мощность отопительного прибора должна быть если площадь помещения составляет 15 м2 ответ представить в ваттах?
Расчет мощности обогревателя
Площадь помещения | Мощность конвектора |
---|---|
10-18 кв.м | 1000 Вт |
15-22 кв.м | 1250 Вт |
18-25 кв.м | 1500 Вт |
22-30 кв.м | 2000 Вт |
Как рассчитать мощность конвекторов?
Процесс расчета мощности конвекторов по объему осуществляется следующим образом:
- Берем рулетку и вымеряем помещение;
- Вычисляем объем помещения, умножив полученные значения друг на друга;
- Умножаем объем на 0,04 (40 Вт на 1 кубометр);
- Получаем рекомендованную тепловую мощность.
Как рассчитать необходимую мощность конвектора?
Мощность электрического конвектора и площадь помещения пропорциональны друг другу: чем больше площадь, тем выше мощность обогревателя. Например, электрический конвектор 500 Вт способен эффективно отапливать площадь в 4–6 кв. м., а при мощности 750 Вт — 6–9 кв. м., при 1000 Вт площадь будет достигать уже 9–11 кв.
Сколько нужно конвекторов для отопления дома?
Запомните простое правило для подсчета мощности конвектора: умножая площадь помещения на 100 вы получаете требуемую для его отопления мощность в Вт. Предположим, нам нужно обогреть дом размером 50 кв. м жилой площади. Для этого нам понадобятся электрические конвекторы с суммарной мощностью 5 кВт.
Как рассчитать ток через резистор?
Применим закон Ома, чтобы найти напряжение на резисторах.
При помощи простых преобразований можно выразить напряжение через ток и сопротивление, переписав закон Ома следующим образом: I = V / IR = VR /
Как определить мощность резистора по маркировке?
Обычно на схемах резистор обозначается большой латинской буквой R и прямоугольником, внутри которого в виде знака указывается мощность резистора. Как правило, сразу за буквой идет цифра, указывающая порядковый номер резистора в схеме, а следом за номером, его номинальное значение.
Как определить номинал резистора по полоскам?
Номинал сопротивления всегда определяется по первым трем полосам. Первые две полосы маркировки – это цифры, а третья – множитель. Четвертое кольцо показывает допустимую погрешность точности сопротивления от номинального значения резистора.
На этой странице вы узнаете
- В чем прелесть фазовых переходов?
- Что лучше выбрать: Mercedes или BMW?
Люди научились летать в космос, покорять недра Земли и погружаться в глубины океана. Эти и другие достижения возможны благодаря способности извлекать максимум пользы из имеющихся ресурсов,а именно получать тепловую энергию различными доступными способами. Сегодня мы разберем задачи, которые заставят тепловые процессы играть на нашей стороне.
Тепловые машины и их КПД
Рекомендация: перед тем как приступить к выполнению задач неплохо было бы повторить тему «Уравнение состояния идеального газа» . Но ключевую теорию, на которой основано решение задач, сейчас разберем вместе.
Вспомним, что фазовые переходы — это переход из одного агрегатного состояния в другое. При этом может выделяться большое количество теплоты.
Именно благодаря этому они и стали такими полезными для нас. Например, в ядерных реакторах воду используют в качестве рабочего тела, то есть она нагревается вследствие энергии, полученной из ядерных реакций, доходит до температуры кипения, а затем под большим давлением уже в качестве водяного пара воздействует на ротор генератора, который вращается и дает нам электроэнергию! На этом основан принцип работы атомных электростанций.
А самый простой пример фазового перехода — образование льда на лужах в морозные ноябрьские дни. Правда о выделении тепла здесь речи не идет.
Мы не почувствуем, как испарится капелька у нас на руке, потому что это не требует много тепла от нашего тела. Но мы можем наблюдать, как горят дрова в мангале, когда мы жарим шашлык, потому что выделяется огромное количество теплоты. А зачем мы вообще рассматриваем эти фазовые переходы? Все дело в том, что именно фазовые переходы являются ключевым звеном во всех процессах, где нас просят посчитать КПД, от них нашему рабочему телу и подводится теплота нагревателя.
Человечество придумало такие устройства, которые могут переработать тепловую энергию в механическую.
Тепловые двигатели, или тепловые машины, — устройства, способные преобразовывать внутреннюю энергию в механическую.
Их устройство довольно просто: они на входе получают какую-то энергию (в основном — энергию сгорания топлива), а затем часть этой теплоты расходуется на совершение работы механизмом. Например, в автомобилях часть энергии от сгоревшего бензина идет на движение. Схематично можно изобразить так:
Рабочее тело — то, что совершает работу — принимает от нагревателя количество теплоты Q1, из которой A уходит на работу механизма. Остаток теплоты Q2 рабочее тело отдает холодильнику, по сути — это потеря энергии.
Физика не была бы такой загадочной, если б все в ней было идеально. Как и в любом процессе или преобразовании, здесь возможны потери, зачастую очень большие. Поэтому «индикатором качества» машины является КПД, с которым мы уже сталкивались в механике:
Коэффициент полезного действия (КПД) тепловой машины — это отношение полезной работы двигателя к энергии, полученной от нагревателя.
(eta) — КПД,
A — работа газа (Дж),
Q1 — количество теплоты, полученное от нагревателя (Дж).
Мы должны понимать, что КПД на практике никогда не получится больше 1, поскольку всегда будут тепловые потери.
Полезную работу можно расписать как Q1 — Q2 (по закону сохранения энергии). Тогда формула примет вид:
(eta = frac{Q_1 — Q_2}{Q_1} = 1 — frac{Q_2}{Q_1})
Давайте попрактикуемся в применении данной формулы на задаче номер 9 из ЕГЭ.
Задача. Тепловая машина, КПД которой равен 60%, за цикл отдает холодильнику 100 Дж. Какое количество теплоты за цикл машина получает от нагревателя? (Ответ дайте в джоулях).
Решение:
Давайте сначала вспомним нашу формулу для КПД:
(eta = frac{Q_1 — Q_2}{Q_1}),
где (Q_1) — это теплота, которую тело получает от нагревателя, (Q_2) — теплота, которая подводится к холодильнику.
Тогда отсюда можно вывести искомую теплоту нагревателя:
(eta Q_1 =Q_1-Q_2)
(eta Q_1 — Q_1= -Q_2)
(Q_1=frac{- Q_2}{eta-1}=frac{-100}{0,6-1}=250 Дж).
Ответ: 250 Дж
Цикл Карно
Мы знаем, что потери — это плохо, поэтому должны предотвращать их. Как это сделать? Нам ничего делать не нужно, за нас уже все сделал Сади Карно, французский физик, разработавший цикл, в котором машины достигают наивысшего КПД. Этот цикл носит его имя и состоит из двух изотерм и двух адиабат. Рассмотрим, как этот цикл выглядит в координатах p(V).
- Температура верхней изотермы 1-2 — температура нагревателя (так как теплота в данном процессе подводится).
- Температура нижней изотермы 3-4 — температура холодильника (так как теплота в данном процессе отводится).
- 2-3 и 4-1 — это адиабатические расширение и сжатие соответственно, в них газ не обменивается теплом с окружающей средой.
Цикл Карно — цикл идеальной тепловой машины, которая достигает наивысшего КПД.
Формула, по которой можно рассчитать ее КПД выражается через температуры:
T1 — температура нагревателя,
T2 — температура холодильника.
Не то круто, что красиво, а то, что по Карно работает! Поэтому присматривайте такой автомобиль, у которого высокий КПД.
Интересно, что максимальный уровень КПД двигателя внутреннего сгорания автомобилей на данный момент всего около 43%. По официальным заявлениям компания Nissan Motor с 2021 года испытывает прообраз двигателя нового поколения с планируемым КПД 50%.
Приступим к задачам
Задачи на данную тему достаточно часто встречаются в задании 27 из КИМа ЕГЭ. Давайте разберем некоторые примеры.
Задание 1. Одноатомный газ совершает циклический процесс, как показано на рисунке. На участке 1–2 газ совершает работу A12 = 1520 Дж. Участок 3–1 представляет собой адиабатный процесс. Количество теплоты, отданное газом за цикл холодильнику, равно |Qхол| = 4780 Дж. Найдите работу газа |A13| на адиабате, если количество вещества постоянно.
Решение:
Шаг 1. Первое, с чего лучше начинать задачи по термодинамике — исследование процессов.
Посмотрим на участок 1-2 графика: продолжение прямой проходит через начало координат, поэтому график функционально можно записать, как p = aV, где a — какое-то число, константа. Графиком является не изотерма, поскольку график изотермы в координатах p-V — гипербола. Из уравнения Менделеева-Клапейрона следует: (frac{pV}{T} = const). Отсюда можно сделать вывод, что возрастает температура, так как растут давление и объем. Температура и объем растут, значит, увеличивается и внутренняя энергия и объем соответственно.
Участок 2-3: процесс изохорный, поскольку объем постоянен, следовательно, работа газом не совершается. Рассмотрим закон Шарля: (frac{p}{T} = const). Давление в этом процессе растет, тогда растет и температура, поскольку дробь не должна менять свое значение. Делаем вывод, что внутренняя энергия тоже увеличивается.
Участок 3-1: адиабата по условию, то есть количество теплоты в этом переходе равна нулю из определения адиабатного процесса. Работа газа отрицательна, так как газ уменьшает объем.
Оформим все данные в таблицу.
Определим знаки Q, используя первый закон термодинамики: Q = ΔU + A.
Из этих данных сразу видно, что количество теплоты, отданное холодильнику — это количество теплоты в процессе 2-3.
Шаг 2. Первый закон термодинамики для процесса 1-2 запишется в виде:
Q12 = ΔU12 + A12.
Работа A12 — площадь фигуры под графиком процесса, то есть площадь трапеции:
(A_{12} = frac{p_0 + 2p_0}{2} * V0 =frac{3p_0V_0}{2}).
Запишем изменение внутренней энергии для этого процесса через давление и объем. Мы выводили эту формулу в статье «Первое начало термодинамики»:
(Delta U_{12} = frac{3}{2}(2p_0 * 2V_0 — p_0V_0) = frac{9p_0V_0}{2}).
Заметим, что это в 3 раза больше работы газа на этом участке:
(Delta U_{12} = 3A_{12} rightarrow Q_{12} = 4A_{12}).
Шаг 3. Работа цикла — площадь фигуры, которую замыкает график, тогда . A = A12 — |A31|. С другой стороны, работа цикла вычисляется как разность между энергиями нагревателя и холодильника: A = Q12 — |Q31|.
Сравним эти формулы:
Q12 -|Q31| = A12 — |A31|,
подставим выражения из предыдущего пункта:
4A12 — |Q31| = A12 — |A31| (rightarrow) |A31| = -3A12 + |Q31| = -31520 + 4780 = 220 Дж.
Ответ: 220 Дж
Задание 2. Найти КПД цикла для идеального одноатомного газа.
Решение:
Шаг 1. КПД цикла определим по формуле: (eta = frac{A}{Q}), где Q — количество теплоты от нагревателя, а А — работа газа за цикл. Найдем А как площадь замкнутой фигуры: A = (2p1 — p1)(3V1 — V1) = 2p1V1.
Шаг 2. Найдем процесс, который соответствует получению тепла от нагревателя. Воспользуемся теми же приемами, что и в прошлой задаче:
Посмотрим на участок 1-2 графика: давление растет, объем не меняется. По закону Шарля (frac{p}{T} = const) температура тоже растет. Работа газа равна 0 при изохорном процессе, а изменение внутренней энергии положительное.
2-3: давление не меняется, растет объем, а значит, работа газа положительна. По закону Гей-Люссака (frac{V}{T} = const) температура тоже растет, растет и внутренняя энергия.
3-4: давление уменьшается, следовательно, и температура уменьшается. При этом процесс изохорный и работа газа равна 0.
4-1: давление не меняется, объем и температура уменьшаются — работа газа отрицательна и внутренняя энергия уменьшается.
Оформим данные в таблицу:
Отметим, что необходимое Q = Q12 + Q23.
Шаг 3. Запишем первый закон термодинамики для процессов 1-2 и 2-3:
(Q_{12} = U_{12} + A_{12} = Delta U_{12} = frac{3}{2}(2p_1V_1 -p_1V_1) = frac{3}{2}p_1V_1).
(Q_{23} = Delta U_{23} + A_{23}), работу газа найдем как площадь под графиком: A23 = 2p1(3V1 — V1) = 4p1V1.
(Delta U_{12} = frac{3}{2}(2p_1 * 3V_1 — 2p_1V_1) = 6p_1V_1).
(Q_{23} = Delta U_{23} + A_{23} = 10p_1V_1).
Шаг 4. Мы готовы считать КПД: (eta = frac{A}{Q} = frac{A}{Q_{12} + Q_{23}} = frac{2p_1V_1}{frac{3}{2}p_1V_1 + 10p_1V_1} = frac{4}{23} approx 0,17).
Ответ: 17%
Теперь вас не должно настораживать наличие графиков в условиях задач на расчет КПД тепловых машин. Продолжить обучение решению задач экзамена вы можете в статьях «Применение законов Ньютона» и «Движение точки по окружности».
Фактчек
- Тепловые двигатели — устройства, способные преобразовывать внутреннюю энергию в механическую.
- Тепловая машина принимает тепло от нагревателя, отдает холодильнику, а рабочим телом совершает работу.
- Коэффициент полезного действия (КПД) тепловой машины — это отношение полезной работы двигателя к энергии, полученной от нагревателя.
(eta = frac{A}{Q_1} = frac{Q_1 — Q_2}{Q_1} = 1 — frac{Q_2}{Q_1}) - Цикл Карно — цикл с максимально возможным КПД: (eta = frac{T_1 — T_2}{T_1} = 1 — frac{T_2}{T_1})
- Не забываем, что работа считается, как площадь фигуры под графиком.
Проверь себя
Задание 1.
1 моль идеального газа переходит из состояния 1 в состояние 2, а потом — в состояние 3 так, как это показано графике. Начальная температура газа равна T0 = 350 К. Определите работу газа при переходе из состояния 2 в состояние 3, если k = 3, а n = 2.
- 5672 Дж
- 4731 Дж
- 5817 Дж
- 6393 Дж
Задание 2.
1 моль идеального одноатомного газа совершает цикл, который изображен на pV-диаграмме и состоит из двух адиабат, изохоры, изобары. Модуль отношения изменения температуры газа при изобарном процессе ΔT12 к изменению его температуры ΔT34 при изохорном процессе равен 1,5. Определите КПД цикла.
- 0,6
- 0,5
- 0,8
- 1
Задание 3.
В топке паровой машины сгорело 50 кг каменного угля, удельная теплота сгорания которого равна 30 МДж/кг. При этом машиной была совершена полезная механическая работа 135 МДж. Чему равен КПД этой тепловой машины? Ответ дайте в процентах.
- 6%
- 100%
- 22%
- 9%
Задание 4.
С двумя молями одноатомного идеального газа совершают циклический процесс 1–2–3–1 (см. рис.). Чему равна работа, совершаемая газом на участке 1–2 в этом циклическом процессе?
- 4444 Дж
- 2891 Дж
- 4986 Дж
- 9355 Дж
Ответы:1 — 3; 2 — 1; 3 — 4; 4 — 3.