Как найти мощность пружины

Во многих механизмах используется потенциальная и кинетическая энергия пружины. Их используют для выполнения различных действий. В отдельных узлах они фиксируют детали в определенном положении, не позволяя смещать в какую-либо сторону (барабан револьвера относительно корпуса). Другие пружинные системы возвращают исполнительный механизм в исходное положение (курок ручного огнестрельного оружия). Есть устройства, где узлы с гибкими свойствами совершают перемещения в устойчивое положение (механические стабилизаторы).

Работа связана с изменением геометрических параметров упругого тела. Прилагая нагрузку, заставляют эластичную деталь сжиматься (растягиваться или изгибаться). При этом наблюдается запасание энергии. Возвратное действие сопровождается набором скорости. Попутно возрастает кинетическая энергия.

Содержание:

  1. Потенциальная энергия пружины
  2. Закон сохранения механической энергии
  3. Кинетическая энергия
  4. Использование энергии пружины на практике

Потенциальная энергия пружины

Рассматривая в качестве накопителя энергии пружину, следует отметить ее отличительные свойства от иных физических тел, которые могут накапливать энергетический потенциал. Традиционно понимается следующее: для накопления потенциала для последующего движения необходимо совершение движения в силовом поле:

Еп = F ⋅ l, Дж (Н·м),

где Еп– потенциальная энергия положения, Дж;
F – сила, действующая на тело, Н;
l – величина перемещения в силовом поле, м.

Энергия (работа) измеряются в Джоулях. Величина представляет произведение силы (Н) на величину перемещения (м).

Если рассматривать условие в поле тяготения, то величина силы находится произведением ускорения свободного падения на массу. Здесь сила веса находится с учетом g:

Еп = G ⋅ h = m ⋅ g ⋅ h, Дж

здесь G – вес тела, Н;
m – масса тела, кг;
g – ускорение свободного падения. На Земле эта величина составляет g = 9,81 м/с².

Если расстраивается пружина, то силу F нужно определять, как величину, пропорциональную перемещению:

F = K ⋅ x, Н,

где k – модуль упругости, Н/м;
х – перемещение при сжатии, м.

Величина сжатия может изменяться по величине, поэтому математики предложили анализировать подобные явления с помощью бесконечно малых величин (dx) .

При наличии непостоянной силы, зависящей от перемещения, дифференциальное уравнение запишется в виде:

dEп = k ⋅ x ⋅ dx

здесь dEп – элементарная работа, Дж;
dx – элементарное приращение сжатия, Н.

Интегральное уравнение на конечном перемещении запишется в виде. Ниже вывод формулы:

Пределами интегрирования является интервал от 0 до х. Деформированная пружина приобретает запас по энергетическим показателям

Окончательно формула для расчета величины потенциальной энергии сжатия (растягивания или изгиба) пружины запишется формулой:

Потенциальная энергия пружины

Закон сохранения механической энергии

Закон сохранения энергии существует независимо от желания наблюдателя. Все физические законы имеют статистический характер: существуют только подтверждения их выполнения, нет ни одного адекватно выполненного опыта, при котором наблюдается нарушение этой закономерности. Природные явления только подтверждают сохранность работы и энергозатрат, затраченных на ее выполнение.

На основании изложенного сформулировано положение:

где Ек – кинетическая энергия, Дж.

Рассматривая перемещения тела, наблюдаются изменения потенциальной и кинетической энергий. При этом сумма значений остается постоянной.

Проще всего проследить за изменениями между разными видами энергетических показателей при рассмотрении движения маятника.

Энергия маятника

Из крайнего положения (шарик на нити отклонился в одну из сторон, Еп = max) тело движется под действием силы тяжести. При этом снижается запасенная энергия. Движение сопровождается увеличением скорости. Поэтому нарастают показатели динамического перемещения Ек.

В нижней точке не остается никаких запасенных эффектов от положения шарика. Он опустился да минимума. Теперь Ек =max.

Поучается, при совершении гармонических колебаний маятник поочередно накапливает то один, то другой вид энергии. Механические превращения из одного вида в другой налицо.

Кинетическая энергия

Движущееся тело характеризуется скалярной величиной (масса) и векторная величина (скорость). Если рассматривать реальное перемещение в пространстве, то можно записать уравнение для определения кинетической энергии:

здесь v – скорость движения тела, м/с.

Таблица энергии пружины

Использование кинетического преобразования можно наблюдать при колке орехов.

Приподняв камень повыше, далекие предки создавали необходимый потенциал для тяжелого тела.

Пример с камнем для колки орехов

Приподняв камень на максимальную высоту, разрешают ему свободно падать.

Двигаясь с высоты h, он набирает скорость

Поэтому в конце падения будет получена кинетическая энергия

Рассматривая входящие величины, можно увидеть, как происходит преобразование величин. В конце получается расчетная формула для определения потенциальной энергии.

Даже на уровне вывода зависимостей можно наблюдать выполнение закона сохранения энергии твердого тела.

Использование энергии пружины на практике

Явление преобразования потенциальной энергии пружины в кинетическую используется при стрельбе из лука.

Лучник

Натягивая тетиву, стреле сообщается потенциал для последующего движения. Чем жестче лук, а также ход при натягивании тетивы, тем выше будет запасенная энергия. Распрямляясь дуги этого оружия, придадут метательному снаряду значительную скорость.

В результате стрела полетит в цель. Ее поражающие свойства определятся величиной кинетической энергии (mv²/2).

Стрела и цель

Для гашения колебаний, возникающих при движении автомобиля, используют амортизаторы. Основным элементом, воспринимающим вертикальную нагрузку, являются пружины. Они сжимаются, а потом возвращают энергию кузову. В результате заметно снижается ударное воздействие. Дополнительно устанавливается гидроцилиндр, он снижает скорость обратного движения.

Амортизатор

Рассмотренные явления используют при проектировании механизмов и устройств для автоматизации процессов в разных отраслях промышленности.

Видео: закон Гука и энергия упругой деформации.

Republished by Blog Post Promoter

Встречается довольно большое количество различных механизмов, частью которых является пружина. Этот конструктивный элемент характеризуется довольно большим количество различных особенностей, которые должны учитываться. Примером можно назвать понятие потенциальной энергии пружины. Рассмотрим все особенности данного вопроса подробнее.

Пружина

Понятие потенциальной энергии пружины

При рассмотрении того, что такое потенциальная энергия пружины следует уделить внимание самому понятию – свойство, которым могут обладать тела при нахождении на земле. Этот момент определяет то, что ей могут обладать самые разнообразные изделия, в том числе рассматриваемое. К особенностям рассматриваемого понятия можно отнести следующее:

  1. Потенциальная энергия в рассматриваемом случае формируется по причине изменения состояния. Даже при несущественном смещении витков относительно друг друга считается изменением состояния подобного изделия.
  2. Для того чтобы изменить состояние изделия совершается определенное действие. Зачастую для этого проводится прикладывание усилия. При этом важно провести расчет требуемого усилия для сжатия витков.
  3. После выполнения определенной работы большая часть усилия, которое было потрачено на выполнение действия высвобождается при определенных обстоятельствах. Как правило, этот процесс предусматривает возврат витков в свое первоначальное положение. Это достигается за счет особой формы изделия, а также применения соответствующего материала, который обладает повышенной упругостью. Именно за счет этого свойства зачастую проводится установка рассматриваемого изделия. Показатель может достигать весьма высоких показателей, которой достаточно для реализации различных задач. Распространенным примером можно назвать установку пружины в запорных и предохранительных элементах, которые отвечают за непосредственное возращение запорного элемента в требуемое положение.

Определение потенциальной энергии пружины

Она также широко применяется при создании самых различных механизмов, к примеру, заводных часов. При проектировании различных механизмов учитывается закон сохранения механической силы, которая характеризуется довольно большим количеством особенностей.

Закон сохранения механической энергии

Согласно установленным законам механическое воздействие консервативной механической системы сохраняется во времени. Этот момент определяет то, что потенциальная энергия деформированной пружины не может возникнуть сама или исчезнуть куда-нибудь. Именно поэтому для ее создания нужно приложить соответствующее усилие.

Рассматриваемый закон относится к категории интегральных равенств. Эта закономерность определяет то, что он складывается их действия дифференциальных законов, является свойством или признаком совокупного воздействия.

Для проведения соответствующих расчетов должна применяться определенная формула. Сила, с которой оказывается воздействие, не является постоянной. Именно поэтому для ее вычисления применяется графический метод. Самая простая зависимость может быть описана следующим образом: F=kx. При применении подобной зависимости построенная координатная линия будет представлена прямой линией, которая расположена под углом относительно системы координат.

Закон сохранения механической энергии

Приписать подобному устройству потенциальную энергию можно только в том случае, если она равна максимальной работе и не зависит от условной траектории движения. Проведенные исследования указывают на то, что подобная работа подчиняется закону Гука. Для определения основного показателя применяется следующая формула: U=kk2/2.

Для деформирования витков к ним должно быть приложено определенное усилие, так как в противном случае кинетическая сила не возникнет.

Динамика твердого тела

Некоторые определить выражения (определяется при применении наиболее подходящих формул) можно только с учетом правил, касающихся динамики твердых объектов. Этому вопросу посвящен целый раздел. При расчете потенциальной энергии сжатой пружины также применяются некоторые законы этого раздела

Динамика твердого тела рассматривается по причине того, что в большинстве случаев механизм совершает действие, связанное с непосредственным перемещением какого-либо объекта.

Рассматриваемое свойство изделия может изменяться в зависимости от динамики твердого тела. Это связано с тем, что на изделие оказывается и воздействие со стороны окружающей среды. Примером можно назвать трение или нагрев. Динамика твердого тела

Момент силы и момент импульса относительно оси

Рассмотрение деформации пружины проводится также с учетом момента силы и импульса относительно оси. Эти два параметра позволяют рассчитать все требуемые показатели с более высокой точностью. Довольно распространенным вопросом можно назвать чему равен момент силы – векторная величина, которая определяется векторному произведению радиуса на вектор приложенной силы.

Момент импульса – величина, которая применяется для определения количества вращательного движения.

Среди особенностей подобного показателя можно отметить следующее:

  1. Масса вращения. Объект может характеризоваться различной массой.
  2. Распределение относительно оси. Ось может быть расположена на различном расстоянии от самого объекта.
  3. Скорость вращения. Это свойство считается наиболее важным, в зависимости от конструкции он может быть постоянным или изменяться.

Расчет каждого показателя проводится при применении соответствующей формулы. В некоторых случаях проводится измерение требуемых вводных данных, без которых провести вычисления не получится.

Уравнение движения вращающегося тела

Рассматривая подобное свойство также следует уделить внимание уравнению движения вращающегося тела. Не стоит забывать о том, что вращательное движение твердого тела характеризуется наличием как минимум двух точек. При этом отметим нижеприведенные особенности:

  1. Прямая, которая соединяет две точки, выступает в качестве оси вращения.
  2. Есть возможность провести определение места положения объекта в случае вычисления заднего угла между двумя плоскостями.
  3. Наиболее важным показателем можно назвать угловую скорость. Она связана с инерцией, которая возникает при вращении объекта.

Для вычисления угловой скорости применяется специальная формула, которая выглядит следующим образом: w=df/dt. В некоторых случаях проводится вычисление углового ускорения, которое также является важной величиной.

From a taut bowstring sending an arrow flying through the air to a kid cranking a jack-in-the-box enough to make it pop out so fast you can barely see it happening, spring potential energy is all around us.

In archery, the archer draws back the bowstring, pulling it away from its equilibrium position and transferring energy from her own muscles to the string, and this stored energy is called ​spring potential energy​ (or ​elastic potential energy​). When the bowstring is released, this is released as kinetic energy in the arrow.

The concept of spring potential energy is a key step in many situations involving the conservation of energy, and learning more about it gives you insight into more than just jack-in-the-boxes and arrows.

Definition of Spring Potential Energy

Spring potential energy is a form of stored energy, much like gravitational potential energy or electrical potential energy, but one associated with springs and ​elastic​ objects.

Imagine a spring hanging vertically from the ceiling, with somebody pulling down on the other end. The stored energy that results from this can be quantified exactly if you know how far down the string has been pulled, and how that specific spring responds under external force.

More precisely, the potential energy of the spring depends on its distance, ​x​, that it has moved from its “equilibrium position” (the position it would rest at in the absence of external forces), and its spring constant, ​k​, which tells you how much force it takes to extend the spring by 1 meter. Because of this, ​k​ has units of newtons/meter.

The spring constant is found in Hooke’s law, which describes the force required to make a spring stretch ​x​ meters from its equilibrium position, or equally, the opposite force from the spring when you do:

F=-kx

The negative sign tells you that the spring force is a restoring force, which acts to return the spring to its equilibrium position. The equation for spring potential energy is very similar, and it involves the same two quantities.

Equation for Spring Potential Energy

Spring potential energy ​PEspring is calculated using the equation:

PE_{spring} = frac{1}{2}kx^2

The result is a value in joules (J), because spring potential is a form of energy.

In an ideal spring – one that is assumed to have no friction and no appreciable mass – this is equal to how much work you did on the spring in extending it. The equation has the same basic form as the equations for kinetic energy and rotational energy, with the ​x​ in place of the ​v​ in the kinetic energy equation and the spring constant ​k​ in place of mass ​m​ – you can use this point if you need to memorize the equation.

Example Elastic Potential Energy Problems

Calculating spring potential is simple if you know the displacement caused by the spring stretch (or compression), ​x​ and the spring constant for the spring in question. For a simple problem, imagine a spring with the constant ​k​ = 300 N/m being extended by 0.3 m: what is the potential energy stored in the spring as a result?

This problem involves the potential energy equation, and you’re given the two values you need to know. You just need to plug in the values ​k​ = 300 N/m and ​x​ = 0.3 m to find the answer:

begin{aligned} PE_{spring} &= frac{1}{2}kx^2 \ &=frac{1}{2}×300 ;text{N/m} × (0.3 ;text{m})^2 \ &= 13.5 ;text{J} end{aligned}

For a more challenging problem, imagine an archer drawing back the string on a bow preparing to fire an arrow, bringing it back up to 0.5 m from its equilibrium position and pulling the string with a maximum force of 300 N.

Here, you’re given the force ​F​ and the displacement ​x​, but not the spring constant. How do you tackle a problem like this? Luckily, Hooke’s law describes the relationship between, ​F​, ​x​ and the constant ​k​, so you can use the equation in the following form:

k=frac{F}{x}

To find the value of the constant before calculating the potential energy as before. However, since ​k​ appears in the elastic potential energy equation, you can substitute this expression into it and calculate the result in a single step:

begin{aligned} PE_{spring}&=frac{1}{2}kx^2 \ &=frac{1}{2}frac{F}{x}x^2 \ &=frac{1}{2}Fx \ &= frac{1}{2}× 300 ;text{N} × 0.5 ;text{m} \ &= 75 ;text{J} end{aligned}

So, the fully taut bow has 75 J of energy. If you then need to calculate the maximum speed of the arrow, and you know its mass, you can do this by applying the conservation of energy using the kinetic energy equation.

Упругая потенциальная энергия

Это энергия, запасенная в результате приложения силы для деформации упругого объекта.

Энергия сохраняется до тех пор, пока сила не будет снята, и объект не вернется к своей первоначальной форме, выполняя работу в процессе. Деформация может включать сжатие, растяжение или скручивание объекта.
Многие объекты предназначены специально для хранения упругой потенциальной энергии, например:

  • спиральная пружина заводных часов;
  • растянутый лук лучника;
  • надувной шар, сжатый в тот момент, когда он отскакивает от кирпичной стены.

Объект, предназначенный для хранения потенциальной упругой энергии, обычно имеет высокий предел упругости, однако все упругие объекты имеют предел нагрузки, которую они могут выдержать.

Когда деформация превышает предел упругости, объект больше не вернется к своей первоначальной форме.

Совсем недавно заводные механические часы с пружинами были популярными аксессуарами. В настоящее время мы не склонны использовать их, потому что не существует материалов с достаточно высоким пределом упругости для хранения упругой потенциальной энергии с достаточно высокой плотностью энергии.

Как рассчитать упругую потенциальную энергию для идеальной пружины?

Закон Гука об упругости обсуждает, как величина силы FF в идеальной пружине линейно зависит от длины сжатия или растяжения ΔxΔx.

F=−k⋅ΔxF = – k cdot Δx,

где kk – некоторое положительное число, известное как постоянная пружины.

Сила пружины

Это консервативная сила, а у консервативных сил есть потенциальные энергии, связанные с ними.

Из определения работы мы знаем, что площадь под графиком силы против смещения дает работу, проделанную силой. На рисунке 1 показан график зависимости силы от смещения для пружины. Поскольку площадь под кривой представляет собой треугольник, и в идеальной пружине энергия не теряется, потенциальная энергия упругости UU можно найти по проделанной работе:

U  =  12(△x)⋅k(△x)  =  12k(△x)2U;=;frac12(triangle x)cdot k(triangle x);=;frac12k(triangle x)^2

упругая  потенциальная энергия.jpg

Настоящие упругие материалы

Некоторые упругие материалы, такие как резиновые ленты и гибкие пластмассы, могут функционировать как пружины, но часто имеют гистерезис, это означает, что кривая сила –растяжение следует по другому пути, когда материал деформируется, по сравнению с тем, когда он возвращается к своему равновесному положению.

К счастью, основной метод применения определения работы, который мы использовали для идеальной пружины, также работает для упругих материалов в целом. Упругая потенциальная энергия всегда может быть найдена из области под кривой зависимости силы от растяжения, независимо от формы кривой.

Тест по теме «Упругая потенциальная энергия»

Рис. 1.1.24

Здесь полная энергия E = K + E.

Отсюда легко найти кинетическую энергию: K = E – U.

Найдём работу, совершаемую при деформации упругой пружины.

Сила упругости Fупр = –kx, где k – коэффициент упругости. Сила непостоянна, поэтому элементарная работа

dA = Fdx = –kxdx.

(Знак минус говорит о том, что работа совершена над пружиной). Тогда

(1.1.55)

.

т.е. A = U1 U2. Примем: U2 = 0, U = U1, тогда

(1.1.56)

.

На рис. 1.1.25 показана диаграмма потенциальной энергии пружины.

39

Рис. 1.1.25

Здесь E = K + U – полная механическая энергия системы, К – кинетическая энергия в точке x1.

1.1.22. Связь между потенциальной энергией и силой

Пространство, в котором действуют консервативные силы, называется потенциальным полем.

Каждой

точке

потенциального

поля

соответствует

некоторое

значение

силы F ,

действующей на тело, и некоторое значение потенциальной энергии U. Значит, между

силой F

и U

должна быть

связь

,

с другой

стороны,

dA = –dU,

следовательно

, отсюда

.

(1.1.57)

Проекции вектора силы на оси координат:

Вектор силы можно записать через проекции:

, (1.1.58)

F = –grad U,

Градиент – это вектор, показывающий направление наибыстрейшего изменения

функции. Следовательно, вектор направлен в сторону наибыстрейшего уменьшения

U.

40

Соседние файлы в папке 2 – консп_лекц

  • #
  • #

Добавить комментарий