Как найти мощность развиваемой силы тяжести

Нахождение мощности силы тяжести при движении тела, брошенного под углом к горизонту (зад 4 к зан. 19)
Нахождение мощности силы тяжести при движении тела, брошенного под углом к горизонту (зад 4 к зан. 19)

Пояснение. Мощность – это работа, совершаемая силой за единицу времени. Мгновенная мощность силы тяжести находится через произведение векторов силы тяжести и скорости в рассматриваемой точке траектории.

Учтя зависимость скорости от времени и перейдя к скалярной записи, получили уравнение (1) для нахождения мгновенных значений мощности в разные моменты времени.

При подъёме тела совершается отрицательная работа, а при падении такая же положительная работа.

Так как полная работа силы тяжести за всё время полёта тела равна нулю, то и средняя мощность силы тяжести тоже равна нулю.

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Спасибо.

Занятие 19. Работа. Мощность.

Занятие 7 . Движение тела, брошенного под углом к горизонту.

Первая запись на канале: Занятие 1. Физика. Механика. Кинематика.

Предыдущая запись: Задача 3 к занятию 19

Следующая запись: История возникновения основных законов

Перейти к контенту

Условие задачи:

Тело массой 1 кг начинает свободно падать. Определить мощность силы тяжести через 3 с после начала движения.

Задача №2.7.17 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(m=1) кг, (t=3) с, (N-?)

Решение задачи:

Схема к решению задачиУчитывая, что сила тяжести (mg) составляет со скоростью тела (upsilon) нулевой угол (они сонаправлены), то мгновенную мощность силы тяжести найдем по следующей формуле:

[N = mg cdot upsilon ]

Если тело свободно падало без начальной скорости, то его скорость через время, равное (t), равна:

[upsilon  = gt]

Тогда:

[N = mg cdot gt]

[N = m{g^2}t]

Посчитаем ответ:

[N = 1 cdot {10^2} cdot 3 = 300;Вт = 0,3;кВт]

Ответ: 0,3 кВт.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

2.7.16 Определить массу тела, имеющего кинетическую энергию 16 Дж, а импульс
2.7.18 Автомобиль массой 1,5 т едет со стоянки с постоянным ускорением 2 м/с2. Коэффициент
2.7.19 Автомобиль движется со скоростью 72 км/ч. Мощность двигателя 60 кВт, его КПД 30%

( 3 оценки, среднее 5 из 5 )

2017-05-20   comment

Тело массы $m$ бросили под углом $alpha$ к горизонту с начальной скоростью $v_{0}$. Найти среднюю мощность, развиваемую силой тяжести за все время движения тела, и мгновенную мощность этой силы как функцию времени.

Решение:

Скорость тела, через $t$ секунд после начала движения, равна $vec{v} = vec{v}_{0} + vec{g} t$. Мощность, развиваемая силой тяжести ($m vec{g}$) в этот момент, равна

$P = m vec{g} cdot vec{v} = m ( vec{g} cdot vec{v}_{0} + g^{2}t) = mg (gt – v_{0} sin alpha)$ (1)

Поскольку $m vec{g}$ – постоянная сила, средняя мощность

$langle P rangle = frac{A}{ tau} = frac{m vec{g} cdot Delta vec{r}}{ tau}$

Где $Delta vec{r}$ – суммарное перемещение тела за время полета

Так как, $m vec{g} perp Delta vec{r}$ то $langle P rangle = 0$

Содержание:

  1. Работа и мощность силы
  2. Работа силы
  3. Элементарная работа
  4. Аналитическое выражение элементарной работы силы. Работа силы на конечном перемещении
  5. Работы сил тяжести и упругости
  6. Работа силы, приложенная к вращающемуся телу
  7. Мощность силы
  8. Порядок решения задач на определение работы и мощности силы
  9. Примеры решения задач на тему: работа и мощность силы

Работа постоянной силы равна произведению модулей силы и перемещения точки приложения силы и косинуса угла между ними. Мощность – отношение работы к интервалу времени, за который эта работа совершена.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Работа и мощность силы

Мощностью называется величина, определяющая работу, совершаемую силой в единицу времени. Если работа совершается равномерно, то мощность N=A/t, где t – время, в течение которого произведена работа.

Работа силы

Работа силы на любом перемещении является одной из основных характеристик, которая оценивает действие силы на этом перемещении.

Работа постоянной силы Работа и мощность силы (рис.9.1) на некотором прямолинейном перемещении Работа и мощность силы точки приложения силы Работа и мощность силы определяется по выражению:

Работа и мощность силы

Если угол Работа и мощность силы острый, то работа – положительная, Работа и мощность силы.

При Работа и мощность силы работа равна:

Работа и мощность силы

Если угол Работа и мощность силы – тупой, то работа отрицательная, Работа и мощность силы.

При Работа и мощность силы работа равна:

Работа и мощность силы

Если угол Работа и мощность силы, то есть сила направлена перпендикулярно перемещению, то работа равна нулю: Работа и мощность силы.

Знак работы имеет такой смысл: работа – положительная, когда сила ускоряет движение; работа – отрицательная, когда сила тормозит движение.

Работа и мощность силы

Выражение для вычисления работы можно представить как скалярное произведение векторов:

Работа и мощность силы

Работа постоянной по модулю и направлению силы при прямолинейном перемещении определяется скалярным произведением вектора силы на вектор перемещения точки ее приложения.

Элементарная работа

В общем случае, когда материальная точка движется по криволинейной траектории под действием переменной силы вводится понятие элементарной работы.

Элементарная работа Работа и мощность силы силы Работа и мощность силы на элементарном перемещении Работа и мощность силы (рис.9.2) определяется следующим образом:

Работа и мощность силы

где Работа и мощность силы – проекция силы Работа и мощность силы на тангенциальную ось, которая направлена в сторону перемещения точки; Работа и мощность силы – бесконечно малое перемещение точки.

Поскольку

Работа и мощность силы

то

Работа и мощность силы

Работа и мощность силы

Аналитическое выражение элементарной работы силы. Работа силы на конечном перемещении

Элементарную работу силы можно представить в виде скалярного произведения векторов Работа и мощность силы и Работа и мощность силы (рис.9.3):

Работа и мощность силы

где Работа и мощность силы – вектор элементарного перемещения точки Работа и мощность силы.

Работа и мощность силы

Выражение элементарной работы переменной силы через проекции силы на оси декартовых координат имеет вид:

Работа и мощность силы

где Работа и мощность силы – проекции силы на координатные оси, а Работа и мощность силы – проекции вектора элементарного перемещения на координатные оси.

Работа силы Работа и мощность силы на любом конечном перемещении Работа и мощность силы определяется интегралом:

Работа и мощность силы

или

Работа и мощность силы

Работы сил тяжести и упругости

Работа силы тяжести равна взятому со знаком плюс или минус произведению силы тяжести на вертикальное перемещение точки ее приложения

Работа и мощность силы

где Работа и мощность силы – сила тяжести;

Работа и мощность силы – вертикальное перемещение точки приложения силы.

Из этой формулы вытекает, что работа силы тяжести не зависит от формы траектории между начальной и конечной точками движения, а зависит только от расстояния между горизонтальными плоскостями, которые проходят через исходное и конечное положение точки.

Если начальная точка расположена выше конечной, то работа силы тяжести положительная, в противном случае – отрицательная.

Работа силы упругости равна половине произведения коэффициента жесткости пружины на разность квадратов начального и конечного удлинений (или сжатий) пружины

Работа и мощность силы

Работа силы упругости отрицательна в том случае, когда деформация увеличивается, то есть когда Работа и мощность силы. Это соответствует перемещению конца пружины от положения равновесия. Если Работа и мощность силы, работа будет положительная. В этом случае конец пружины перемещается к положению равновесия.

Работа силы, приложенная к вращающемуся телу

Элементарная работа силы, приложенной к любой точке тела, которое вращается вокруг неподвижной оси, например Работа и мощность силы, равна произведению момента силы относительно оси вращения на дифференциал угла поворота:

Работа и мощность силы

Для того, чтобы определить работу силы, которая действует на тело при его повороте на угол от Работа и мощность силы к Работа и мощность силы, необходимо проинтегрировать уравнение в этих пределах, выразив момент силы как функцию угла поворота:

Работа и мощность силы

В отдельном случае, когда момент силы является постоянным, то есть Работа и мощность силы, работа равна произведению момента силы на угол поворота тела:

Работа и мощность силы

Единицей измерения работы в системе СИ является Джоуль (1Работа и мощность силы), а в системе Работа и мощность силы

Мощность силы

Мощностью называется величина, определяющая работу, которую выполняет сила за единицу времени:

Работа и мощность силы

Это выражение справедливо, если работа выполняется равномерно.

В общем случае

Работа и мощность силы

Поскольку Работа и мощность силы, то:

Работа и мощность силы

Таким образом, мощность равна произведению величины касательной составляющей силы на скорость движения.

При вращательном движении тела:

Работа и мощность силы

Тогда

Работа и мощность силы

Мощность выражается произведением вращательного момента на угловую скорость.

Единицей измерения мощности в системе СИ является Ватт Работа и мощность силы в системе Работа и мощность силы

Порядок решения задач на определение работы и мощности силы

При определении работы необходимо различать следующие случаи:

Прямолинейное движение под действием постоянной силы; в этом случае применяются формулы (9.2) и (9.3).

Прямолинейное движение под действием силы, которая является функцией расстояния; в этом случае используют формулу (9.5), которая, если направить ось Работа и мощность силы по траектории точки, принимает вид:

Работа и мощность силы

Криволинейное движение под действием постоянной по модулю и направлению силы; в этом случае можно использовать формулу (9.4) или (9.5).

Криволинейное движение под действием силы, что определяется функцией координат точки приложения силы; в этом случае определение работы сводится к вычислению криволинейного интеграла по формуле (9.5).

Вращательное движение твердого тела под действием постоянного момента или момента, который является функцией угла поворота тела; в этом случае для вычисления работы используются формулы (9.8) или (9.9).

Для вычисления мощности в зависимости от характера движения пользуются формулой (9.11), если имеет место прямолинейное или криволинейное движение точки приложения силы, или формуле (9.12) – в случае вращательного движения твердого тела.

Во всех этих случаях перед вычислением работы или мощности необходимо изобразить все внешние силы, которые приложены к телу или рассматриваемой механической системе.

Примеры решения задач на тему: работа и мощность силы

Задача № 1

Определить наименьшую работу Работа и мощность силы, которую необходимо выполнить, чтобы поднять на высоту Работа и мощность силы груз Работа и мощность силы передвигая его по наклонной плоскости, которая составляет с горизонтом угол Работа и мощность силы; коэффициент трения Работа и мощность силы

Решение: Изобразим груз в произвольном положении на наклонной плоскости и покажем все действующие на него силы (рис.9.4): силу тяжести Работа и мощность силы, силу трения Работа и мощность силы и нормальную реакцию Работа и мощность силы.

Работа и мощность силы

Работа, расходуемая на подъем груза на высоту Работа и мощность силы, равна сумме работ силы трения вдоль длины Работа и мощность силы и силы тяжести на перемещении Работа и мощность силы точки ее приложения. Нормальная реакция работы не выполняет, поскольку она перпендикулярна перемещению.

Вычислим работу силы трения:

Работа и мощность силы

ПосколькуРабота и мощность силы и Работа и мощность силыто

Работа и мощность силы

Работа силы тяжести в нашем случае отрицательная, поскольку груз движется вверх, и равна:

Работа и мощность силы

Полная работа, затраченная на подъем груза, равна 

Работа и мощность силы

Ответ: Работа и мощность силы

Задача № 2

Тело Работа и мощность силы (рис.9.5) удерживается в равновесии на гладкой наклонной поверхности, расположенной под углом Работа и мощность силы к горизонту, с помощью пружины. Вследствие полученного толчка тело переместилось вниз по наклонной поверхности на расстояние Работа и мощность силы.

Определить сумму работ Работа и мощность силы всех сил, приложенных к телу на этом перемещении, если сила тяжести тела Работа и мощность силы угол Работа и мощность силы жесткость пружины Работа и мощность силы

Решение. К телу приложены следующие силы: сила тяжести Работа и мощность силы, нормальная реакция поверхности Работа и мощность силы и сила упругости растянутой пружины Работа и мощность силы (рис.9.5).

Ось Работа и мощность силы направим параллельно наклонной поверхности, а начало отсчета Работа и мощность силы совместим с концом недеформированной пружины.

Тогда тело под действием толчка начнет двигаться из положения Работа и мощность силы, которое характеризуется координатой Работа и мощность силы, что равно:

Работа и мощность силы

где Работа и мощность силы – статическое отклонение пружины.

Работа и мощность силы

Вычислим сумму работ сил Работа и мощность силыРабота и мощность силыРабота и мощность силы на перемещении Работа и мощность силы

Работа и мощность силы

где Работа и мощность силы – работа силы тяжести на перепаде высот Работа и мощность силы между точками Работа и мощность силы и Работа и мощность силы,

Работа и мощность силы – работа силы упругости пружины,

Работа и мощность силы – работа нормальной реакции.

Работа силы тяжести равна:

Работа и мощность силы

Работа силы упругости пружины определяется по формуле:

Работа и мощность силы

где 

Работа и мощность силы

Итак. 

Работа и мощность силы

Окончательно

Работа и мощность силы

Вычислим Работа и мощность силы – статическое отклонение пружины, которое имеет место в положении равновесия тела (точка Работа и мощность силы), когда пружина растянута постоянной силой тяжести. Для этого положения запишем в проекции на ось Работа и мощность силы уравнение равновесия для сил тяжести Работа и мощность силы и силы упругости пружины Работа и мощность силы, которые действуют на тело:

Работа и мощность силы

Поскольку

Работа и мощность силы

Тогда

Работа и мощность силы

Окончательно,

Работа и мощность силы

Работа нормальной реакции Работа и мощность силы равна нулю, так как эта сила перпендикулярна перемещению тела, то есть Работа и мощность силы

Итак,

Работа и мощность силы

Ответ: Работа и мощность силы

Задача № 3

Материальная точка Работа и мощность силы массой Работа и мощность силы движется прямолинейно по горизонтальной плоскости по закону Работа и мощность силы под действием силы Работа и мощность силы (рис.9.6).

Работа и мощность силы

Определить работу этой силы при перемещении точки ее приложения из исходного положения ( Работа и мощность силы) в положение, где Работа и мощность силы

Решение Сила, действующая на материальную точку Работа и мощность силы, меняется с течением времени. Следовательно, для определения работы этой силы необходимо воспользоваться уравнением (9.4):

Работа и мощность силы

где Работа и мощность силы – проекция силы на элементарное перемещение точки приложения силы.

В нашем случае заданная сила Работа и мощность силы совпадает по направлению с перемещением точки Работа и мощность силы, а работу Работа и мощность силы необходимо высчитывать на перемещении от Работа и мощность силы к Работа и мощность силы.

Таким образом, уравнение (1) примет вид:

Работа и мощность силы

Найдем зависимость между силой Работа и мощность силы и перемещением Работа и мощность силы, исключив параметр Работа и мощность силы, который входит в выражения для значения силы и перемещения:

Работа и мощность силы

Подставив новое выражение для силы Работа и мощность силы в уравнение (2), получим:

Работа и мощность силы

Вычислим этот интеграл:

Работа и мощность силы

Ответ: Работа и мощность силы

Задача № 4

Шлифовальный камень радиусом Работа и мощность силы делает Работа и мощность силы об/мин. Потребляемая мощность равна Работа и мощность силы Работа и мощность силы коэффициент трения шлифовального камня равен Работа и мощность силы

Определить, с какой силой Работа и мощность силы прижимает камень деталь, которая шлифуется?

Решение. Деталь (рис.9.7) прижимается к шлифовальному камню с силой Работа и мощность силы. Возникающая при этом сила трения Работа и мощность силы развивает мощность Работа и мощность силы, равную потребленной мощности 1,5 Работа и мощность силы, то есть

Работа и мощность силы

где Работа и мощность силы – скорость точки на ободе камня, к которому приложена сила Работа и мощность силы.

Работа и мощность силы

Сила трения между камнем и деталью будет составлять:

Работа и мощность силы

угловая скорость камня будет:

Работа и мощность силы

а скорость точки на ободе камня равна:

Работа и мощность силы

Тогда

Работа и мощность силы

Откуда: 

Работа и мощность силы

Ответ: Работа и мощность силы

Задача № 5

Для измерения мощности двигателя на его шкив надета лента с деревянными колодками (рис.9.8).

Работа и мощность силы

Правая часть ленты удерживается упругими весами силой Работа и мощность силы, а левая ее часть Работа и мощность силы натягивается грузом Работа и мощность силы.

Определить мощность двигателя Работа и мощность силы, если его вал при равномерном вращении делает Работа и мощность силы об/мин, при этом пружинные весы показывают натяжение ленты Работа и мощность силы вес груза Работа и мощность силы диаметр шкива Работа и мощность силы

Примечание: разность натяжений частей Работа и мощность силы и Работа и мощность силы ленты равна силе, которая тормозит шкив.

Решение. Поскольку шкив вращается равномерно, то сила трения, которая возникает между шкивом и деревянными колодками, вместе с силой Работа и мощность силы уравновешивают силу Работа и мощность силы (рис.9.8), следовательно

Работа и мощность силы

Мощность силы трения равна мощности двигателя при условии, что шкив вращается равномерно:

Работа и мощность силы

Работа и мощность силы – скорость точки обода шкива, на который действует сила трения и которая равна:

Работа и мощность силы

Ответ: Работа и мощность силы

Задача № 6

Груз Работа и мощность силы весом , который опускается по наклонной плоскости, приводит к вращению барабана Работа и мощность силы весом Работа и мощность силы, на который намотана нить (рис.9.9). Принять за механическую систему совокупность тел Работа и мощность силы и Работа и мощность силы, которые соединены между собой невесомой нитью, которая не растягивается.

Работа и мощность силы

Определить сумму работ Работа и мощность силы всех сил, приложенных к этой системе за один оборот барабана Работа и мощность силы, если Работа и мощность силы – радиус барабана, Работа и мощность силы – коэффициент трения скольжения груза Работа и мощность силы по наклонной плоскости, которая составляет угол Работа и мощность силы с горизонтом.

Решение. Данная механическая система является неизменной. На нее наложены следующие связи: наклонная плоскость и шарнирная опора барабана Работа и мощность силы у точке Работа и мощность силы.

Реакция наклонной плоскости состоит из нормальной реакции Работа и мощность силы и силы трения Работа и мощность силы, которая направлена в сторону, противоположную перемещению груза Работа и мощность силы.

Реакция (Работа и мощность силы) шарнира Работа и мощность силы лежит в плоскости, перпендикулярной оси шарнира, проходит через ось шарнира и может занимать в этой плоскости любое положение.

Поскольку данная система является неизменной, то работа всех сил, которые приложены к ней, определяется только работой внешних сил: силы тяжести Работа и мощность силы груза Работа и мощность силы; нормальной реакции Работа и мощность силы наклонной плоскости; силы трения Работа и мощность силы груза Работа и мощность силы по наклонной плоскости; силы тяжести Работа и мощность силы барабана Работа и мощность силы; реакции Работа и мощность силы шарнира Работа и мощность силы.

Вычислим элементарную работу внешних сил системы

Работа и мощность силы

где Работа и мощность силы – элементарные работы внешних сил, приложенных, соответственно, к телам Работа и мощность силы и Работа и мощность силы.

Тело Работа и мощность силы движется поступательно. Элементарная работа внешних сил, приложенных к этому телу, равна

Работа и мощность силы

где Работа и мощность силы – элементарные работы силы тяжести Работа и мощность силы, нормальной реакции Работа и мощность силы и силы трения Работа и мощность силы.

Элементарная работа реакции Работа и мощность силы равна нулю, поскольку Работа и мощность силы перпендикулярна  перемещению тела.

Элементарная работа силы тяжести Работа и мощность силы равна

Работа и мощность силы

Элементарная работа силы трения Работа и мощность силы определяется из выражения:

Работа и мощность силы

Поскольку

Работа и мощность силы

то

Работа и мощность силы

Итак,

Работа и мощность силы

Тело Работа и мощность силы вращается вокруг неподвижной оси, которая проходит через точку Работа и мощность силы перпендикулярно плоскости рисунка. Элементарная работа внешних сил, приложенных к телу Работа и мощность силы, определится из выражения:

Работа и мощность силы

где Работа и мощность силы – главный момент внешних сил (Работа и мощность силы и Работа и мощность силы) относительно оси вращения;

Работа и мощность силы – элементарное угловое перемещение тела относительно оси вращения.

Поскольку линии действия сил Работа и мощность силы и Работа и мощность силы пересекают ось вращения, то Работа и мощность силы и 

Работа и мощность силы

Подставляя (2) и (3) в (1), получим

Работа и мощность силы

Перемещение груза связано с углом поворота барабана равенством Работа и мощность силы, тогда последнее уравнение дает выражение элементарной работе всех сил, приложенных к данной механической системе, на элементарном перемещении Работа и мощность силы барабана Работа и мощность силы:

Работа и мощность силы

Для определения работы сил за один оборот барабана возьмем определенный интеграл в пределах от Работа и мощность силы к Работа и мощность силы:

Работа и мощность силы

Ответ: Работа и мощность силы

Задача № 7

Колесо радиусом Работа и мощность силы катится без скольжения по прямолинейной горизонтальной рейке (рис.9.10) под действием устойчивой силы Работа и мощность силы, которая приложена в центре тяжести колеса Работа и мощность силы и параллельна рельсу, и постоянного вращательного момента Работа и мощность силы.

Работа и мощность силы

Определить сумму работ Работа и мощность силы всех внешних сил, если ось колеса Работа и мощность силы переместилась на расстояние Работа и мощность силы. Трением качения пренебречь.

Решение. К колесу приложены внешние силы и момент: Работа и мощность силы – сила тяжести колеса, Работа и мощность силы – движущая сила, Работа и мощность силы – вращательный момент, Работа и мощность силы – нормальная реакция рейки, Работа и мощность силы – сила трения.

Работы реакции Работа и мощность силы и силы трения Работа и мощность силы равны нулю, поскольку эти силы приложены в мгновенном центре вращения колеса Работа и мощность силы, элементарное перемещение которого равно нулю. Работа силы тяжести колеса Работа и мощность силы тоже равна нулю, в связи с тем, что элементарное перемещение Работа и мощность силы точки Работа и мощность силы перпендикулярно линии действия силы тяжести Работа и мощность силы.

Следовательно необходимо вычислить только работу движущей силы Работа и мощность силы и момента Работа и мощность силы:

Работа и мощность силы

где 

Работа и мощность силы

Согласно условию задачи, колесо катится без скольжения, поэтому

Работа и мощность силы

Соответственно, уравнение (1) запишется следующим образом:

Работа и мощность силы

Для определения суммы работ всех сил на перемещении оси колеса на расстояние Работа и мощность силы проинтегрируем последнее уравнение в пределах от Работа и мощность силы к Работа и мощность силы:

Работа и мощность силы

Ответ: Работа и мощность силы

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика материальной точки
  24. Динамика механической системы
  25. Динамика плоского движения твердого тела
  26. Динамика относительного движения материальной точки
  27. Динамика твердого тела
  28. Кинематика простейших движений твердого тела
  29. Общее уравнение динамики
  30. Обратная задача динамики
  31. Поступательное и вращательное движение твердого тела
  32. Плоскопараллельное (плоское) движение твёрдого тела
  33. Сферическое движение твёрдого тела
  34. Движение свободного твердого тела
  35. Сложное движение твердого тела
  36. Сложное движение точки
  37. Плоское движение тела
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Сила совершает работу по перемещению тела

Рис. 1. Сила перемещает тело и совершает работу

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

[ large boxed{ A = left( vec{F} , vec{S} right) }]

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]

( F left( H right) ) – сила, перемещающая тело;

( S left( text{м} right) ) – перемещение тела под действием силы;

( alpha ) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Машина увеличивает скорость, двигаясь по прямой горизонтально

Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

( E_{k1} left(text{Дж} right) )  – начальная кинетическая энергия машины;

( E_{k2} left(text{Дж} right) )  – конечная кинетическая энергия машины;

( m left( text{кг}right) ) – масса автомобиля;

( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

[ large E_{k} = m cdot frac{v^{2}}{2} ]

[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]

[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

[ large boxed{ A = Delta E_{k} }]

[ large Delta E_{k} = E_{k2} — E_{k1} ]

[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

[ large boxed{ A = Delta E }]

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Зная конечную высоту и начальную, на которой находилось тело, можно посчитать работу по вертикальному перемещению тела

Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

( E_{p1} left(text{Дж} right) )  – начальная потенциальная энергия яблока;

( E_{p2} left(text{Дж} right) )  – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

[ large E_{p} = m cdot g cdot  h]

( m left( text{кг}right) ) – масса яблока;

Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.

( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

[ large E_{p2} = 0,2 cdot 10 cdot  3 = 6 left(text{Дж} right) ]

Потенциальная энергия яблока на столе

[ large E_{p1} = 0,2 cdot 10 cdot  1 = 2 left(text{Дж} right) ]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

[ large Delta E_{p} = E_{p2} — E_{p1} ]

[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед ( Delta  E_{p}) дополнительно допишем знак «минус».

[ large boxed{ A = — Delta E_{p} }]

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Работа силы тяжести зависит только от разности высот между начальным и конечным положением тела, поэтому, для всех траекторий на рисунке работа по перемещению будет одинаковой

Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

[ large A = Delta E_{k} ]

[ large A = Delta E_{p} ]

[ large A = F cdot S cdot cos(alpha) ]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

[ large boxed{ P = frac{A}{Delta t} }]

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

[ large P = left( vec{F} , vec{v} right) ]

Формулу можно записать в скалярном виде:

[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]

( F left( H right) ) – сила, перемещающая тело;

( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;

( alpha ) – угол между вектором силы и вектором скорости тела;

Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:

[ large boxed{ P = F cdot v }]

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД

КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.

[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]

(eta) – КПД;

( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;

(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

[ large boxed{ eta leq 1 }]

Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]

Выводы

  1. Сила, приложенная к телу и перемещающая его, совершает работу;
  2. Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
  3. Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
  4. Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
  5. Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
  6. Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
  7. Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
  8. Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
  9. Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
  10. КПД — это либо правильная дробь, или дробь, равная единице.
  11. Можно вычислять КПД, подставляя в формулу работу, или мощности

Добавить комментарий