Как найти начальную фазу при гармонических колебаниях

Автор статьи

Алексей . Малеев

Эксперт по предмету «Физика»

Задать вопрос автору статьи

При расчетах, связанных с циклическими явлениями (например, при описании колебаний математического маятника) важно уметь находить состояние системы, с которого начался отсчет процесса – начальную фазу.

Фаза представляет собой угловую координату, описываемую формулой

$varphi = ω_0 cdot t$,

где $ω_0$ – угловая скорость, $t$ – прошедшее время.

Выбрав в качестве единицы измерения углов радианы, формулу можно переписать как

$varphi = 2 cdot pi cdot frac{t}{T}$,

где $2 cdot pi$ – количество радиан в полном цикле, $T$ – период одного колебания. Отношение $frac{t}{T}$ показывает, сколько колебаний (полных и неполных) выполнила система.

Фазы циклических процессов с одинаковыми угловыми скоростями и длящиеся одинаковое время, могут отличаться в связи с тем, что они в момент начала наблюдений находились в разных состояниях. Такая разница называется сдвигом фаз. Например, углы отклонения от вертикали двух идентичных маятников, колеблющиеся с одинаковой частотой, могут различаться. Это зависит от того, на какой начальный угол каждый из них был отклонен в момент начала отсчета времени. Сдвиг фаз может быть обусловлен тем, что маятники были запущены в разное время (до начала отсчета), или одному из них при меньшем начальном отклонении от вертикали было придано дополнительное угловое ускорение за счет удара и т.п.

Циклический процесс, в отличие от движения по незамкнутой траектории, характеризуется повторяемостью некоторой характеристики (например, напряжения в сети переменного тока), что можно описать с помощью функций синуса или косинуса:

$x = A cdot cos(ω_0 cdot t + varphi)$,

$x = A cdot sin(ω_0 cdot t + varphi)$.

где $A$ – амплитуда (максимальный размах) колебаний, $varphi$ – начальная фаза.

Функцией синуса удобнее пользоваться, когда угловая координата тела в момент начала наблюдений равна нулю, функцией косинуса – когда имеет место сдвиг фаз. Так, “косинус фи” – устойчивое понятие, применяемое в электротехнике при описании переменного тока.

Пример 1

Найти начальную фазу колебаний с амплитудой $A = 0,2 м$, если в момент начала измерений $t_0$ смещение циклического параметра $x$ составляло $-0,2 м$.

Подставим в уравнение числовые значения:

$x = A cdot sin(omega_0 cdot t + varphi)$

$-0,2 = 0,2 cdot sin(omega_0 cdot 0 + varphi) implies -0,2 = 0,2 cdot sin(varphi)$

$sin(varphi) = frac{-0,2}{0,2}$

$varphi = arcsin(frac{-0,2}{0,2}) = frac{3 pi}{2}$

Ответ: колебания начались с фазы $1frac{1}{2} pi$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Начальная фаза в физике, теория и онлайн калькуляторы

Начальная фаза

Рассмотрим гармонические колебания некоторого параметра $xi $. Гармонические колебания описываются уравнением:

[xi =A{cos ({omega }_0t+varphi ) } left(1right),]

где $A={xi }_{max}$ – амплитуда колебаний; ${omega }_0$ – циклическая (круговая) частота колебаний. Параметр $xi $ лежит в пределах $-Ale xi le $+A.

Определение начальной фазы колебаний

Определение

Весь аргумент периодической функции (в данном случае косинуса:$ ({omega }_0t+varphi )$),
описывающей колебательный процесс, называют фазой колебаний.

Весь аргумент периодической функции (в данном случае косинуса:$ ({omega }_0t+varphi )$), описывающей колебательный процесс, называют фазой колебаний. Величина фазы колебаний в начальный момент времени, то есть при $t=0$, ($varphi $)- носит название начальной фазы. Устоявшегося обозначения фазы нет, у нас начальная фаза обозначена $varphi $. Иногда, чтобы подчеркнуть, что начальная фаза относится к моменту времени $t=0$ к букве, обозначающей начальную фазу, добавляют индекс 0, пишут, например, ${varphi }_0.$

Единицей измерения начальной фазы является единица измерения угла – радиан (рад) или градус.

Зная амплитуду колебаний и фазу, используя уравнение (1), определяют механическое состояние системы. В начальный момент времени состояние системы определяют амплитуда колебаний и начальная фаза.

Значения амплитуды и начальной фазы задаются в начальных условиях, это означает, что они зависят от способа возбуждения колебаний.

Фазы колеблющейся величины, ее скорости и ускорения

Возьмем первую производную от параметра $xi $, совершающего гармонические колебания:

[frac{dxi }{dt}=frac{d}{dt}left[A{cos left({omega }_0t+varphi right) }right]=-A{omega }_0{sin left({omega }_0t+varphi right)= }A{omega }_0{cos left({omega }_0t+varphi +frac{pi }{2}right)left(2right). }]

Тогда вторая производная от $xi $ задается функцией:

[frac{d^2xi }{dt^2}=-A{{omega }_0}^2{cos left({omega }_0t+varphi right)=-{{omega }_0}^2xi =A{{omega }_0}^2cosleft({omega }_0t+varphi +pi right)left(3right). }]

Уравнения (2) и (3) показывают, что скорость и ускорение $xi $ совершают гармонические колебания с циклической частотой ${omega }_0$. Амплитуды данных колебаний равны:

[{left(frac{dxi }{dt}right)}_{max}=A{omega }_0;; {left(frac{d^2xi }{dt^2}right)}_{max}=A{{omega }_0}^2left(4right).]

Фаза скорости (${omega }_0t+varphi +frac{pi }{2}$) отличается от фазы ускорения (${omega }_0t+varphi +pi $) на величину равную $frac{pi }{2}$. Фаза ускорения отлична от фазы колеблющейся величины на $pi $. Это значит, что в тот момент времени, когда $xi =0$ скорость ее изменения ($frac{dxi }{dt}$) становится максимальной. При $xi $ равной наибольшему значению меньшему нуля, ее ускорение превращается в максимальное положительное.

Метод векторных диаграмм

Гармонические колебания можно изобразить при помощи графического ( метод векторных диаграмм). Для этого из произвольно избранной точки О на оси X под углом, равным начальной фазе ($varphi )$, откладывается вектор $overline{A}$. Модуль которого равен амплитуде ($A$) колебаний. Если этот вектор приводить во вращение с угловой скоростью ${omega }_0$, то проекция конца этого вектора перемещается по оси X и принимает значения от $-A$ до $A$. Законом колебаний, будет уравнение (1).

И так, гармонические колебания можно изобразить с помощью проекции на некоторую ось вектора амплитуды $overline{A}$, который отложен из произвольной точки этой оси под углом $varphi $, вращающимся с угловой скоростью ${omega }_0$ вокруг избранной точки.

Начальная фаза, рисунок 1

Сложение колебаний и начальная фаза

Тело, совершающее колебания, может участвовать в нескольких колебательных процессах. В таком случае возникает необходимость выяснить, каким будет результирующее колебание.

Допустим, что два колебания с одинаковыми частотами происходят по одной прямой. Уравнением результирующих колебаний будет выражение:

[xi ={xi }_1+{xi }_2=A{cos left({omega }_0t+varphi right), }]

тогда амплитуда результирующего колебания равна:

[A=sqrt{A^2_1+A^2_2+2A_1A_2{cos left({varphi }_2-{varphi }_1right) }left(5right),}]

где $A_1$; $A_2$ – амплитуды складывающихся колебаний; ${varphi }_2;;{varphi }_1$ – начальные фазы суммирующихся колебаний. При этом начальную фазу полученного колебания ($varphi $) вычисляют, применяя формулу:

[tg varphi =frac{A_1{sin {varphi }_1+A_2{sin {varphi }_2 } }}{A_1{cos {varphi }_1+A_2{cos {varphi }_2 } }}left(6right).]

Уравнение траектории точки, которая принимает участие в двух взаимно перпендикулярных колебаниях с амплитудами $A_1$и $A_2$ и начальными фазами ${varphi }_2и{varphi }_1$ имеет вид:

[frac{x^2}{A^2_1}+frac{y^2}{A^2_2}-frac{2xy}{A_1A_2}{cos left({varphi }_2-{varphi }_1right) }={sin}^2left({varphi }_2-{varphi }_1right)left(7right).]

В случае равенства начальных фаз составляющих колебаний уравнение траектории имеет вид:

[y=frac{A_2}{A_1}x или y=-frac{A_2}{A_1}x left(8right),]

что говорит о движении точки по прямой линии.

Если разность начальных фаз складываемых колебаний составляет $Delta varphi ={varphi }_2-{varphi }_1=frac{pi }{2},$ уравнением траектории становится формула:

[frac{x^2}{A^2_1}+frac{y^2}{A^2_2}=1left(9right),]

что означает, траектория движения эллипс.

Примеры задач с решением

Пример 1

Задание. Материальная точка движется по закону: $x=A{cos left[omega (t+tau )right] }$, где $omega =pi frac{1}{с}$, $tau =0,1 с.$ Какова начальная фаза колебаний?

Решение. Для того чтобы найти начальную фазу вспомним форму записи закона, по которому происходят гармонические колебания, если гармонически изменяется параметр $x$, то запишем:

[x=A{cos ({omega }_0t+varphi ) } left(1.1right),]

где $varphi $ – искомая начальная фаза колебаний. Сравним выражение (1.1) с законом колебаний, который приведен в условии задачи:

[x=A{cos left[omega (t+tau )right] } left(1.2right).]

Используем известные параметры колебаний: $omega =pi frac{1}{с}$, $tau =0,1 с$, выражение (1.2) преобразуем к виду:

[x=A{cos left[pi left(t+0,1right)right]=A{cos left(180{}^circ t+0,1cdot 180right)= } }A{cos left(180{}^circ t+18{}^circ right)left(1.3right). }]

Из выражения (1.3), следует, что начальная фаза равна $varphi =18{}^circ $.

Ответ. $varphi =18{}^circ $

Пример 2

Задание. Каково уравнение траектории движения точки, если она участвует в двух взаимно перпендикулярных колебаниях, которые заданы уравнениями:

[left{ begin{array}{c}
x=2{sin pi t (см);; } \
y={cos left[pi left(t+0,5right)right]left(смright). } end{array}
right.]

Траекторию изобразите.

Решение. Рассмотрим заданные уравнения колебаний:

[left{ begin{array}{c}
x=2{sin pi t left(смright);; } \
y={cos left[pi left(t+0,5right)right]left(смright) } end{array}
left(2.1right).right.]

Из первого уравнения системы мы видим, что начальная фаза первого колебания равна нулю (${varphi }_1=0$)

Второе уравнение системы преобразуем к виду:

[y={cos left[pi left(t+0,5right)right]= }{cos left(pi t+pi cdot 0,5right)={cos left(pi t+frac{pi }{2}right)=-{sin left(pi tright)=-frac{1}{2} } }xleft(2.2right). }]

Начальная фаза колебаний ${varphi }_2=pi $.

Из уравнения (2.2) видим, что уравнение:

[y=-frac{1}{2}x]

это уравнение прямой, проходящей через начало координат (рис.2):

Начальная фаза, пример 1

Ответ. $y=-frac{1}{2}x$. При разности начальных фаз перпендикулярных
колебаний ${varphi }_2-{varphi }_1=pm pi $ результирующее движение представляет собой
гармоническое колебания вдоль прямой $y=-frac{A_2}{A_1}x$

Читать дальше: определение работы в физике.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями.

Например, в случае механических гармонических колебаний:.

В этих формулах ω – частота колебания, xm – амплитуда колебания, φ0 и φ0 – начальные фазы колебания. Приведенные формулы отличаются определением начальной фазы и при φ0’ = φ+π/2 полностью совпадают.

гармоническими колебаниями

гармоническими колебаниями

Это простейший вид периодических колебаний. Конкретный вид функции (синус или косинус) зависит от способа выведения системы из положения равновесия. Если выведение происходит толчком (сообщается кинетическая энергия), то при t=0  смещение х=0, следовательно, удобнее пользоваться функцией sin, положив φ0’=0; при отклонении от положения равновесия (сообщается потенциальная энергия) при t=0 смещение х=хm, следовательно, удобнее пользоваться функцией cos и φ0=0.

Выражение, стоящее под знаком cos или sin, наз. фазой колебания: фаза колебания.

Фаза колебания измеряется в радианах и определяет значение смещения (колеблющейся величины) в данный момент времени.

фаза колебания

Амплитуда колебания зависит только от начального отклонения (начальной энергии, сообщенной колебательной системе).

Скорость и ускорение при гармонических колебаниях.

Согласно определению скорости, скорость – это производная от координаты по времени Согласно определению скорости, скорость – это производная от координаты по времени

Таким образом, мы видим, что скорость при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания скорости опережают колебания смещения по фазе на π/2.

Величина  максимальная скорость колебательного движения (амплитуда колебаний скорости) – максимальная скорость колебательного движения (амплитуда колебаний скорости).

 максимальная скорость колебательного движения (амплитуда колебаний скорости)

Следовательно, для скорости при гармоническом колебании имеем: для скорости при гармоническом колебании,  а для случая нулевой начальной фазы для случая нулевой начальной фазы  (см. график).

Скорость и ускорение при гармонических колебаниях

Согласно определению ускорения, ускорение – это производная от скорости по времени:

Согласно определению ускорения, ускорение – это производная от скорости по времени – вторая производная от координаты по времени. Тогда: Ускорение при гармоническом колебательном движении.

Ускорение при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания ускорения опережают колебания скорости на π/2 и колебания смещения на π (говорят, что колебания происходят в противофазе).

Величина максимальное ускорение (амплитуда колебаний ускорения). Следовательно, для ускорения имеем

– максимальное ускорение (амплитуда колебаний ускорения). Следовательно, для ускорения имеем: для ускорения имеем, а для случая нулевой начальной фазы: для случая нулевой начальной фазы (см. график).

максимальное ускорение (амплитуда колебаний ускорения). Следовательно, для ускорения имеем

Из анализа процесса колебательного движения, графиков и соответствующих математических выражений видно, что при прохождении колеблющимся телом положения равновесия (смещение равно нулю) ускорение равно нулю, а скорость тела максимальна (тело проходит положение равновесия по инерции), а при достижении амплитудного значения смещения – скорость равна нулю, а ускорение максимально по модулю (тело меняет направление своего движения).

Сравним выражения для смещения и ускорения при гармонических колебаниях:

Сравним выражения для смещения и ускорения при гармонических колебаниях   и    Сравним выражения для смещения и ускорения при гармонических колебаниях.

Можно записать: вторая производная смещения прямо пропорциональна (с противоположным знаком) смещению –

т.е. вторая производная смещения прямо пропорциональна (с противоположным знаком) смещению. Такое уравнение наз. уравнением гармонического колебания. Эта зависимость выполняется для любого гармонического колебания, независимо от его природы. Поскольку мы нигде не использовали параметров конкретной колебательной системы, то от них может зависеть только циклическая частота.

вторая производная смещения прямо пропорциональна (с противоположным знаком) смещению

Часто бывает удобно записывать уравнения для колебаний в виде:  уравнения для колебаний,

где – период колебания. Тогда, если время выражать в долях периода подсчеты будут упрощаться. Например, если надо найти смещение через 1/8 периода, получим: Тогда, если время выражать в долях периода подсчеты будут упрощаться. Аналогично для скорости и ускорения.

 уравнения для колебаний

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Характеристики колебаний

Рис. 1. Основные характеристики колебаний – это амплитуда, период и начальная фаза

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина ( large x ). Тогда символом ( large x_{0} ) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Амплитуду на графике находят так

Рис. 2. Амплитуда – это максимальное отклонение от горизонтальной оси либо вверх, либо вниз. Горизонтальная ось проходит через уровень нуля на оси, на которой отмечены амплитуды

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

( large T left( c right) ) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это расстояние между двумя одинаковыми значениями колеблющейся величины

Рис. 3. Период колебаний – это горизонтальное расстояние между двумя похожими точками на графике

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

По графику колебаний период удобно определять так

Рис. 4. Удобно определять период, как расстояние между двумя соседними вершинами, либо между двумя впадинами

Что такое частота

Обозначают ее с помощью греческой буквы «ню» ( large nu ).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

( large nu left( frac{1}{c} right) ).

Иногда в учебниках встречается такая запись ( large displaystyle nu left( c^{-1} right) ), потому, что по свойствам степени ( large  displaystyle frac{1}{c} = c^{-1} ).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

[ large displaystyle boxed{ frac{ 1 text{колебание}}{1 text{секунда}} = 1 text{Гц} }]

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

[ large boxed{ nu = frac{1}{T} }]

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Частота – это количество периодов, уместившихся в одну секунду

Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол (large 2pi) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный (large 2pi) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

( large displaystyle omega left( frac{text{рад}}{c} right) )

Примечание: Величину ( large omega ) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за (large 2pi) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный (large 2pi) секунд?».

Обычная ( large nu ) и циклическая ( large omega ) частота колебаний связаны формулой:

[ large boxed{ omega = 2pi cdot nu }]

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину ( large omega ), нужно сначала найти период T.

Затем, воспользоваться формулой ( large displaystyle nu = frac{1}{T} ) и вычислить частоту ( large nu ).

И только после этого, с помощью формулы ( large omega = 2pi cdot nu ) посчитать циклическую ( large omega ) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину ( large omega ) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный (large 2pi), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Циклическая частота – это количество периодов, уместившихся в 2 пи секунд

Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_{0} ).

(large varphi_{0} left(text{рад} right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Начальная фаза – это угол отклонения качелей перед началом их колебаний

Рис. 7. Угол отклонения качелей перед началом колебаний

Рассмотрим теперь, как величина (large varphi_{0} ) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_{0} ) принимаем равной нулю.

Начальная фаза влияет на сдвиг графика по горизонтальной оси

Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_{0} ) будет отличаться от нулевого значения.

Определим угол (large varphi_{0} ) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_{0} ) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_{0} ).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text{сек} right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac{Delta t }{T} ):

[large frac{Delta t }{T} = frac{1}{4} ]

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large displaystyle frac{1}{4} cdot 2pi = frac{pi }{2} =varphi_{0} )

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac{pi }{2} ) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

[large varphi_{0} = — frac{pi }{2} ]

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac{pi }{2} ) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_{0} = 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_{0} ) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_{0}) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

Фаза изменяется в процессе колебаний

Рис. 9. Угол отклонения от равновесия – фаза, изменяется в процессе колебаний

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_{0}) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Фаза и начальная фаза имеют различия

Рис. 10. Перед началом колебаний задаем начальную фазу — начальный угол отклонения от равновесия. А угол, который изменяется во время колебаний, называют фазой

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

Фазу обозначают бегущей по кривой точкой

Рис. 11. На графике колебаний фаза – это точка, скользящая по кривой. В различные моменты времени она находится в разных положениях на графике

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_{0}) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

Обозначим их:

( large varphi_{01}) – для первого процесса и,

( large varphi_{02}) – для второго процесса.

Разность фаз двух колебаний

Рис. 12. Для двух колебаний можно ввести понятие разности фаз

Определим разность фаз между первым и вторым колебательными процессами:

[large boxed{ Delta varphi = varphi_{01} —  varphi_{02} }]

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

[large boxed{ T cdot N = t }]

( large T left( c right) ) – время одного полного колебания (период колебаний);

( large N left( text{шт} right) ) – количество полных колебаний;

( large t left( c right) ) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

[large boxed{ T = frac{1}{nu} }]

(large nu left( text{Гц} right) ) – частота колебаний.

  • Количество и частота колебаний связаны формулой:

[large boxed{ N = nu cdot t}]

  • Связь между частотой и циклической частотой колебаний:

[large boxed{ nu cdot 2pi = omega }]

(large displaystyle omega left( frac{text{рад}}{c} right) ) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

(large varphi_{0} left( text{рад} right) ) — начальная фаза;

(large varphi left( text{рад} right) ) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:

[large boxed{ varphi = N cdot 2pi }]

  • Интервал времени (large Delta t ) (сдвигом) и начальная фаза колебаний связаны:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large Delta t left( c right) ) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Начальная фаза колебаний


Начальная фаза колебаний

4.6

Средняя оценка: 4.6

Всего получено оценок: 68.

4.6

Средняя оценка: 4.6

Всего получено оценок: 68.

Одной из характеристик колебательного процесса в физике является фаза. Особенно важным этот параметр становится, когда сравниваются два колебания одинаковой частоты. Начальная фаза колебаний характеризует начало отклонения, когда система выводится из равновесия.

Понятие фазы колебательного процесса

Любой колебательный процесс может быть представлен в виде бесконечной суммы простейших гармонических колебаний. Гармоническое колебание — это колебание, которое совершается по закону круговых функций (синуса или косинуса).

График гармонической функции

Рис. 1. График гармонической функции.

Формула гармонического колебания имеет следующий вид:

$$X = X_m sin(omega t+varphi)$$

где:

  • $t$ — текущий момент времени;
  • $X$ — текущее значение параметра;
  • $X_m$ — амплитудное (максимальное) значение параметра;
  • $omega$ — частота;
  • $varphi$ — начальная фаза.

Из представленной формулы можно увидеть, что при изменении значения времени $t$ аргумент круговой функции постоянно возрастает. Этот аргумент $(omega t+varphi)$ называется фазой. Единица измерения фазы — радиан, и поскольку круговая функция имеет период $2pi$, то фаза, как правило, рассматривается только в диапазоне от нуля до $2pi$.

Рис. 2. Фаза колебания.

Из формулы также видно, что фаза — это линейная функция от времени, которая монотонно возрастает от значения $varphi$. Поэтому это значение называется начальной фазой.

Значение начальной фазы колебательного процесса

Точка начальной фазы колебаний характеризует значение параметра функции в нулевой момент времени. Учитывая, что для того, чтобы система начала колебаться, она должна быть выведена из положения равновесия, начальная фаза колебаний характеризует именно это начальное отклонение, которое хорошо видно на графике функции.

Для нитяного или пружинного маятника зачастую начальная фаза колебаний также характеризует точку максимального отклонения.

Но наибольшее значение начальная фаза колебаний принимает для случая, когда происходит два и более колебательных процесса одинаковой частоты. При одинаковой частоте разность фаз колебаний в этих процессах будет постоянна. Следовательно, именно от начальной фазы зависит взаимное значение колебаний.

Например, если в обоих колебательных процессах, происходящих с равной частотой, начальные фазы будут равны, то нулевые и амплитудные значения обоих процессов будут всегда достигаться одновременно. Говорят, что процессы происходят синфазно.

Если начальная фаза в одном процессе будет равна нулю, а в другом — $pi$, то в этом случае нулевые значения будут достигаться процессами одновременно, а вот амплитудные — нет. Более того, в момент, когда амплитуда одного процесса будет максимально положительной, амплитуда другого процесса будет максимально отрицательной. Говорят, что эти два процесса происходят в противофазе.

При других начальных фазах такие процессы будут меняться «с отставанием» или «с опережением», в зависимости от конкретных значений. И, поскольку их частота одинакова, то отставание или опережение будет постоянно. Нулевые и амплитудные значения никогда не будут достигнуты одновременно.

Рис. 3. Разность фаз колебаний.

Заключение

Что мы узнали?

Фаза колебания — это аргумент гармонической функции в ее формуле. Фактически это конкретный момент колебания. Начальная фаза — это аргумент в нулевой момент времени. Наибольшее значение начальная фаза колебаний играет при сравнении различных колебаний с одинаковой частотой.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.6

Средняя оценка: 4.6

Всего получено оценок: 68.


А какая ваша оценка?

Добавить комментарий