Как найти начальную координату по графику скорости

Формула координаты тела при равномерном прямолинейном движении

Прямолинейное равномерное движение является наиболее простым и понятным типом механического движения. Подробнее узнать про этот вид движения можно здесь.

Для нахождения координаты тела при равномерном прямолинейном движении используется довольно простая формула:

Формула координаты тела при прямолинейном равномерном движении

x0 — координата тела в начальный момент времени,

x — координата тела в текущий момент времени,

t — время движения,

V — скорость тела

Таким образом, необходимо знать только начальную координату тела, его скорость и время в пути. Вы можете подставить эти значения в наш онлайн калькулятор и получить результат:

Механическое движение

О чем эта статья:

Механическое движение

Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.

«Относительно других тел» — очень важные слова в этом определении. Для описания движения нам нужны:

  • тело отсчета
  • система координат
  • часы

В совокупности эти три параметра образуют систему отсчета.

В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉

Прямолинейное равномерное движение

Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.

Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.

Мы можем охарактеризовать это движение следующими величинами.

Скалярные величины (определяются только значением)

  • Время — в международной системе единиц СИ измеряется в секундах [с].
  • Путь — длина траектории (линии, по которой движется тело). В случае прямолинейного равномерного движения — длина отрезка [м].

Векторные величины (определяются значением и направлением)

  • Скорость — характеризует быстроту перемещения и направление движения материальной точки [м/с].
  • Перемещение — вектор, проведенный из начальной точки пути в конечную [м].

Проецирование векторов

Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.

Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.

Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.

Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.

Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.

Скорость

— скорость [м/с]
— перемещение [м]
— время [с]

Средняя путевая скорость

V ср.путевая = S/t

V ср.путевая — средняя путевая скорость [м/с]
S — путь [м]
t — время [с]

Задача

Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.

Решение:

Возьмем формулу средней путевой скорости
V ср.путевая = S/t

Подставим значения:
V ср.путевая = 210/2,5 = 84 км/ч

Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч

Уроки физики в онлайн-школе Skysmart не менее увлекательны, чем наши статьи!

Уравнение движения

Одной из основных задач механики является определение положения тела относительно других тел в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).

Уравнение движения

x(t) — искомая координата в момент времени t [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v

Уравнение движения при движении против оси

x(t) — искомая координата в момент времени t [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Прямолинейное равноускоренное движение

Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».

Итак, равноускоренное прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

Уравнение движения и формула конечной скорости

Основная задача механики не поменялась по ходу текста — определение положения тела относительно других тел в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.

Уравнение движения для равноускоренного движения

x(t) — искомая координата в момент времени t [м]
x0 — начальная координата [м]
v0x — начальная скорость тела в [м/с]
t — время [с]
ax — ускорение [м/с 2 ]

Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:

Формула конечной скорости

— конечная скорость тела [м/с]
— начальная скорость тела [м/с]
— время [с]
— ускорение [м/с 2 ]

Задача

Найдите местоположение автобуса, который разогнался до скорости 60 км/ч за 3 минуты, через 0,5 часа после начала движения из начала координат.

Решение:

Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

Так как автобус двигался с места, . Значит

Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

Подставим значения:
a = v/t = 60/0,05 = 1200 км/ч 2
Теперь возьмем уравнение движения.
x(t) = x0 + v0xt + axt 2 /2

Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

Подставим циферки:
км

Ответ: через полчаса координата автобуса будет равна 150 км.

Движение по вертикали

Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с 2 , а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).

Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .

Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.

Помните о том, что свободное падение — это не всегда движение по вертикали из состояния покоя. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.

Уравнение движения, графики равномерного прямолинейного движения

п.1. Прямолинейное равномерное движение на координатной прямой

Система отсчета, с помощью которой можно описать прямолинейное движение состоит из:
1) тела отсчета; 2) координатной прямой; 3) часов для отсчета времени.
Пусть телом отсчета будет дом.
В начальный момент времени машина стоит в 20 м справа от дома.

Рассмотрим движение машины со скоростью 10 м/с вправо.
Направим координатную прямую параллельно вектору скорости, вправо.

Составим таблицу перемещений за первые 4 секунды:

t, c 0 1 2 3 4
x, м 20 30 40 50 60

Стартуя с точки x0=20, машина каждую секунду удаляется от дома еще на 10 м.
Пройденный путь за 2 секунды – 10·2=20 м, за 3 секунды – 10·3=30 м, за t секунд s=vt метров. Значит, для произвольного времени t можем записать координату x в виде: begin x=x_0+s=x_0+vt\ x=20+10t end

Если при тех же начальных условиях и направлении координатной прямой машина будет двигаться влево, получим таблицу:

t, c 0 1 2 3 4
x, м 20 10 0 -10 -20

В этом случае координата x в любой момент времени t имеет вид: begin x=x_0-st=x_0-vt\ x=20-10t end Если же машина никуда не едет, её скорость v=0, и координата x=x0 в любой момент времени t.

п.2. Уравнение прямолинейного равномерного движения

Зависимость координаты тела от времени в механике называют уравнением движения.
Если уравнение движения известно, то мы можем решить основную задачу механики.

п.3. Удобная система отсчета для решения задачи о прямолинейном движении

При решении задачи можно выбрать различные тела отсчета и связать с ними различные системы координат. Как правило, некоторая система отсчета является наиболее удобной для решения данной задачи в том смысле, что в ней уравнение движения выглядит и решается проще, чем в других системах.

При решении задач на прямолинейное движение телом отсчета может быть неподвижная поверхность (земля, пол, стол и т.п.), само движущееся тело или другое тело.
При этом системой координат является координатная прямая, параллельная направлению движения (вектору перемещения) тела, уравнение движения которого мы хотим получить.

Проекции скорости и перемещения на координатную прямую могут быть положительными, равными нулю или отрицательными. Величины скорости и перемещения будут равны длинам соответствующих проекций.

п.4. График движения x=x(t)

Сравним полученное уравнение движения (x(t)=x_0+v_x t) с уравнением прямой (y(x)=kx+b) (см. §38 справочника по алгебре для 7 класса).

В уравнении движения роль углового коэффициента (k) играет проекция скорости (v_x), а роль свободного члена (b) – начальная координата (x_0).

Построим графики зависимости координаты от времени для нашего примера:

x=20+10t – машина движется вправо (в направлении оси OX)
x=20-10t – машина движется влево (в направлении, противоположном оси OX)
x=20 – машина стоит

п.5. Как найти уравнение движения по графику движения?

п.6. График скорости vx=vx(t)

Для рассмотренного примера:

п.7. Как найти путь и перемещение по графику скорости?

Пусть тело движется прямолинейно равномерно, зависимость его координаты от времени описывается уравнением: $$ x(t)=x_0+v_x t $$ Тогда в некоторый момент времени (t_1) координата равна (x_1=x_0+v_x t_1).
Несколько позже, в момент времени (t_2gt t_1) координата равна (x_2=x_0+v_x t_2).
Если (v_xgt 0), то пройденный за промежуток времени (triangle t=t_2-t_1) путь равен разности координат: $$ s=x_2-x_1=(x_0+v_x t_2)-(x_0+v_x t_1)=x_0-x_0+v_x (t_2-t_1)=v_x triangle t $$ В общем случае, т.к. (v_x) может быть и отрицательным, а путь всегда положительный, в формуле нужно поставить модуль: $$ s=|v_x|triangle t $$
Изобразим полученное соотношение на графике скорости:

Проекция скорости (v_x) может быть не только положительной, но и отрицательной.
Если учитывать знак, то произведение: $$ triangle x=v_x triangle t $$ дает проекцию перемещения на ось OX. Знак этого произведения указывает на направление перемещения.

Проекция перемещения может быть как положительной, так и отрицательной или равной 0.

п.8. Задачи

Задача 1. Спортсмен бежит по прямолинейному участку дистанции с постоянной скоростью 8 м/с. Примите (x_0=0) и запишите уравнение движения.
а) Постройте график движения (x=x(t)) и найдите с его помощью, сколько пробежит спортсмен за (t_1=5 с), за (t_2=10 с);
б) постройте график скорости (v=v(t)) и найдите с его помощью, какой путь преодолеет спортсмен за промежуток времени (triangle t=t_2-t_1)?

По условию (x_0=0, v_x=8).
Уравнение движения: (x=x_0+v_x t=0+8t=8t)
а) Строим график прямой (x=8t) по двум точкам:


По графику находим: begin x_1=x(5)=8cdot 5=40 text<(м)>\ x_2=x(10)=8cdot 10=80 text <(м)>end
б) Скорость (v_x=8) м/с – постоянная величина, её график:

$$ t_1=5 с, t_2=10 с $$ Пройденный путь за промежуток времени (triangle t=t_2-t_1) равен площади заштрихованного прямоугольника: $$ s=v_x triangle t=8cdot (10-5)=40 text <(м)>$$ Ответ: а) 40 м и 80 м; б) 40 м

Задача 2. Космический корабль движется прямолинейно с постоянной скоростью.
Известно, что через 1 час после старта корабль находился на расстоянии 38 тыс.км от астероида Веста, а через 2 часа после старта – на расстоянии 56 тыс.км.
а) постройте график движения корабля, найдите по графику уравнение движения.
б) на каком расстоянии от астероида находился корабль в начальный момент времени?
в) на каком расстоянии от астероида будет находиться корабль через 4 часа после старта?
г) чему равна скорость корабля в километрах в секунду?

а) Будем откладывать время в часах, а расстояние в тыс.км
Отмечаем точки A(1;38) и B(2;56), проводим через них прямую.
Полученная прямая и есть график движения (x=x(t)).

Найдем скорость корабля (v_x): $$ v_x=frac=frac<56-38><2-1>=18 (text<тыс.км/ч>) $$ Найдем начальную координату (x_0): $$ x_0=x_1-v_x t_1=38-18cdot v_1=20 (text<тыс.км/ч>) $$ Получаем уравнение движения: $$ x(t)=x_0+v_x t, x(t)=20+18t $$ где (x) – в тыс.км, а (t) – в часах.

б) В начальный момент времени корабль находился на расстоянии (x_0=20) тыс.км от астероида.

в) Через 4 часа после старта корабль будет находиться на расстоянии $$ x(4)=20+18cdot 4=92 (text<тыс.км>) $$
г) Переведем скорость в км/с: $$ 18000frac<text<км>><text<ч>>=frac<18000 text<км>><1 text<ч>>=frac<18000 text<км>><3600 text>=5 text <км/c>$$ Ответ:
а) (x(t)=20+18t) ((x) в тыс.км, (t) в часах); б) 20 тыс.км; в) 92 тыс.км; г) 5 км/с

[spoiler title=”источники:”]

http://skysmart.ru/articles/physics/mehanicheskoe-dvizhenie

http://reshator.com/sprav/fizika/7-klass/uravnenie-dvizheniya-grafiki-ravnomernogo-pryamolinejnogo-dvizheniya/

[/spoiler]

3.2.1. Как правильно понимать условия задачи?

Скорость тела увеличилась в n раз: nu=nnu_0.

Скорость уменьшилась в n раз: nu= дробь: числитель: nu_0, знаменатель: n конец дроби

Скорость увеличилась на 2 м/с: nu=nu_0 плюс 2.

Во сколько раз увеличилась скорость?  дробь: числитель: nu, знаменатель: nu_0 конец дроби .

Во сколько раз уменьшилась скорость?  дробь: числитель: nu_0, знаменатель: nu конец дроби .

Как изменилась скорость?  дробь: числитель: nu, знаменатель: nu_0 конец дроби .

На сколько увеличилась скорость? nu минус nu_0.

На сколько уменьшилась скорость? nu_0 минус nu.

Тело достигло наибольшей высоты: nu_y=0.

Тело прошло половину расстояния:  дробь: числитель: S, знаменатель: 2 конец дроби .

Тело бросают с земли: y_0=0, nu_0y не равно 0 (последнее условие часто ускользает из вида — если у тела скорость равна нулю, например у ручки, лежащей на столе, оно может полететь само вверх?), начальная скорость направлена вверх.

Тело бросают вниз: y_0 не равно 0, начальная скорость направлена вниз.

Тело бросают вверх: начальная скорость направлена вверх.

В момент падения на землю: y=0.

Тело выпадает из аэростата (воздушного шара): начальная скорость равна скорости аэростата (воздушного шара) и направлена в ту же самую сторону.

3.2.2. Как по графику скорости определить ускорение?

Закон изменения скорости имеет вид:

nu_x=nu_0x плюс a_x t.

Графиком этого уравнения является прямая линия. Так как a_x — коэффициент перед t, то a_x является угловым коэффициентом прямой.

Для графика 1:

a_x_1= дробь: числитель: Deltanu_x_1, знаменатель: Delta t_1 конец дроби .

То, что график 1 «поднимается вверх», означает — проекция ускорения положительна, т. е. вектор veca направлен в положительном направлении оси Ox. Пересечение графика с осью — изменение направления движения на противоположное.

Для графика 2:

a_x_2= дробь: числитель: Deltanu_x_2, знаменатель: Delta t_2 конец дроби .

То, что график 2 «опускается вниз», означает — проекция ускорения отрицательна, т. е. вектор veca направлен в отрицательном направлении оси Ox. Пересечение графика с осью — изменение направления движения на противоположное.

Для определения Deltanu_x и Delta t выбираем такие точки на графике, в которых можно точно определить значения, как правило, это точки, находящиеся в вершинах клеток.

3.2.3. Как по графику скорости определить пройденный путь и перемещение?

Как сказано в пункте 3.1.6 путь можно как площадь под графиком зависимости скорости от ускорения. Простой случай показан в пункте 3.1.6. Рассмотрим более сложный вариант, когда график скорости пересекает ось времени.

Напомним, что путь может только увеличиваться, поэтому путь, который проехало тело в примере на рисунке 9 равен:

S=S_1 плюс S_2 плюс S_3,

где S_1, S_2 и S_3 — площади фигур, закрашенных на рисунке.

Для определения перемещения нужно заметить, что в точках t_1 и t_2 тело меняет направление движения. Проезжая путь S_1, тело движется в положительном направлении оси Ox, так как график лежит над осью времени. Проезжая путь S_2, тело движется в обратную сторону, в отрицательном направлении оси Ox так как график лежит под осью времени. Проезжая путь S_3, тело движется в положительном направлении оси Ox, так как график лежит над осью времени. Таким образом, перемещение равно:

Delta r=|S_1 минус S_2 плюс S_3|.

Еще раз обратим внимание:

1) пересечение с осью времени означает поворот в обратную сторону;

2) площадь графика, лежащего под осью времени положительна и входит со знаком «+» в определение пройденного пути, но со знаком «−» в определении перемещения.

3.2.4. Как из графика зависимости ускорения от времени определить зависимость скорости от времени и координаты от времени?

Для того, чтобы определить требуемые зависимости необходимы начальные условия — значения скорости и координаты в момент времени t=0. Без начальных условий решить однозначно данную задачу невозможно, поэтому, как правило, в условии задачи они даны.

В данном примере постараемся привести все рассуждения в буквах, для того, чтобы частном примере (при подстановке цифр) не потерять суть действий.

Пусть в момент времени t=0, скорость тела равна нулю nu_0=0, и начальная координата x_0=0.

1) От 0 до t=t_1.

Начальные значения скорости и координаты определяем из начальных условий, а ускорение из графика:

a_x=a_1 больше 0,nu_01=0,x_01=0,

следовательно, движение равноускоренное и закон изменения скорости имеет вид:

nu_x_1=nu_01 плюс a_1 t=a_1 t,								x_1=x_01 плюс nu_01 t плюс дробь: числитель: a_1 t в квадрате , знаменатель: 2 конец дроби = дробь: числитель: a_1 t в квадрате , знаменатель: 2 конец дроби .

К концу данного промежутка времени (t=t_1) скорость (nu_k1) и координата (x_k1) будут равны (вместо времени в формулы nu_x_1=nu_01 плюс a_1 t=a_1 t и x_1=x_01 плюс nu_01 t плюс дробь: числитель: a_1 t в квадрате , знаменатель: 2 конец дроби = дробь: числитель: a_1 t в квадрате , знаменатель: 2 конец дроби нужно подставить t_1):

nu_k1=a_1 t_1,										x_k1= дробь: числитель: a_1 t_1 в квадрате , знаменатель: 2 конец дроби .

2) От t=t_1 до t=t_2.

Начальное значение скорости на этом промежутке должно быть равно конечному значению на предыдущем промежутке, начальное значение координаты равно конечному значению координаты на предыдущем промежутке, а ускорение определяем из графика:

a_x=0,nu_02=nu_k1,x_02=x_k1,

следовательно, движение равноускоренное и закон изменения скорости имеет вид:

nu_x_2=nu_02,										x_2=x_02 плюс nu_02 t.

К концу данного промежутка времени (t=t_2) скорость (nu_k2) и координата (x_k2) будут равны (вместо времени в формулы nu_x_2=nu_02 и x_2=x_02 плюс nu_02 t нужно подставить t_2):

nu_k2=a_1 t_1,x_k2= дробь: числитель: a_1 t_1 в квадрате , знаменатель: 2 конец дроби плюс a_1 t_1 t_2.

3) От t=t_2 до t=t_3.

Начальное значение скорости на этом промежутке должно быть равно конечному значению на предыдущем промежутке, начальное значение координаты равно конечному значению координаты на предыдущем промежутке, а ускорение определяем из графика:

a_x= минус a_2 меньше 0,nu_03=nu_k2,x_03=x_k2,

следовательно, движение равноускоренное и закон изменения скорости имеет вид:

nu_x3=nu_03 минус a_2 t,									x_3=x_03 плюс nu_03 t минус дробь: числитель: a_2 t в квадрате , знаменатель: 2 конец дроби .

К концу данного промежутка времени (t=t_3) скорость (nu_k3) и координата (x_k3) будут равны (вместо времени в формулы nu_x3=nu_03 минус a_2 t и x_3=x_03 плюс nu_03 t минус дробь: числитель: a_2 t в квадрате , знаменатель: 2 конец дроби нужно подставить t_3):

nu_k3=a_1 t_1 минус a_2 t_3,									x_k3= дробь: числитель: a_1 t_1 в квадрате , знаменатель: 2 конец дроби плюс a_1 t_1 t_2 плюс a_1 t_1 t_3 минус дробь: числитель: a_2 t_3 в квадрате , знаменатель: 2 конец дроби .

Для лучшего понимания построим полученные результаты на графике (см. рис.)

На графике скорости:

1) От 0 до t=t_1: прямая линия, «поднимающаяся вверх» (т. к. a_1 больше 0);

2) От t=t_1 до t=t_2: горизонтальная прямая линия (т. к. a=0);

3) От t=t_2 до t=t_3: прямая линия, «опускающаяся вниз» (т. к.  минус a_2 меньше 0).

На графике координаты:

1) От 0 до t=t_1: парабола, ветви которой направлены вверх (т. к. a_1 больше 0);

2) От t=t_1 до t=t_2: прямая линия, поднимающаяся вверх (т. к. a=0);

3) От t=t_2 до t=t_3: парабола, ветви которой направлены вниз (т. к.  минус a_2 меньше 0).

3.2.5. Как из графика закона движения записать аналитическую формулу закона движения?

Пусть дан график равнопеременного движения.

Закон равнопеременного движения имеет вид:

x=x_0 плюс nu_0x t плюс дробь: числитель: a_x t в квадрате , знаменатель: 2 конец дроби .

В этой формуле три неизвестные величины: x_0, nu_0x и a_x.

Для определения x_0 достаточно посмотреть на значение функции при t=0. Для определения двух других неизвестных выбираем две точки на графике, значения которых мы можем точно определить — вершины клеток. Получим систему:

 система выражений x_1=x_0 плюс nu_0x t_1 плюс дробь: числитель: a_x t_1 в квадрате , знаменатель: 2 конец дроби ,x_2=x_0 плюс nu_0x t_2 плюс дробь: числитель: a_x t_2 в квадрате , знаменатель: 2 конец дроби . конец системы .

При этом считаем, что x_0 нам уже известно. Умножим 1-ое уравнение системы на t_2, а 2-ое уравнение на t_1:

 система выражений x_1 t_2=x_0 t_2 плюс nu_0x t_1 t_2 плюс дробь: числитель: a_x t_1 в квадрате t_2, знаменатель: 2 конец дроби ,x_2 t_1=x_0 t_1 плюс nu_0x t_2 t_1 плюс дробь: числитель: a_x t_2 в квадрате t_1, знаменатель: 2 конец дроби . конец системы .

Вычтем из 1-го уравнения 2-ое, после чего получаем:

a_x= дробь: числитель: 2x_0, знаменатель: t_1 t_2 конец дроби минус дробь: числитель: 2 левая круглая скобка x_1 t_2 минус x_2 t_1 правая круглая скобка , знаменатель: t_1 t_2 левая круглая скобка t_2 минус t_1 правая круглая скобка конец дроби .

Полученное из данного выражения значение a_x подставим в любое из уравнений системы (3.67) и решим полученное уравнение относительно nu_0x:

nu_0x= дробь: числитель: левая круглая скобка x_0 минус x_2 правая круглая скобка t_1 в квадрате минус левая круглая скобка x_0 минус x_1 правая круглая скобка t_2 в квадрате , знаменатель: t_1 t_2 левая круглая скобка t_2 минус t_1 правая круглая скобка конец дроби .

3.2.6. Как по известному закону движения определить закон изменения скорости?

Закон равнопеременного движения имеет вид:

x=x_0 плюс nu_0x t плюс дробь: числитель: a_x t в квадрате , знаменатель: 2 конец дроби .

Это его стандартный вид для данного типа движения и никак иначе он выглядеть не может, поэтому его стоит запомнить.

В данном законе коэффициент перед t — это значение начальной скорости, коэффициент пред t в квадрате — это ускорение, деленное пополам.

Например, пусть дан закон: x=5 минус 6t плюс 3t в квадрате .

Тогда

nu_0x= минус 6м/с; дробь: числитель: a_x, знаменатель: 2 конец дроби =3 Rightarrow a_x=2 умножить на 3=6.

И уравнение скорости имеет вид:

nu_x= минус 6 плюс 6t.

Таким образом, для решения подобных задач, необходимо точно помнить вид закона равнопеременного движения и смысл коэффициентов, входящих в это уравнение.

Однако можно пойти и иным путем. Вспомним формулу:

nu_x=dot x левая круглая скобка t правая круглая скобка ̇=nu_0x плюс a_x t.

В нашем примере:

 левая круглая скобка 5 минус dot6t плюс 3t в квадрате правая круглая скобка =dot левая круглая скобка 5 правая круглая скобка минус 6dot левая круглая скобка t правая круглая скобка плюс 3dot левая круглая скобка t в квадрате правая круглая скобка = минус 6 плюс 3 умножить на 2t= минус 6 плюс 6t.

3.2.7. Как определить место и время встречи?

Пусть даны законы движения двух тел:

x_1=x_01 плюс nu_x_1 t плюс дробь: числитель: a_x_1 t в квадрате , знаменатель: 2 конец дроби иx_2=x_02 плюс nu_x_2 t плюс дробь: числитель: a_x_2t в квадрате , знаменатель: 2 конец дроби .

В момент встречи тела оказываются в одной координате, то есть x_1=x_2 и необходимо решить уравнение:

x_01 плюс nu_x_1 t плюс дробь: числитель: a_x_1 t в квадрате , знаменатель: 2 конец дроби =x_02 плюс nu_x_2 t плюс a_x_2 дробь: числитель: t в квадрате , знаменатель: 2 конец дроби .

Перепишем его в виде:

 дробь: числитель: левая круглая скобка a_x_2 минус a_x_1 правая круглая скобка , знаменатель: 2 конец дроби t в квадрате плюс левая круглая скобка nu_x_2 минус nu_x_1 правая круглая скобка t плюс левая круглая скобка x_02 минус x_01 правая круглая скобка =0.

Это квадратное уравнение, общее решение которого приводить не будем, в силу его громоздкости. Квадратное уравнение либо не имеет решений, что означает — тела не встретились; либо имеет одно решение — одна единственная встреча; либо имеет два решения — две встречи тел.

Полученные решения необходимо проверять на физическую реализуемость. Самое главное условие: t_1 больше 0 и t_2 больше 0, то есть время встречи должно быть положительным.

3.2.8. Как определить путь за -ую секунду?

Пусть тело начинает движение из состояния покоя и за -ую секунду проходит путь S_m. Требуется найти, какой путь проходит тело за n-ую секунду.

Для решения этой задачи необходимо воспользоваться формулой (3.25):

S_1:S_2:S_3:…:S_N=1:3:5:…: левая круглая скобка 2N минус 1 правая круглая скобка .

Обозначим S_1=S_0. Тогда

S_m= левая круглая скобка 2m минус 1 правая круглая скобка S_0,									S_n= левая круглая скобка 2n минус 1 правая круглая скобка S_0.

Поделим уравнение S_m= левая круглая скобка 2m минус 1 правая круглая скобка S_0 на S_n= левая круглая скобка 2n минус 1 правая круглая скобка S_0 и получим:

S_n= дробь: числитель: 2n минус 1, знаменатель: 2m минус 1 конец дроби S_m.

3.2.9. Как движется тело, брошенное вверх с высоты h?

Тело, брошено вверх с высоты h со скоростью nu_0.

Уравнение координаты y в произвольный момент времени:

y=h плюс nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

Уравнение проекции скорости в произвольный момент времени:

nu_y=nu_0 минус gt.

Время подъема до наивысшей точки полета t_1 определяется из условия nu_y=0:

0=nu_0 минус gt_1 Rightarrow t_1= дробь: числитель: nu_0, знаменатель: g конец дроби .

Для нахождения максимальной высоты H необходимо в y=h плюс nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби необходимо подставить t=t_1:

H=h плюс nu_0 t_1 минус дробь: числитель: gt_1 в квадрате , знаменатель: 2 конец дроби =h плюс дробь: числитель: nu_0 в квадрате , знаменатель: 2g конец дроби .

Время всего полета t_2 определяется из условия y=0. Получаем уравнение:

0=h плюс nu_0 t_2 минус дробь: числитель: gt_2 в квадрате , знаменатель: 2 конец дроби .

Это квадратное уравнение, которое имеет два решения, но в данной задаче тело может оказаться в координате y=0 только один раз. Поэтому среди полученных решений нужно одно «убрать». Главный критерий отсева — время полета не может быть отрицательным:

t_2= дробь: числитель: nu_0 плюс корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента , знаменатель: g конец дроби .

Скорость в момент падения:

 минус nu=nu_0 минус gt_2=nu_0 минус g дробь: числитель: nu_0 плюс корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента , знаменатель: g конец дроби = минус корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента , nu= корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента .

3.2.10. Как движется тело, брошенное вниз с высоты h?

Тело, брошено вверх с высоты h со скоростью nu_0.

Уравнение координаты y в произвольный момент времени:

y=h минус nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

Уравнение проекции скорости в произвольный момент времени:

nu_y= минус nu_0 минус gt.

Время всего полета t_1 определяется из уравнения:

0=h минус nu_0 t_1 минус дробь: числитель: gt_1 в квадрате , знаменатель: 2 конец дроби .

Это квадратное уравнение, которое имеет два решения, но в данной задаче тело может оказаться в координате y=0 только один раз. Поэтому среди полученных решений нужно одно «убрать». Главный критерий отсева — время полета не может быть отрицательным:

t_1= дробь: числитель: минус nu_0 плюс корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента , знаменатель: g конец дроби .

Скорость в момент падения:

 минус nu= минус nu_0 минус gt_1= минус nu_0 минус g дробь: числитель: минус nu_0 плюс корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента , знаменатель: g конец дроби = минус корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента . nu= корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента .

3.2.11. Как движется тело брошенное вверх с поверхности земли?

Тело брошено вверх с поверхности земли со скоростью nu_0.

Уравнение координаты y в произвольный момент времени:

y=nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

Уравнение проекции скорости в произвольный момент времени:

nu_y=nu_0 минус gt.

Время подъема до наивысшей точки полета t_1 определяется из условия nu_y=0:

0=nu_0 минус gt_1 Rightarrow t_1= дробь: числитель: nu_0, знаменатель: g конец дроби .

Для нахождения максимальной высоты H необходимо в (3.89) необходимо подставить t=t_1:

H=nu_0 t_1 минус дробь: числитель: gt_1 в квадрате , знаменатель: 2 конец дроби = дробь: числитель: nu_0 в квадрате , знаменатель: 2g конец дроби .

Время всего полета t_2 определяется из условия y=0. Получаем уравнение:

0=nu_0 t_2 минус дробь: числитель: gt_2 в квадрате , знаменатель: 2 конец дроби Rightarrow t_2= дробь: числитель: 2nu_0, знаменатель: g конец дроби .

Скорость в момент падения:

 минус nu=nu_0 минус gt_2=nu_0.nu= минус nu_0.

Заметьте, что t_2=2t_1, что означает — время подъема равно времени падения на ту же высоту.

Также получили: |nu|=nu_0, то есть — с какой скоростью бросили, с такой же скоростью тело упало. Знак «−» в формуле nu= минус nu_0 указывает, что скорость в момент падения направлена вниз, то есть против оси Oy.

3.2.12. Тело побывало на одной высоте дважды…

При бросании тела оно может дважды оказаться на одной высоте — первый раз при движении вверх, второй — при падении вниз.

1) Когда тело оказывается на высоте h?

Для тела, брошенного вверх с поверхности земли справедлив закон движения:

y=nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

Когда тело окажется на высоте h его координата будет равна y=h. Получаем уравнение:

h=nu_0 t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби ,

решение которого имеет вид:

t_1= дробь: числитель: nu_0 минус корень из: начало аргумента: nu_0 в квадрате минус 2gh конец аргумента , знаменатель: g конец дроби ,									 t_2= дробь: числитель: nu_0 плюс корень из: начало аргумента: nu_0 в квадрате минус 2gh конец аргумента , знаменатель: g конец дроби ,

2) Известны времена t_1 и t_2, когда тело оказалось на высоте h. Когда тело окажется на максимальной высоте?

Время полета с высоты h назад до высоты h равно t_2 минус t_1. Как уже было показано, время подъема равно времени падения до той же высоты, поэтому время полета от высоты h до максимальной высоты равно:

t_h= дробь: числитель: t_2 минус t_1, знаменатель: 2 конец дроби .

Тогда время полета от начала движения до максимальной высоты:

t_под=t_1 плюс дробь: числитель: t_2 минус t_1, знаменатель: 2 конец дроби = дробь: числитель: t_1 плюс t_2, знаменатель: 2 конец дроби .

3) Известны времена t_1 и t_2, когда тело оказалось на высоте h. Чему равно время полета тела?

Все время полета равно:

t_0=2t_под=t_1 плюс t_2.

4) Известны времена t_1 и t_2, когда тело оказалось на высоте h. Чему равна максимальная высота подъема?

H= дробь: числитель: gt_под в квадрате , знаменатель: 2 конец дроби = дробь: числитель: g левая круглая скобка t_1 плюс t_2 правая круглая скобка в квадрате , знаменатель: 8 конец дроби .

3.2.13. Как движется тело, брошенное горизонтально с высоты h?

Тело, брошено горизонтально с высоты h со скоростью nu_0.

Проекции начальной скорости на оси:

nu_0x=nu_0;nu_0y=0,

Проекции ускорения:

a_x=0;a_y= минус g .

Проекции скорости в произвольный момент времени t:

nu_x=nu_0;nu_y= минус gt.

Модуль скорости в произвольный момент времени t:

nu= корень из: начало аргумента: nu_x в квадрате плюс nu_y в квадрате конец аргумента = корень из: начало аргумента: nu_0 в квадрате плюс левая круглая скобка gt правая круглая скобка в квадрате конец аргумента .

Координаты тела в произвольный момент времени t:

 система выражений x=nu_0 t,y=h минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби . конец системы .

Время полета t_1 определяется из условия y=0:

0=h минус дробь: числитель: gt_1 в квадрате , знаменатель: 2 конец дроби Rightarrow t_1= корень из: начало аргумента: дробь: числитель: 2h, знаменатель: g конец дроби конец аргумента .

Для определения дальности полета необходимо в уравнение для координаты x вместо t подставить t_1:

L=nu_0 t_1= дробь: числитель: 2hnu_0, знаменатель: g конец дроби .

Для определения скорости тела в момент падения необходимо в уравнение t_h= дробь: числитель: t_2 минус t_1, знаменатель: 2 конец дроби вместо t подставить t_1:

nu= корень из: начало аргумента: nu_0 в квадрате плюс левая круглая скобка gt_1 правая круглая скобка в квадрате конец аргумента = корень из: начало аргумента: nu_0 в квадрате плюс 2gh конец аргумента .

Угол, под которым падает тело на землю:

 тангенс альфа = дробь: числитель: |nu_y|, знаменатель: |nu_x| конец дроби = дробь: числитель: корень из: начало аргумента: 2gh конец аргумента , знаменатель: nu_0 конец дроби .

3.2.14. Как движется тело, брошенное под углом α к горизонту с высоты h?

Тело, брошено под углом α к горизонту с высоты h со скоростью nu_0.

Проекции начальной скорости на оси:

nu_0x=nu_0 косинус альфа ;nu_0y=nu_0 синус ⁡ альфа ,

Проекции ускорения:

a_x=0;a_y= минус g.

Проекции скорости в произвольный момент времени t:

nu_x=nu_0 косинус ⁡ альфа ;nu_y=nu_0 синус альфа минус gt.

Модуль скорости в произвольный момент времени t:

nu= корень из: начало аргумента: nu_x в квадрате плюс nu_y в квадрате конец аргумента = корень из: начало аргумента: левая круглая скобка nu_0 косинус ⁡ альфа правая круглая скобка в квадрате плюс левая круглая скобка nu_0 синус ⁡ альфа минус gt правая круглая скобка в квадрате конец аргумента .

Координаты тела в произвольный момент времени t:

 система выражений x=nu_0 косинус ⁡ альфа t,y=h плюс nu_0 синус альфа t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби . конец системы .

Время полета до наивысшей точки t_1 определяется из условия nu_y=0:

0=nu_0 синус ⁡ альфа минус gt_1 Rightarrow t_1= дробь: числитель: nu_0 синус альфа , знаменатель: g конец дроби .

Скорость в наивысшей точке полета nu_2:

nu_2=nu_0 косинус ⁡ альфа .

Максимальная высота H определяется при подстановке в закон изменения координаты y времени t_1:

H=h плюс nu_0 синус ⁡ альфа t_1 минус дробь: числитель: gt_1 в квадрате , знаменатель: 2 конец дроби =h плюс дробь: числитель: nu_0 в квадрате левая круглая скобка синус ⁡ альфа правая круглая скобка в квадрате , знаменатель: 2g конец дроби .

Все время полета t_2 находится из условия y=0, получаем уравнение:

0=h плюс nu_0 синус ⁡ альфа t_2 минус дробь: числитель: gt_2 в квадрате , знаменатель: 2 конец дроби .

Это квадратное уравнение, которое имеет два решения, но в данной задаче тело может оказаться в координате y=0 только один раз. Поэтому среди полученных решений нужно одно «убрать». Главный критерий отсева — время полета не может быть отрицательным:

t_2= дробь: числитель: nu_0 синус ⁡ альфа плюс корень из: начало аргумента: левая круглая скобка nu_0 синус ⁡ альфа правая круглая скобка в квадрате плюс 2gh конец аргумента , знаменатель: g конец дроби .

Если подставим в закон изменения координаты x время t_2, то получим дальность полета L:

L=nu_0 косинус альфа t_2.

Скорость в момент падения t_2:

nu_2= корень из: начало аргумента: nu_0 в квадрате плюс левая круглая скобка gt_2 правая круглая скобка в квадрате конец аргумента .

Угол, который образует вектор скорости с горизонталью в произвольный момент времени:

 тангенс фи = дробь: числитель: |nu_y|, знаменатель: |nu_x| конец дроби = дробь: числитель: nu_0 синус ⁡ альфа минус gt, знаменатель: nu_0 косинус альфа конец дроби .

Угол падения:

 тангенс бета = дробь: числитель: |nu_y|, знаменатель: |nu_x| конец дроби = дробь: числитель: nu_0 синус ⁡ альфа минус gt_2, знаменатель: nu_0 косинус альфа nu_0 конец дроби .

3.2.15. Как движется тело, брошенное под углом α к горизонту земли?

Тело, брошено под углом α к горизонту с поверхности земли со скоростью nu_0.

Проекции начальной скорости на оси:

nu_0x=nu_0 косинус альфа ;nu_0y=nu_0 синус альфа ,

Проекции ускорения:

a_x=0; a_y= минус g.

Проекции скорости в произвольный момент времени t:

nu_x=nu_0 косинус ⁡ альфа ; nu_y=nu_0 синус альфа минус gt.

Модуль скорости в произвольный момент времени t:

nu= корень из: начало аргумента: nu_x в квадрате плюс nu_y в квадрате конец аргумента = корень из: начало аргумента: левая круглая скобка nu_0 косинус альфа правая круглая скобка в квадрате плюс левая круглая скобка nu_0 синус ⁡ альфа минус gt правая круглая скобка в квадрате конец аргумента .

Координаты тела в произвольный момент времени t:

 система выражений x=nu_0 косинус ⁡ альфа t,y=nu_0 синус альфа ⁡ t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби . конец системы .

Время полета до наивысшей точки t_1 определяется из условия nu_y=0:

0=nu_0 синус ⁡ альфа минус gt_1 Rightarrow t_1= дробь: числитель: nu_0 синус ⁡ альфа , знаменатель: g конец дроби .

Скорость в наивысшей точке полета nu_2:

nu_2=nu_0 косинус ⁡ альфа .

Максимальная высота H определяется при подстановке в закон изменения координаты y времени t_1:

H= дробь: числитель: nu_0 в квадрате левая круглая скобка синус ⁡ альфа правая круглая скобка в квадрате , знаменатель: 2g конец дроби .

Все время полета t_2 находится из условия y=0, получаем уравнение:

0=nu_0 синус ⁡ альфа t_2 минус дробь: числитель: gt_2 в квадрате , знаменатель: 2 конец дроби .

Получаем

t_2= дробь: числитель: 2nu_0 синус ⁡ альфа , знаменатель: g конец дроби .

Снова получили, что t_2=2t_1, то есть еще раз показали, что время подъема равно времени падения.

Если подставим в закон изменения координаты x время t_2, то получим дальность полета L:

L= дробь: числитель: 2nu_0 в квадрате косинус ⁡ альфа синус ⁡ альфа , знаменатель: g конец дроби = дробь: числитель: nu_0 в квадрате синус ⁡2 альфа , знаменатель: g конец дроби .

Скорость в момент падения t_2:

nu_3= корень из: начало аргумента: nu_0 в квадрате плюс левая круглая скобка gt_2 правая круглая скобка в квадрате конец аргумента =nu_0.

Угол, который образует вектор скорости с горизонталью в произвольный момент времени:

 тангенс фи = дробь: числитель: |nu_y|, знаменатель: |nu_x| конец дроби = дробь: числитель: nu_0 синус ⁡ альфа минус gt, знаменатель: nu_0 косинус ⁡ альфа конец дроби .

Угол падения:

 тангенс бета = дробь: числитель: |nu_y|, знаменатель: |nu_x| конец дроби = дробь: числитель: nu_0 синус ⁡ альфа минус gt_2, знаменатель: nu_0 косинус ⁡ альфа nu_0 конец дроби = минус тангенс альфа .

то есть  альфа = бета .

3.2.16. Что такое настильная и навесная траектории?

Решим следующую задачу: под каким углом нужно бросить тело с поверхности земли, чтобы тело упало на расстоянии L от точки броска?

Дальность полета определяется формулой:

L= дробь: числитель: nu_0 в квадрате синус ⁡ 2 альфа , знаменатель: g конец дроби .

Отсюда

 синус ⁡2 альфа = дробь: числитель: gL, знаменатель: nu_0 в квадрате конец дроби .

Из физических соображений ясно, что угол α не может быть больше 90°, поэтому, из серии решений уравнения  синус ⁡2 альфа = дробь: числитель: gL, знаменатель: nu_0 в квадрате конец дроби подходят два корня:

 альфа _1= дробь: числитель: 1, знаменатель: 2 конец дроби арксинус левая круглая скобка дробь: числитель: gL, знаменатель: nu_0 в квадрате конец дроби правая круглая скобка ,								  альфа _2= дробь: числитель: 1, знаменатель: 2 конец дроби арксинус левая круглая скобка дробь: числитель: gL, знаменатель: nu_0 в квадрате конец дроби правая круглая скобка плюс дробь: числитель: Пи , знаменатель: 4 конец дроби .

Траектория движения, для которой  альфа = альфа _1 меньше 45 градусов называется настильной траекторией. Траектория движения, для которой  альфа = альфа _2 больше 45 градусов называется навесной траекторией.

3.2.17. Как пользоваться треугольником скоростей?

Как было сказано в 3.6.1 треугольник скоростей в каждой задаче будет иметь свой вид. Рассмотрим на конкретном примере.

Тело бросили с вершины башни со скорость nu_0 так, что дальность полета максимальна. К моменту падения на землю скорость тела равна nu. Сколько длился полет?

Построим треугольник скоростей (см. рис.). Проведем в ней высоту, которая, очевидно, равна nu_0 косинус ⁡α. Тогда площадь треугольника скоростей равна:

S= дробь: числитель: 1, знаменатель: 2 конец дроби умножить на nu_0 косинус ⁡ альфа умножить на gt= дробь: числитель: 1, знаменатель: 2 конец дроби g левая круглая скобка nu_0 косинус ⁡ альфа t правая круглая скобка = дробь: числитель: 1, знаменатель: 2 конец дроби gL.

Здесь мы воспользовались формулой (3.121).

Найдем площадь этого же треугольника по другой формуле:

S= дробь: числитель: 1, знаменатель: 2 конец дроби nu_0 nu синус ⁡ бета .

Так как это площади одного и того же треугольника, то приравняем формулы S= дробь: числитель: 1, знаменатель: 2 конец дроби умножить на nu_0 косинус ⁡ альфа умножить на gt= дробь: числитель: 1, знаменатель: 2 конец дроби g левая круглая скобка nu_0 косинус ⁡ альфа t правая круглая скобка = дробь: числитель: 1, знаменатель: 2 конец дроби gL и S= дробь: числитель: 1, знаменатель: 2 конец дроби nu_0 nu синус ⁡ бета :

 дробь: числитель: 1, знаменатель: 2 конец дроби gL= дробь: числитель: 1, знаменатель: 2 конец дроби nu_0 nu синус бета .

Откуда получаем

L= дробь: числитель: nu_0 nu синус ⁡ бета , знаменатель: g конец дроби .

Как видно из формул для конечной скорости, полученных в предыдущих пунктах, конечная скорость не зависит от угла, под которым бросили тело, а зависит только значения начальной скорости и начальной высоты. Поэтому дальность полета по формуле L= дробь: числитель: nu_0 nu синус ⁡ бета , знаменатель: g конец дроби зависит только от угла между начальной и конечной скоростью β. Тогда дальность полета L будет максимальной, если  синус ⁡ бета примет максимально возможное значение, то есть

 синус бета =1 Rightarrow бета =90 градусов= дробь: числитель: Пи , знаменатель: 2 конец дроби .

Таким образом, если дальность полета максимальна, то треугольник скоростей будет прямоугольным, следовательно, выполняется теорема Пифагора:

 левая круглая скобка gt правая круглая скобка в квадрате =nu_0 в квадрате плюс nu в квадрате .

Откуда получаем

t= дробь: числитель: корень из: начало аргумента: nu_0 в квадрате плюс nu в квадрате конец аргумента , знаменатель: g конец дроби .

Свойством треугольника скоростей, который только что был доказан, можно пользоваться при решении других задач: треугольник скоростей является прямоугольным в задаче на максимальную дальность полета.

3.2.18. Как пользоваться треугольником перемещений?

Как было сказано в 3.6.2, треугольник перемещений в каждой задаче будет иметь свой вид. Рассмотрим на конкретном примере.

Тело бросают под углом β к поверхности горы, имеющей угол наклона α. С какой скоростью нужно бросить тело, чтобы оно упало ровно на расстоянии L от точки бросания?

Построим треугольник перемещений — это треугольник ABC (см. рис. 19). Проведем в нем высоту BD. Очевидно, что угол DBC равен α.

Выразим сторону BD из треугольника BCD:

BD= дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби косинус ⁡ альфа .

Выразим сторону BD из треугольника ABD:

BD=nu_0 t синус ⁡ бета .

Приравняем BD= дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби косинус ⁡ альфа и BD=nu_0 t синус ⁡ бета :

 дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби косинус ⁡ альфа = nu_0 t синус бета .

Откуда находим время полета:

t= дробь: числитель: 2nu_0 синус ⁡ бета , знаменатель: g косинус ⁡ альфа конец дроби .

Выразим AD из треугольника ABD:

AD=nu_0 t косинус ⁡ бета .

Выразим сторону DC из треугольника BCD:

DC= дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби синус ⁡ альфа .

Но AD плюс DC=L. Получаем

nu_0 t косинус ⁡ бета плюс дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби синус ⁡ альфа =L.

Подставим в это уравнение, полученное выражение для времени полета t= дробь: числитель: 2nu_0 синус ⁡ бета , знаменатель: g косинус ⁡ альфа конец дроби :

nu_0 дробь: числитель: 2nu_0 синус ⁡ бета , знаменатель: g косинус ⁡ альфа конец дроби косинус бета плюс дробь: числитель: g, знаменатель: 2 конец дроби синус альфа левая круглая скобка дробь: числитель: 2nu_0 синус ⁡ бета , знаменатель: g косинус ⁡ альфа конец дроби правая круглая скобка =L.

Окончательно получаем

nu_0= корень из: начало аргумента: дробь: числитель: gL, знаменатель: синус ⁡2 бета плюс тангенс альфа левая круглая скобка синус ⁡ бета правая круглая скобка в квадрате конец дроби конец аргумента .

3.2.19. Как решать задачи с помощью закона движения? (по горизонтали)

Как правило, в школе при решении задач на равнопеременное движение применяются формулы

nu=nu_0 плюс at;nu=nu_0 минус at;S=nu_0 t плюс дробь: числитель: at в квадрате , знаменатель: 2 конец дроби ;S=nu_0 t минус дробь: числитель: at в квадрате , знаменатель: 2 конец дроби ;S= дробь: числитель: nu в квадрате минус nu_0 в квадрате , знаменатель: 2a конец дроби ;S= дробь: числитель: nu_0 в квадрате минус nu в квадрате , знаменатель: 2a конец дроби ;S= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_0 плюс nu правая круглая скобка t.

Однако такой подход к решению трудно применить к решению многих задач. Рассмотрим конкретный пример.

Опоздавший пассажир подошёл к последнему вагону поезда в тот момент, когда поезд тронулся, начав движение с постоянным ускорением а = 0,3 м/с в квадрате . Единственная открытая дверь в одном из вагонов оказалась от пассажира на расстоянии L = 60м. Какую наименьшую постоянную скорость он должен развить, чтобы успеть сесть в поезд?

Введем ось Ox, направленную вдоль движения человека и поезда. За нулевое положение примем начальное положение человека («2»). Тогда начальная координата открытой двери («1») L:

x_01=L,x_02=0.

Дверь («1»), как и весь поезд, имеют начальную скорость равную нулю. Человек («2») начинает движение со скоростью nu_0:

nu_01=0;nu_02=nu_0.

Дверь («1»), как и весь поезд, движется с ускорением a. Человек («2») движется с постоянной скоростью:

a_1=a;a_2=0.

Закон движения и двери и человека имеет вид:

x=x_0 плюс nu_0x t плюс дробь: числитель: a_x t в квадрате , знаменатель: 2 конец дроби .

Подставим условия x_01=L,x_02=0;nu_01=0;nu_02=nu_0 и a_1=a;a_2=0 в уравнение для каждого из движущихся тел:

x_1=L плюс дробь: числитель: at в квадрате , знаменатель: 2 конец дроби .									 x_2=nu_0 t.

Мы составили уравнение движения для каждого из тел. Теперь воспользуемся уже известным алгоритмом для нахождения места и времени встречи двух тел — нам нужно приравнять x_1=L плюс дробь: числитель: at в квадрате , знаменатель: 2 конец дроби и x_2=nu_0 t:

L плюс дробь: числитель: at в квадрате , знаменатель: 2 конец дроби =nu_0 t.

Откуда получаем квадратное уравнение для определения времени встречи:

t в квадрате минус дробь: числитель: 2nu_0, знаменатель: a конец дроби t плюс дробь: числитель: 2L, знаменатель: a конец дроби =0.

Это квадратное уравнение. Оба его решения имеют физический смысл — наименьший корень, это первая встреча человека и двери (человек с места может побежать быстро, а поезд не сразу наберет большую скорость, так что человек может обогнать дверь), второй корень — вторая встреча (когда уже поезд разогнался и догнал человека). Но наличие обоих корней означает — человек может бежать и медленнее. Скорость будет минимальна, когда уравнение t в квадрате минус дробь: числитель: 2nu_0, знаменатель: a конец дроби t плюс дробь: числитель: 2L, знаменатель: a конец дроби =0 будет иметь один единственный корень, то есть

 левая круглая скобка дробь: числитель: 2nu_0, знаменатель: a конец дроби правая круглая скобка в квадрате минус дробь: числитель: 2L, знаменатель: a конец дроби =0.

Откуда находим минимальную скорость:

nu_0= корень из: начало аргумента: 2aL конец аргумента .

В таких задачах важно разобрать в условиях задачи: чему равны начальная координата, начальная скорость и ускорение. После этого составляем уравнение движения и думаем как дальше решать задачу. 

3.2.20. Как решать задачи с помощью закона движения? (по вертикали)

Рассмотрим пример.

Свободно падающее тело прошло последние 10 м за 0,5 с. Найти время падения и высоту, с которой упало тело. Сопротивлением воздуха пренебречь.

Для свободного падения тела справедлив закон движения:

y=y_0 плюс nu_0y t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

В нашем случае:

начальная координата: y_0=H;

начальная скорость: nu_0y=0.

Подставим условия в закон движения:

y=H минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби .

Подставляя в уравнение движения y=H минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби нужные значения времени, будем получать координаты тела в эти моменты.

В момент падения t_0 координата тела y=0:

0=H минус дробь: числитель: gt_0 в квадрате , знаменатель: 2 конец дроби .

За Delta t=0,5 с до момента падения, то есть при t=t_0 минус Delta t, координата тела y=h:

h=H минус дробь: числитель: g левая круглая скобка t_0 минус Delta t правая круглая скобка в квадрате , знаменатель: 2 конец дроби .

Уравнения 0=H минус дробь: числитель: gt_0 в квадрате , знаменатель: 2 конец дроби и h=H минус дробь: числитель: g левая круглая скобка t_0 минус Delta t правая круглая скобка в квадрате , знаменатель: 2 конец дроби составляют систему уравнений, в которой неизвестны H и t_0. Решая эту систему, получим:

t_0= дробь: числитель: h, знаменатель: gDelta t конец дроби плюс дробь: числитель: Delta t, знаменатель: 2 конец дроби .									 H= дробь: числитель: g, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: h, знаменатель: gDelta t конец дроби плюс дробь: числитель: Delta t, знаменатель: 2 конец дроби правая круглая скобка в квадрате .

Итак, зная вид закона движения (3.30), и используя условия задачи для нахождения y_0 и nu_0y, получаем закон движения для данной конкретной задачи. После чего, подставляя нужные значения времени, получаем соответствующие значения координаты. И решаем задачу!

По графику видно, что начальные координаты I тела : 5 м, II: 5 м,

III: — 10 м. Скорости движения I:

II:

III:

Уравнения движения:

Т.к. движение равномерное вдоль оси Х, то найденные нами скорости v1, v2, v3 являются проекциями на ось Х.

По графикам уравнения движения тел II и III видно, что они пересекутся в точке х = – 5 м в момент времени t = 10 с. Найдем это из уравнений движения.

Источник:

ГДЗ по физике за 10-11 класс к задачнику «Физика. 10-11 класс. Пособие для учебных заведений» Рымкевич А.П.

Решебник

по

физике

за 10, 11 класс (А.П. Рымкевич, 2001 год),
задача №22
к главе «МЕХАНИКА. ГЛАВА I. ОСНОВЫ КИНЕМАТИКИ. 2. Прямолинейное равномерное движение».

Все задачи

← №21. Движение грузового автомобиля описывается уравнением х1 = -270 + 12t, а движение пешехода по обочине того же шоссе — уравнением х2 = -1,5t. Сделать пояснительный рисунок (ось X направить вправо), на котором указать положение автомобиля и пешехода в м

№23. Движения двух велосипедистов заданы уравнениями: х1 = 5t, х2 = 150 – 10t. Построить графики зависимости x(t). Найти время и место встречи. →

Комментарии

  1. Прямолинейное равномерное движение на координатной прямой
  2. Уравнение прямолинейного равномерного движения
  3. Удобная система отсчета для решения задачи о прямолинейном движении
  4. График движения x=x(t)
  5. Как найти уравнение движения по графику движения?
  6. График скорости vx=vx(t)
  7. Как найти путь и перемещение по графику скорости?
  8. Задачи

п.1. Прямолинейное равномерное движение на координатной прямой

Система отсчета, с помощью которой можно описать прямолинейное движение состоит из:
1) тела отсчета; 2) координатной прямой; 3) часов для отсчета времени.
Пусть телом отсчета будет дом.
В начальный момент времени машина стоит в 20 м справа от дома.

Рассмотрим движение машины со скоростью 10 м/с вправо.
Направим координатную прямую параллельно вектору скорости, вправо.

Прямолинейное равномерное движение на координатной прямой

Составим таблицу перемещений за первые 4 секунды:

t, c 0 1 2 3 4
x, м 20 30 40 50 60

Стартуя с точки x0=20, машина каждую секунду удаляется от дома еще на 10 м.
Пройденный путь за 2 секунды – 10·2=20 м, за 3 секунды – 10·3=30 м, за t секунд s=vt метров. Значит, для произвольного времени t можем записать координату x в виде: begin{gather*} x=x_0+s=x_0+vt\ x=20+10t end{gather*}

Прямолинейное равномерное движение на координатной прямой

Если при тех же начальных условиях и направлении координатной прямой машина будет двигаться влево, получим таблицу:

t, c 0 1 2 3 4
x, м 20 10 0 -10 -20

В этом случае координата x в любой момент времени t имеет вид: begin{gather*} x=x_0-st=x_0-vt\ x=20-10t end{gather*} Если же машина никуда не едет, её скорость v=0, и координата x=x0 в любой момент времени t.

п.2. Уравнение прямолинейного равномерного движения

Основная задача механики – уметь определять положение тела в пространстве в любой момент времени.

Зависимость координаты тела от времени в механике называют уравнением движения.
Если уравнение движения известно, то мы можем решить основную задачу механики.

Назовем проекцией вектора скорости (overrightarrow{x}) на параллельную ему ось координат OX величину (v_x=pm|overrightarrow{v}|=pm v).
Знак проекции определяется следующим правилом:

  • если направление вектора (overrightarrow{v}) совпадает с направлением оси OX, то (v_x=vgt 0)
  • если направление вектора (overrightarrow{v}) противоположно направлению оси OX, то (v_x=-vlt 0)

В любой момент времени t координата тела x(t) при прямолинейном равномерном движении описывается уравнением: $$ x(t)=x_0+v_x t $$ где (x_0) – координата в начальный момент времени, (v_x) – проекция вектора скорости движения.

Проекция перемещения (overrightarrow{r}) на параллельную ему ось координат OX в любой момент времени t определяется формулой: $$ triangle x=x(t)-x_0 $$ Знак (triangle x) указывает на направление совершенного перемещения:

  • если (triangle xgt 0), перемещение (overrightarrow{r}) произошло в направлении оси OX;
  • если (triangle xlt 0), перемещение (overrightarrow{r}) произошло противоположно направлению оси OX.

п.3. Удобная система отсчета для решения задачи о прямолинейном движении

При решении задачи можно выбрать различные тела отсчета и связать с ними различные системы координат. Как правило, некоторая система отсчета является наиболее удобной для решения данной задачи в том смысле, что в ней уравнение движения выглядит и решается проще, чем в других системах.

При решении задач на прямолинейное движение телом отсчета может быть неподвижная поверхность (земля, пол, стол и т.п.), само движущееся тело или другое тело.
При этом системой координат является координатная прямая, параллельная направлению движения (вектору перемещения) тела, уравнение движения которого мы хотим получить.

Прямолинейное движение описывается с помощью координатной прямой, параллельной направлению движения тела.

Проекции скорости и перемещения на координатную прямую могут быть положительными, равными нулю или отрицательными. Величины скорости и перемещения будут равны длинам соответствующих проекций.

п.4. График движения x=x(t)

Сравним полученное уравнение движения (x(t)=x_0+v_x t) с уравнением прямой (y(x)=kx+b) (см. §38 справочника по алгебре для 7 класса).

В уравнении движения роль углового коэффициента (k) играет проекция скорости (v_x), а роль свободного члена (b) – начальная координата (x_0).

В осях (t) и (x) график (x(t)=x_0+v_x t) является прямой.
Эта прямая:

  • возрастает, если (v_xgt 0)
  • убывает, если (v_xlt 0)
  • постоянна (параллельна оси (t)), если (v_x= 0)
График движения x=x(t) Построим графики зависимости координаты от времени для нашего примера:

x=20+10t – машина движется вправо (в направлении оси OX)
x=20-10t – машина движется влево (в направлении, противоположном оси OX)
x=20 – машина стоит

п.5. Как найти уравнение движения по графику движения?

Как найти уравнение движения по графику движения

Шаг 1. Выбрать на прямой любые две точки (A(t_1,x_1)) и (B(t_2,x_2)).
Шаг 2. Найти проекцию скорости как отношение: $$ v_x=frac{x_2-x_1}{t_2-t_1}=frac{triangle x}{triangle t} $$ Шаг 3. Найти начальную координату по одной из формул: $$ x_0=x_1-v_x t_1 text{или} x_0=x_2-v_x t_2 $$ Шаг 4. Записать найденное уравнение движения: $$ x(t)=x_0+v_x t $$

п.6. График скорости vx=vx(t)

В осях (t) и (x) график (v_x(t)=v_x=const) является прямой, параллельной оси (t).
Эта прямая:

  • расположена над осью (t), если (v_xgt 0)
  • расположена под осью (t), если (v_xlt 0)
  • совпадает с осью (t), если (v_x=0)

Для рассмотренного примера:
График скорости v_x=v_x(t)

Внимание!
В отличие от алгебры, в физике масштабы на осях, как правило, разные.
Поэтому обязательно нужно:
1) указывать обозначения и единицы измерения физических величин, которым соответствуют оси графика;
2) подбирать масштабы так, чтобы с графиком было удобно работать.

п.7. Как найти путь и перемещение по графику скорости?

Пусть тело движется прямолинейно равномерно, зависимость его координаты от времени описывается уравнением: $$ x(t)=x_0+v_x t $$ Тогда в некоторый момент времени (t_1) координата равна (x_1=x_0+v_x t_1).
Несколько позже, в момент времени (t_2gt t_1) координата равна (x_2=x_0+v_x t_2).
Если (v_xgt 0), то пройденный за промежуток времени (triangle t=t_2-t_1) путь равен разности координат: $$ s=x_2-x_1=(x_0+v_x t_2)-(x_0+v_x t_1)=x_0-x_0+v_x (t_2-t_1)=v_x triangle t $$ В общем случае, т.к. (v_x) может быть и отрицательным, а путь всегда положительный, в формуле нужно поставить модуль: $$ s=|v_x|triangle t $$
Изобразим полученное соотношение на графике скорости: Как найти путь и перемещение по графику скорости

На графике скорости путь, пройденный за промежуток времени (triangle t=t_2-t_1) равен площади прямоугольника, длина которого равна (triangle t), а ширина (triangle |v_x|): $$ s=|v_x|triangle t $$

Проекция скорости (v_x) может быть не только положительной, но и отрицательной.
Если учитывать знак, то произведение: $$ triangle x=v_x triangle t $$ дает проекцию перемещения на ось OX. Знак этого произведения указывает на направление перемещения.

На графике скорости проекция перемещения на ось OX за промежуток времени (triangle t=t_2-t_1) равна площади (v_xtriangle t), с учетом знака: $$ triangle x=v_xtriangle t $$

Проекция перемещения может быть как положительной, так и отрицательной или равной 0.

п.8. Задачи

Задача 1. Спортсмен бежит по прямолинейному участку дистанции с постоянной скоростью 8 м/с. Примите (x_0=0) и запишите уравнение движения.
а) Постройте график движения (x=x(t)) и найдите с его помощью, сколько пробежит спортсмен за (t_1=5 с), за (t_2=10 с);
б) постройте график скорости (v=v(t)) и найдите с его помощью, какой путь преодолеет спортсмен за промежуток времени (triangle t=t_2-t_1)?

По условию (x_0=0, v_x=8).
Уравнение движения: (x=x_0+v_x t=0+8t=8t)
а) Строим график прямой (x=8t) по двум точкам:

Задача 1
По графику находим: begin{gather*} x_1=x(5)=8cdot 5=40 text{(м)}\ x_2=x(10)=8cdot 10=80 text{(м)} end{gather*}
б) Скорость (v_x=8) м/с – постоянная величина, её график:
Задача 1
$$ t_1=5 с, t_2=10 с $$ Пройденный путь за промежуток времени (triangle t=t_2-t_1) равен площади заштрихованного прямоугольника: $$ s=v_x triangle t=8cdot (10-5)=40 text{(м)} $$ Ответ: а) 40 м и 80 м; б) 40 м

Задача 2. Космический корабль движется прямолинейно с постоянной скоростью.
Известно, что через 1 час после старта корабль находился на расстоянии 38 тыс.км от астероида Веста, а через 2 часа после старта – на расстоянии 56 тыс.км.
а) постройте график движения корабля, найдите по графику уравнение движения.
б) на каком расстоянии от астероида находился корабль в начальный момент времени?
в) на каком расстоянии от астероида будет находиться корабль через 4 часа после старта?
г) чему равна скорость корабля в километрах в секунду?

а) Будем откладывать время в часах, а расстояние в тыс.км
Отмечаем точки A(1;38) и B(2;56), проводим через них прямую.
Полученная прямая и есть график движения (x=x(t)).
Задача 2
Найдем скорость корабля (v_x): $$ v_x=frac{x_2-x_1}{t_2-t_1}=frac{56-38}{2-1}=18 (text{тыс.км/ч}) $$ Найдем начальную координату (x_0): $$ x_0=x_1-v_x t_1=38-18cdot v_1=20 (text{тыс.км/ч}) $$ Получаем уравнение движения: $$ x(t)=x_0+v_x t, x(t)=20+18t $$ где (x) – в тыс.км, а (t) – в часах.

б) В начальный момент времени корабль находился на расстоянии (x_0=20) тыс.км от астероида.

в) Через 4 часа после старта корабль будет находиться на расстоянии $$ x(4)=20+18cdot 4=92 (text{тыс.км}) $$
г) Переведем скорость в км/с: $$ 18000frac{text{км}}{text{ч}}=frac{18000 text{км}}{1 text{ч}}=frac{18000 text{км}}{3600 text{c}}=5 text{км/c} $$ Ответ:
а) (x(t)=20+18t) ((x) в тыс.км, (t) в часах); б) 20 тыс.км; в) 92 тыс.км; г) 5 км/с

движение тела задано графиком координаты (зависимости координаты от времени). по графику определите: а) начальную координату тела б) проекцию скорости тела в) направление движения тела (по ост х или против оси х) г) запишите уравнение координаты

помогите пожалуйста!!!!

Остались вопросы?

Новые вопросы по предмету Физика

Добавить комментарий