Как найти начальную координату точки формула

Формула координаты тела при равномерном прямолинейном движении

Прямолинейное равномерное движение является наиболее простым и понятным типом механического движения. Подробнее узнать про этот вид движения можно здесь.

Для нахождения координаты тела при равномерном прямолинейном движении используется довольно простая формула:

Формула координаты тела при прямолинейном равномерном движении

x0 — координата тела в начальный момент времени,

x — координата тела в текущий момент времени,

t — время движения,

V — скорость тела

Таким образом, необходимо знать только начальную координату тела, его скорость и время в пути. Вы можете подставить эти значения в наш онлайн калькулятор и получить результат:

Уравнение координаты при равноускоренном прямолинейном движении

теория по физике 🧲 кинематика

Уравнение координаты — зависимость координаты тела от времени:

Уравнение координаты при равноускоренном прямолинейном движении:

x0 — координата тела в начальный момент времени, v0x —проекция начальной скорости на ось ОХ, ax —проекция ускорения на ось ОХ, x — координата тела в момент времени t

Зная уравнение координаты, можно определить координату тела в любой момент времени.

Пример №1. Движение автомобиля задано уравнением:

Определить начальное положение автомобиля относительно тела отсчета, его начальную скорость и ускорение. Также найти положение тела относительно тела отсчета в момент времени t = 10 c.

Уравнение координаты — это многочлен. В уравнении выше оно включает в себя только 2 многочлена. Первый — 15 — соответствует начальной координате тела. Поэтому x0 = 15. Коэффициент перед квадратом времени второго многочлена соответствует ускорению тела. Поэтому a = 5 м/с 2 . Второй многочлен отсутствует. Это значит, что коэффициент перед t равен 0. Поэтому начальная скорость тела равна нулю: v0 = 0 м/с.

В момент времени t = 10 c координата автомобиля равна:

Совместное движение двух тел

Иногда в одной системе отсчета рассматривается движение сразу двух тел. В этом случае движение каждого тела задается своим уравнением. Эти уравнения используются для нахождения различных параметров движения этих тел. Такой способ решения задач называется аналитическим.

Аналитический способ решения задачи на совместное движение тел

Чтобы найти место встречи двух тел, нужно:

  1. Построить уравнения зависимости x(t) обоих тел: x1(t) и x2(t).
  2. Построить уравнение вида x1 = x2.
  3. Найти время встречи двух тел tвстр.
  4. Подставить найденной время в любое из уравнений x1(t) или x2(t), чтобы вычислить координату xвстрч.

Пример №2. По одному направлению из одной точки начали двигаться два тела. Первое тело движется прямолинейно и равномерно со скоростью 3 м/с. Второе тело — равноускорено с ускорением 1 м/с 2 без начальной скорости. Определите, через какое время второе тело догонит первое. Вычислите, на каком расстоянии от тела отсчета это произойдет.

Составим уравнения для движения каждого из тел:

Приравняем правые части этих уравнений и найдем время t:

Корень – осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Чтобы найти, какое расстояние они пройдут за это время, подставим известное время в любое из уравнений:

x = 3t = 3∙6 = 18 (м).

Графический способ решения задачи на совместное движение тел

Существует графический способ решения данной задачи. Для этого нужно:

  1. Построить графики x1(t) и x2(t).
  2. Найти точку пересечения графиков.
  3. Пустить перпендикуляр из этой точки к оси ОХ.
  4. Значение точки пересечения — координата места пересечения двух тел.

Таким способом можно определить, в какое время произойдет встреча двух тел. Нужно лишь провести перпендикуляр к оси времени после построения графиков перемещений.

Графический способ решения задач требует высокой точности построения графиков. Поэтому он применяется редко!

Если в одной системе описывается движение двух тел, и одно тело начинает движение с опозданием tзапазд, то его уравнение координаты принимает

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Пример №3. Мальчики соревнуются в беге. По команде «Старт!» Миша побежал с ускорением 1 м/с 2 и через 4 секунды достиг максимальной скорости, с которой дальше продолжил движение. Саша отреагировал с опозданием и начал движение спустя 1 с после команды с ускорением 1,5 м/с 2 , достигнув максимальной скорости через 3 секунды. Найти время, через которое Саша догонит Мишу.

Если Саша догонит Мишу до того, как мальчики станут двигаться с равномерной скоростью, уравнение движения с равномерной скоростью можно игнорировать. Если это так, то корнем уравнения будет время, не превышающее 4 с (через столько времени оба мальчика начнут двигаться равномерно).

В таком случае составим уравнения только для тех участков пути, на которых мальчики двигались равноускорено:

Приравняем правые части уравнений и вычислим t:

В результате получаем два

Корень – осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Материальная точка движется прямолинейно с постоянным ускорением. График зависимости её координаты от времени x=x(t) изображён на рисунке.

В момент времени t=0 проекции её скорости υx и ускорения ax на ось Ох удовлетворяют соотношениям:

а)

б)

в)

г)

Алгоритм решения

  1. Определить характер движения материальной точки.
  2. Записать уравнение координаты материальной точки.
  3. С помощью графика зависимости координаты от времени и уравнения координаты определить проекции искомых величин.

Решение Графиком зависимости координаты от времени является парабола. Такой график соответствует равноускоренному прямолинейному движению. Уравнение координаты при равноускоренном прямолинейном движении имеет вид: Ветви параболы смотрят вверх. Это значит, что коэффициент перед квадратом переменной величины (времени) стоит положительный коэффициент. Следовательно, ax>0. Поэтому варианты «б» и «г» исключаются. Остается выяснить, чему равна скорость: она равна нулю (как в ответе «а») или меньше нуля (как в ответе «в»)? Моменту времени t=0 соответствует точка, являющая вершиной параболы. Когда ветви параболы смотрят вверх, в ее вершине скорость тела всегда равна нулю, так как эта точка лежит на границе между отрицательной и положительной скоростью. Отсюда делаем вывод, что верный ответ «а».Ответ: а

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

  1. Записать исходные данные.
  2. Записать уравнение движения грузовика и преобразовать его с учетом условий задачи.
  3. Выразить скорость грузовика из уравнения его движения.
  4. Записать уравнение движения мотоциклиста.
  5. Найти время встречи мотоциклиста и грузовика из уравнения движения мотоциклиста.
  6. Подставить время в формулу скорости грузовика и вычислить ее.

Решение

  • Координата встречи грузовика и мотоциклиста: x = 150 м.
  • Время запаздывания мотоциклиста: tзапазд = 5 с.
  • Ускорение, с которым мотоциклист начал движение: a = 3 м/с 2 .

Запишем уравнение движения грузовика:

Так как начальная координата равна нулю, это уравнение примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Отсюда скорость движения грузовика равна:

Запишем уравнение движения мотоциклиста:

Так как начальная координата равна нулю, начальная скорость тоже нулевая, и мотоциклист начал движение позже грузовика, это уравнение примет вид:

Найдем время, через которое грузовик и мотоциклист встретились:

Подставим найденное время встречи в формулу для вычисления проекции скорости грузовика:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Механическое движение

О чем эта статья:

Механическое движение

Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.

«Относительно других тел» — очень важные слова в этом определении. Для описания движения нам нужны:

  • тело отсчета
  • система координат
  • часы

В совокупности эти три параметра образуют систему отсчета.

В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉

Прямолинейное равномерное движение

Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.

Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.

Мы можем охарактеризовать это движение следующими величинами.

Скалярные величины (определяются только значением)

  • Время — в международной системе единиц СИ измеряется в секундах [с].
  • Путь — длина траектории (линии, по которой движется тело). В случае прямолинейного равномерного движения — длина отрезка [м].

Векторные величины (определяются значением и направлением)

  • Скорость — характеризует быстроту перемещения и направление движения материальной точки [м/с].
  • Перемещение — вектор, проведенный из начальной точки пути в конечную [м].

Проецирование векторов

Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.

Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.

Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.

Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.

Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.

Скорость

— скорость [м/с]
— перемещение [м]
— время [с]

Средняя путевая скорость

V ср.путевая = S/t

V ср.путевая — средняя путевая скорость [м/с]
S — путь [м]
t — время [с]

Задача

Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.

Решение:

Возьмем формулу средней путевой скорости
V ср.путевая = S/t

Подставим значения:
V ср.путевая = 210/2,5 = 84 км/ч

Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч

Уроки физики в онлайн-школе Skysmart не менее увлекательны, чем наши статьи!

Уравнение движения

Одной из основных задач механики является определение положения тела относительно других тел в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).

Уравнение движения

x(t) — искомая координата в момент времени t [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v

Уравнение движения при движении против оси

x(t) — искомая координата в момент времени t [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Прямолинейное равноускоренное движение

Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».

Итак, равноускоренное прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

Уравнение движения и формула конечной скорости

Основная задача механики не поменялась по ходу текста — определение положения тела относительно других тел в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.

Уравнение движения для равноускоренного движения

x(t) — искомая координата в момент времени t [м]
x0 — начальная координата [м]
v0x — начальная скорость тела в [м/с]
t — время [с]
ax — ускорение [м/с 2 ]

Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:

Формула конечной скорости

— конечная скорость тела [м/с]
— начальная скорость тела [м/с]
— время [с]
— ускорение [м/с 2 ]

Задача

Найдите местоположение автобуса, который разогнался до скорости 60 км/ч за 3 минуты, через 0,5 часа после начала движения из начала координат.

Решение:

Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

Так как автобус двигался с места, . Значит

Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

Подставим значения:
a = v/t = 60/0,05 = 1200 км/ч 2
Теперь возьмем уравнение движения.
x(t) = x0 + v0xt + axt 2 /2

Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

Подставим циферки:
км

Ответ: через полчаса координата автобуса будет равна 150 км.

Движение по вертикали

Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с 2 , а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).

Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .

Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.

Помните о том, что свободное падение — это не всегда движение по вертикали из состояния покоя. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.

[spoiler title=”источники:”]

http://skysmart.ru/articles/physics/mehanicheskoe-dvizhenie

[/spoiler]

Содержание:
  1. калькулятор координаты тела при равномерном прямолинейном движении
  2. формула координаты тела при равномерном прямолинейном движении

Прямолинейное равномерное движение является наиболее простым и понятным типом механического движения. Подробнее узнать про этот вид движения можно здесь.

Для нахождения координаты тела при равномерном прямолинейном движении используется довольно простая формула:

Формула координаты тела при равномерном прямолинейном движении

x=x_0+ V cdot t

x0 – начальная координата тела

V – скорость тела

t – время движения

x – координата тела в текущий момент времени (в момент времени t)

Таким образом, для того, чтобы найти координату тела при равномерном прямолинейном движении необходимо знать только начальную координату тела, его скорость и время в пути. Вы можете подставить эти значения в наш онлайн калькулятор и получить результат.

Уравнение движения точки


Уравнение движения точки

4.5

Средняя оценка: 4.5

Всего получено оценок: 68.

Обновлено 22 Июля, 2021

4.5

Средняя оценка: 4.5

Всего получено оценок: 68.

Обновлено 22 Июля, 2021

Кинематика — это раздел физики, который изучает движение без исследования его причин. С помощью кинематических закономерностей движения можно рассчитать, в каком месте будет находиться тело в тот или иной момент времени. Эти закономерности описываются с помощью математических формул, называемых «уравнения движения». Рассмотрим эту тему более подробно.

Движение материальной точки

Материальная точка — это тело, имеющее массу, размерами которого в данный момент можно пренебречь. Понятие материальной точки очень удобно в кинематике и динамике, поскольку позволяет исключить несущественные стороны исследуемого движения и сосредоточиться на основных параметрах.

Материальная точка

Рис. 1. Материальная точка.

Материальная точка находится в некоторой системе отсчёта, поэтому ей можно приписать некоторые координаты — одну, две или три, в зависимости от числа координатных осей.

Движение материальной точки состоит в том, что некоторые из координат меняются с течением времени. Следовательно, для описания движения необходимо сопоставить каждому моменту времени соответствующие координаты. Сделать это можно различными способами, например, просто составив таблицу, в первом столбце которой стоят моменты времени, а в остальных столбцах — соответствующие координаты. Однако удобнее найти математическую формулу, в которой в качестве исходной независимой переменной берётся время, а результатом формулы является координата.

Точка в системе координат

Рис. 2. Точка в системе координат

Уравнения движения точки

Математические формулы, с помощью которых можно найти координаты точки в любой момент времени, называются уравнениями движения материальной точки.

Примером самого простого уравнения движения точки является формула:

$$x(t)=0$$

Несмотря на крайнюю простоту, эта формула обладает всеми чертами уравнения движения. В ней есть координата $x$, и, подставляя разные моменты времени, можно её найти. В данном случае, какой бы момент времени не взять, координата всегда будет равна нулю, то есть точка покоится в начале координат.

Возьмём пример немного сложнее. Если точка движется с постоянной скоростью, то, как известно к 9 классу, умножив скорость на время движения, мы получаем пройденное расстояние. В виде формулы это выразится, например, следующим образом:

$$x(t)=5t$$

С помощью этой формулы мы можем выяснить, что в начальный момент времени точка находилась в начале координат (подставив нулевое время, мы получим нулевую координату). Подставляя другие значения времени, мы найдём соответствующую координату. Кроме того, из формулы можно получить и скорость, с которой движется материальная точка — 5 метров в секунду, или других единиц, принятых в системе отсчёта.

Если в начальный момент точка имела некоторую координату, допустим, 1 (метр), то её уравнение движения примет вид:

$$x(t)=5t+1$$

Часто в кинематических уравнениях движения используются буквы-обозначения, а для определения конкретных координат они заменяются конкретными числами. В последнем примере скорость можно заменить буквой $v$, а начальную координату — $x_0$. Уравнение движения примет вид:

$$x(t)=vt+x_0$$

Наконец, в системе отсчёта может быть не одна, а несколько координатных осей. В этом случае движение материальной точки описывается системой уравнений. Например:

$$begin{cases}x=2t+1\y=3t+3\z=6t+5 end{cases}$$

В данном случае описывается движение в трёхмерном пространстве точки, которая в начальный момент имела координаты (1; 3; 5) и скорость которой равна 7.

Для описания движения в системе отсчёта с несколькими координатами нередко используется векторный способ описания, когда все переменные в уравнении являются векторами. Записи получаются более компактными, хотя описывают те же самые координаты и движения.

Векторный способ описания движения

Рис. 3. Векторный способ описания движения.

Заключение

Что мы узнали?

Уравнения движения точки — это математические формулы, связывающие время в принятой системе отсчёта с координатами точки в ней. Подставляя в эти уравнения различные моменты времени, можно получить положения точки в эти моменты. Кроме того, из уравнений движения можно получить скорость, с которой движется точка.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.5

Средняя оценка: 4.5

Всего получено оценок: 68.


А какая ваша оценка?

В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.

  • Нахождение координат вектора

  • Примеры задач

Нахождение координат вектора

Для того, чтобы найти координаты вектора AB, нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).

Вектор AB

Формулы для определения координат вектора

Для плоских задач AB = {Bx – Ax; By – Ay}
Для трехмерных задач AB = {Bx – Ax; By – Ay; Bz – Az}
Для n-мерных векторов AB = {B1 – A1; B2 – A2; … Bn – An}

Примеры задач

Задание 1
Найдем координаты вектора AB, если у его точек следующие координаты: A = (2; 8), B = (5; 12).

Решение:
AB = {5 – 2; 12 – 8} = {3; 4}.

Задание 2
Определим координаты точки B вектора AB = {6; 14}, если координаты точки A = (2; 5).

Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = ABx + Ax = 6 + 2 = 8.
By = ABy + Ay = 14 + 5 = 19.

Таким образом, B = (8; 19).

Конспект по физике для 8 класса «Перемещение и описание движения». Как определить координаты тела, движущегося равномерно и прямолинейно. Что такое уравнение движения.

Конспекты по физике    Учебник физики    Тесты по физике


Перемещение и описание движения

Система отсчёта используется для того, чтобы определить положение тела в пространстве в некоторый момент времени. В случае когда тело движется, возникает задача вычисления его координат в некоторые моменты времени.

ПРОЕКЦИИ ПЕРЕМЕЩЕНИЯ НА КООРДИНАТНЫЕ ОСИ

Если известен вектор перемещения тела, то при расчетах, как правило, используют не координаты вектора, как такового, а его проекции на оси координат. Если опустить перпендикуляры из начала и конца вектора перемещения s на координатную ось X, то получится отрезок sx, который называют проекцией перемещения. При этом проекция вектора на ось считается положительной, если координата конца вектора перемещения оказывается больше координаты его начала. В противном случае проекция считается отрицательной.

Если вектор и ось параллельны, то длина вектора равна его проекции на эту ось.

При решении многих задач необходимо уметь находить проекции вектора перемещения на координатные оси. Если (х0; у0) и (х; у) — координаты начала и конца вектора, то его проекции на оси абсцисс и ординат будут равны соответственно

sx = x – x0,     (1)
sy = y – y0

Зная проекции вектора перемещения, можно найти его длину (модуль) по теореме Пифагора:

ОПРЕДЕЛЕНИЕ КООРДИНАТ ДВИЖУЩЕГОСЯ ТЕЛА И ЕГО ПЕРЕМЕЩЕНИЯ

Если тело движется прямолинейно, то траектория его движения совпадает с перемещением. При этом пройденный телом путь равен значению модуля вектора перемещения.

А как описать движение тела в более сложном случае? На рисунке представлен график движения самолёта. Сначала он набирал высоту, двигаясь из точки А в точку В, затем двигался на одной и той же высоте (до точки С) и, наконец, приземлился в точке D. На какой высоте проходил полёт? Высоте полёта соответствуют координаты по оси OY, значит, в точке В самолёт набрал высоту 3 км.

Теперь ответим на вопрос: какой путь проделал самолёт на этой высоте? Проекция перемещения s2x = 80 — 20 = 60 км.

Так как всё это время самолёт двигался параллельно оси ОХ, длина вектора перемещения равна его проекции на эту ось. Следовательно, модуль перемещения самолёта из точки В в точку С равен 60 км. Этому же значению равен и путь самолёта из точки В в точку С.

И наконец, определим дальность полёта самолёта. Для этого нам надо найти модуль перемещения самолёта из точки А в точку D: |s| = sx = 100 — 0 = 100 км.

Таким образом, при помощи перемещения и его проекций мы описали сложное движение самолёта.

ПЕРЕМЕЩЕНИЕ И СКОРОСТЬ ПРИ РАВНОМЕРНОМ ПРЯМОЛИНЕЙНОМ ДВИЖЕНИИ

Так как при прямолинейном движении пройденный телом путь равен значению модуля вектора перемещения, мы можем сказать, что скоростью равномерного прямолинейного движения называют векторную величину, равную отношению перемещения тела ко времени, за которое это перемещение произошло. При равномерном прямолинейном движении векторы скорости и перемещения направлены в одну сторону. Зная скорость равномерного движения, можно найти перемещение тела за любой промежуток времени:

Поскольку скорость υ является векторной величиной, её тоже можно изобразить графически. Обозначим её проекцию на координатную ось υx. Если направление координатной оси совпадает с направлением движения тела, то для расчёта перемещения тела можно использовать формулу

УРАВНЕНИЕ ДВИЖЕНИЯ

Уравнение зависимости координаты тела от времени называют уравнением движения.

Пусть тело совершило перемещение s. Направим координатную ось X по направлению перемещения тела. Обозначим начальную координату тела х0, а конечную координату тела х. Тогда по формуле (1) sx = х – х0.

Но по формуле (3) sx = υxt. Следовательно,

Таким образом, координату тела при равномерном прямолинейном движении в любой момент времени можно определить, если известны его начальная координата и проекция скорости движения на ось X.

Ранее при решении задач мы использовали формулу s = υt без стрелочек. Почему? Символом s здесь обозначался путь, пройденный телом, а символом и — модуль скорости. Теперь нам известно, что при равномерном прямолинейном движении путь равен модулю перемещения. Поэтому если нас не интересует направление движения тела, а необходимо только найти его путь, то эта формула поможет нам найти решение.


Вы смотрели Конспект по физике для 8 класса «Перемещение и описание движения».

Вернуться к Списку конспектов по физике (Оглавление).

Просмотров: 13 113

Добавить комментарий