Если тело бросить горизонтально с некоторой высоты, оно будет одновременно падать и двигаться вперед. Это значит, что оно будет менять положение относительно двух осей: ОХ и ОУ. Относительно оси ОХ тело будет двигаться с постоянной скоростью, а относительно ОУ — с постоянным ускорением.
Кинематические характеристики движения
Важные факты!
Графически движение горизонтально брошенного тела описывается следующим образом:
- Вектор скорости горизонтально брошенного тела направлен по касательной к траектории его движения.
- Проекция начальной скорости на ось ОХ равна v0: vox = v0. Ее проекция на ось ОУ равна нулю: voy = 0.
- Проекция мгновенной скорости на ось ОХ равна v0: vx = v0. Ее проекция на ось ОУ равна нулю: vy = –gt.
- Проекция ускорения свободного падения на ось ОХ равна нулю: gx = 0. Ее проекция на ось ОУ равна –g: gy = –g.
Модуль мгновенной скорости в момент времени t можно вычислить по теореме Пифагора:
Подставив в эту формулу значения проекций мгновенной скорости в момент времени t, получим:
Минимальная скорость в течение всего времени движения равна начальной скорости: vmin = v0.
Максимальной скорости тело достигает в момент приземления. Поэтому максимальной скоростью тела в течение всего времени движения является его конечная скорость: vmax = v.
Время падения — время, в течение которого перемещалось тело до момента приземления. Его можно выразить через формулу высоты при равноускоренном прямолинейном движении:
h0 — высота, с которой тело бросили в горизонтальном направлении.
Дальность полета — перемещение тела относительно ОХ. Обозначается буквой l. Так как относительно ОХ тело движется с постоянной скоростью, для вычисления дальности полета можно использовать формулу перемещения при равномерном прямолинейном движении:
l = sx = v0tпад
Выразив время падения через высоту и ускорение свободного падения, формула для определения дальности полета получает следующий вид:
Горизонтальное смещение тела — смещение тела вдоль оси ОХ. Вычислить горизонтальное смещение тела в любой момент времени t можно по формуле координаты x:
Учитывая, что x0 = 0, и проекция ускорения свободного падения на ось ОХ тоже равна нулю, а проекция начальной скорости есть модуль этой скорости, данная формула принимает вид:
x = v0t
Мгновенная высота — высота, на которой находится тело в выбранный момент времени t. Она вычисляется по формуле координаты y:
Пример №1. Из окна, расположенного 5 м от земли, горизонтально брошен камень, упавший на расстоянии 8 м от дома. С какой скоростью был брошен камень?
Так как нам известна высота места бросания и дальность полета, начальную скорость тела можно вычислить по формуле:
Выразим начальную скорость и вычислим ее:
Горизонтальный бросок тела с горы
Горизонтальный бросок тела с горы — частный случай горизонтального броска. От него он отличается увеличенным расстоянием между местом бросания и местом падения. Это увеличение появляется потому, что плоскость находится под наклоном. И чем больше этот наклон, тем больше времени требуется телу, чтобы приземлиться.
График горизонтального броска тела с горы
α — угол наклона плоскости к горизонту, s — расстояние от места бросания до места падения
Дальность полета — смещение тела относительно оси ОХ от места бросания до места падения. Она равна произведению расстояния от места бросания до места падения и косинуса угла наклона плоскости к горизонту:
l = s • cosα
Начальная высота — высота, с которой было брошено тело. Обозначается h0. Начальная высота равна произведению расстояния от места бросания до места падения и синусу угла наклона плоскости к горизонту:
h0 = s sinα
Пример №2. На горе с углом наклона 30о бросают горизонтально мяч с начальной скоростью 15 м/с. На каком расстоянии от точки бросания вдоль наклонной плоскости он упадет?
Выразим это расстояние через дальность полета:
Дальность полета выражается по формуле:
Подставим ее в формулу для вычисления расстояния от точки бросания до точки падения:
Выразим с учетом формулы начальной высоты:
Преобразуем:
Поделим обе части выражения на общий множитель s:
Подставим известные значения:
Задание EF18083
Шарик, брошенный горизонтально с высоты H с начальной скоростью υ0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).
В другом опыте на этой же установке шарик массой 2m бросают со скоростью 2υ0.
Что произойдёт при этом с временем полёта, дальностью полёта и ускорением шарика? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:
- увеличится
- уменьшится
- не изменится
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Алгоритм решения
- Записать формулы для каждой из величин.
- Определить, как зависит эта физическая величина от начальной скорости и массы.
- Определить характер изменения физической величины при увеличении начальной скорости и массы шарика.
Решение
Время полета тела, брошенного горизонтально, определяется формулой:
Исходя из формулы, время никак не зависит от начальной скорости и массы тела. Поэтому оно при увеличении начальной скорости и массы вдвое никак не изменится.
Дальность полета тела, брошенного горизонтально, определяется формулой:
Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет увеличена вдвое, дальность полета тоже увеличится (вдвое). От массы дальность полета никак не зависит.
Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.
Значит, верный ответ — 313.
Ответ: 313
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18048
Шарик, брошенный горизонтально с высоты H с начальной скоростью υ0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).
Что произойдёт с временем полёта, дальностью полёта и ускорением шарика, если на этой же установке уменьшить начальную скорость шарика в 2 раза? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:
- увеличится
- уменьшится
- не изменится
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Алгоритм решения
- Записать формулы для каждой из величин.
- Определить, как зависит эта физическая величина от начальной скорости.
- Определить характер изменения физической величины при уменьшении начальной скорости.
Решение
Время полета тела, брошенного горизонтально, определяется формулой:
Исходя из формулы, время никак не зависит от начальной скорости. Поэтому оно при уменьшении начальной скорости вдвое не изменится.
Дальность полета тела, брошенного горизонтально, определяется формулой:
Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет уменьшена вдвое, дальность полета тоже уменьшится (вдвое).
Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.
Значит, верный ответ — 323.
Ответ: 323
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 18.2k
Тело брошено под углом к горизонту. Как вычислить начальную скорость?
Знаток
(293),
закрыт
12 лет назад
Дополнен 12 лет назад
Формула.
Валентина Вавилова(Серкова)
Гений
(62183)
12 лет назад
Для тела, брошенного, под углом к горизонту существуют 3 формулы:
Времени падения t=2*v0*sin a / g ( a( альфа ) – угол под которым бросили) .
Мах. высоты подъема hмах =v0^2*sin^2 a / 2g .
Дальности полета L=v0^2* ( sin 2a ) / g .
Смотря что дано в задаче, выбираешь ту, которая подходит . и выражаешь начальную скорость v0, из любой формулы.
1. Формулы максимальной высоты и времени за которое тело поднялось на максимальную высоту
h max
– максимальная высота достигнутая телом за время t
Vк – конечная скорость тела на пике, равная нулю
Vн – начальная скорость тела
t – время подъема тела на максимальную высоту h
g ≈ 9,8 м/с2 – ускорение свободного падения
Формула максимальной высоты (h max):
Формула времени за которое тело достигло максимальную высоту (t):
2. Формулы скорости, высоты и времени тела брошенного вертикально вверх под воздействием силы тяжести
h – расстояние пройденное телом за время t
Vн – начальная скорость тела
V – скорость тела в момент времени t
t – время подъема за которое тело пролетело расстояние h
g ≈ 9,8 м/с2 – ускорение свободного падения
Формула скорости тела в момент времени t (V):
Формула начальной скорости тела (Vн):
Формулы высоты тела в момент времени t (h):
Формулы времени, за которое тело достигло высоту h (t):
- Подробности
-
Опубликовано: 04 августа 2015
-
Обновлено: 13 августа 2021
Движение тела, брошенного под углом к горизонту, теория и онлайн калькуляторы
Движение тела, брошенного под углом к горизонту
Начальные условия. Движение тела, брошенного под углом к горизонту
Рассмотрим движение тела в поле тяжести Земли, сопротивление воздуха учитывать не будем. Пусть начальная скорость брошенного тела направлена под углом к горизонту $alpha $ (рис.1). Тело брошено с высоты ${y=h}_0$; $x_0=0$.
Тогда в начальный момент времени тело имеет горизонтальную ($v_x$) и вертикальную ($v_y$) составляющие скорости. Проекции скорости на оси координат при $t=0$ равны:
[left{ begin{array}{c}
v_{0x}=v_0{cos alpha , } \
v_{0y}=v_0{sin alpha . } end{array}
right.left(1right).]
Ускорение тела равно ускорению свободного паления и все время направлено вниз:
[overline{a}=overline{g}left(2right).]
Значит, проекция ускорения на ось X равна нулю, а на ось Y равна $a_y=g.$
Так как по оси X составляющая ускорения равна нулю, то скорость движения тела в этом направлении является постоянной величиной и равна проекции начальной скорости на ось X (см.(1)). Движение тела по оси X равномерное.
При ситуации, изображенной на рис.1 тело по оси Y будет двигаться сначала вверх, а затем виз. При этом ускорение движения тела в обоих случаях равно ускорению $overline{g}.$ На прохождение пути вверх от произвольной высоты ${y=h}_0$ до максимальной высоты подъема ($h$) тело тратит столько же времени, сколько на падение вниз от $h$ до ${y=h}_0$. Следовательно, точки симметричные относительно вершины подъема тела лежат на одинаковой высоте. Получается, что траектория движения тела симметрична относительно точки-вершины подъема – и это парабола.
Скорость движения тела, брошенного под углом к горизонту можно выразить формулой:
[overline{v}left(tright)={overline{v}}_0+overline{g}t left(3right),]
где ${overline{v}}_0$ – скорость тела в момент броска. Формулу (3) можно рассматривать как результат сложения скоростей двух независимых движений по прямым линиям, в которых участвует тело.
Выражения для проекции скорости на оси принимают вид:
[left{ begin{array}{c}
v_x=v_0{cos alpha , } \
v_y=v_0{sin alpha -gt } end{array}
left(4right).right.]
Уравнение для перемещения тела при движении в поле тяжести:
[overline{s}left(tright)={overline{s}}_0+{overline{v}}_0t+frac{overline{g}t^2}{2}left(5right),]
где ${overline{s}}_0$ – смещение тела в начальный момент времени.
Проектируя уравнение (5) на оси координат X и Y, получим:
[left{ begin{array}{c}
x=v_0{cos left(alpha right)cdot t, } \
y={h_0+v}_0{sin left(alpha right)cdot t-frac{gt^2}{2} } end{array}
left(6right).right.]
Тело, двигаясь вверх, имеет по оси Y сначала равнозамедленное перемещение, после того, как тело достигает вершины, движение по оси Y становится равноускоренным.
Траектория движения материальной точки получается, задана уравнением:
[y=h+x tg alpha -frac{gx^2}{2v^2_0{cos}^2alpha }left(7right).]
По форме уравнения (7) видно, что траекторией движения является парабола.
Время подъема и полета тела, брошенного под углом к горизонту
Время, затрачиваемое телом для того, чтобы достигнуть максимальной высоты подъема получают из системы уравнений (4). . В вершине траектории тело имеет только горизонтальную составляющую, $v_y=0.$ Время подъема ($t_p$) равно:
[t_p=frac{v_0{sin alpha }}{g}left(8right).]
Общее время движения тела (время полета ($t_{pol}))$находим из второго уравнения системы (6), зная, что при падении тела на Землю $y=0$, имеем:
[t_{pol}=frac{v_0{sin alpha +sqrt{v^2_0{sin}^2alpha +2gh} }}{g}left(9right).]
Дальность полета и высота подъема тела, брошенного под углом к горизонту
Для нахождения горизонтальной дальности полета тела ($s$) при заданных нами условиях в уравнение координаты $x$ системы уравнений (6) следует подставить время полета ($t_{pol}$) (9). При $h=0,$ дальность полета равна:
[s=frac{v^2_0{sin left(2alpha right) }}{g}left(10right).]
Из выражения (9) следует, что при заданной скорости бросания дальность полета максимальна при $alpha =frac{pi }{4}$.
Максимальную высоту подъема тела ($h_{max}$) находят из второго уравнения системы (6), подставляя в него время подъема ($t_p$) (8):
[h_{max}=h+frac{{v_0}^2{{sin}^2 б }}{2g}left(11right).]
Выражение (11) показывает, что максимальная высота подъема тела прямо пропорциональна квадрату скорости бросания и увеличивается при росте угла бросания.
Примеры задач с решением
Пример 1
Задание. Во сколько раз изменится время полета тела, которое бросили с высоты $h$ в горизонтальном направлении, если скорость бросания тела увеличили в $n$ раз?
Решение. Найдем формулу для вычисления времени полета тела, если его бросили горизонтально (рис.2).
В качестве основы для решения задачи используем выражение для равноускоренного движения тела в поле тяжести:
[overline{s}={overline{s}}_0+{overline{v}}_0t+frac{overline{g}t^2}{2}left(1.1right).]
Используя рис.2 запишем проекции уравнения (1.1) на оси координат:
[left{ begin{array}{c}
X:x=v_0t;; \
Y:y=h_0-frac{gt^2}{2} end{array}
right.left(1.2right).]
Во время падения тела на землю $y=0,$ используем этот факт и выразим время полета из второго уравнения системы (1.2), имеем:
[0=h_0-frac{g{t_{pol}}^2}{2}to t_{pol}=sqrt{frac{2h_0}{g}} left(1.3right).]
Как мы видим, время полета тела не зависит от его начальной скорости, следовательно, при увеличении начальной скорости в $n$ раз время полета тела не изменится.
Ответ. Не изменится.
Пример 2
Задание. Как изменится дальность полета тела в предыдущей задаче, если начальную скорость увеличить в $n$ раз?
Решение. Дальность полета – это расстояние, которое пройдет тело по горизонтальной оси. Это означает, что нам потребуется уравнение:
[x=v_0t (2.1)]
из системы (1.2) первого примера. Подставив вместо $t,$ время полета, найденное в (1.3), мы получим дальность полета ($s_{pol}$):
[s_{pol}=v_0t_{pol}=v_0sqrt{frac{2h_0}{g}} left(2.2right).]
Из формулы (2.2) мы видит, что при заданных условиях движения дальность полета прямо пропорциональна скорости бросания тела, следовательно, во сколько раз увеличим начальную скорость, во столько раз увеличится дальность полета тела.
Ответ. Дальность полета тела увеличится в $n$ раз.
Читать дальше: закон сообщающихся сосудов.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Движение горизонтально брошенного тела:
Рассмотрим движение шара, движущегося прямолинейно по поверхности стола с высотой
При достаточно малом сопротивлении воздуха, которым можно пренебречь, тело будет двигаться в горизонтальном направлении равномерно со скоростью . Поэтому перемещение
в горизонтальном направлении в любой момент времени , или длина полета, определяется следующей формулой:
Проекции скорости тела на оси и определятся следующими соотношениями:
В вертикальном же направлении, двигаясь равноускоренно без начальной скорости, тело будет свободно падать с высоты . Следовательно, положение тела в вертикальном направлении после произвольного времени будет определяться формулой:
Из соотношений (1.21) и (1.22) уравнение траектории движения горизонтально брошенного тела на плоскости будет иметь следующий вид:
Выражение (1.24) является уравнением параболы. Значит, горизонтально брошенное тело будет двигаться по параболической линии. Время полета тела, брошенного горизонтально с высоты , определяется выражением:
В этом случае формула для расчета длины полета тела будет иметь вид:
Горизонтально брошенное тело, одновременно двигаясь в горизонтальном направлении равномерно и в вертикальном направлении равноускоренно, свободно падает. К концу движения (после истечения времени ) скорости в горизонтальном и вертикальном направлении будут и соответственно. Таким образом, скорость тела при падении на землю определяется выражением:
или
Перемещение и траектория тела при криволинейном движении неравны между собой. Модуль вектора и направление движения горизонтально брошенного тела на протяжении движения меняются непрерывно.
Образец решения задачи:
Тело брошено горизонтально на высоте 35 м со скоростью 30м/с. Найти скорость тела при падении на землю.
Дано:
Найти:
Формула:
Решение:
Ответ: 40 м/c.
Движение тела, брошенного горизонтально и под углом к горизонту
Если материальная точка участвует одновременно в нескольких движениях, то такое движение называют сложным.
Примером сложного движения является движение под действием силы тяжести в том случае, если падающему телу сообщена начальная скорость, непараллельная вектору ускорения свободного падения.
Рассмотрим движение тела, брошенного горизонтально со скоростью Выберем систему координат так, что ее начало находится на поверхности Земли, направив ось Ох горизонтально, а ось Оу — вертикально (рис. 23).
Это сложное движение можно представить в виде суммы двух независимых движений — равномерного с постоянной скоростью вдоль горизонта (оси Ох) и свободного падения в вертикальном направлении с ускорением
Движение тела в горизонтальном направлении будет описываться уравнением
а в вертикальном — уравнением
Здесь — координата тела по оси Оу в начальный момент времени Если тело брошено с высоты то время падения определяется из
условия
Для получения уравнения траектории движения у(х) необходимо исключить время из уравнений движения (1) и (2). Из уравнения (1) выражаем время t и подставляем в уравнение (2). Получаем
Это уравнение параболы, ветви которой направлены вниз, так как коэффициент перед множителем отрицательный.
Скорость вдоль направления оси Ох остается неизменной и равной
Вдоль оси Оу движение равноускоренное. В начальный момент времени вертикальная составляющая скорости равна нулю поэтому мгновенная скорость вдоль оси Оу находится из соотношения Модуль мгновенной скорости определяется по теореме Пифагора (см. рис. 23):
Угол между начальной скоростью и мгновенной скоростью и в момент времени t можно найти из соотношения
В приведенных формулах сопротивление воздуха не учитывается.
Рассмотрим теперь движение тела, брошенного со скоростью под некоторым углом к горизонту (рис. 24).
Это сложное движение можно представить в виде суммы двух независимых движений — равномерного в горизонтальном направлении со скоростью
и равноускоренного в вертикальном направлении с ускорением и начальной
скоростью
В том случае, если система координат выбрана так, что начальные координаты уравнение траектории движения имеет вид
Как и при движении тела, брошенного горизонтально, траектория представляет собой параболу, ветви которой направлены вниз, поскольку коэффициент перед отрицателен. Вершина параболы при этом имеет координаты
где l — дальность полета тела, — максимальная высота его подъема в процессе полета.
Модули горизонтальной и вертикальной составляющих мгновенной скорости движения определяются из следующих соотношений:
Мгновенную скорость и движения тела в произвольной точке Л траектории можно найти как векторную сумму горизонтальной и вертикальной мгновенных скоростей движения (см. рис. 24).
Время подъема тела можно найти из условия
Если сопротивление воздуха при движении не учитывается, то время подъема равно времени падения: (докажите это самостоятельно).
Таким образом, время полета тела можно найти как
Определив вертикальную составляющую скорости в искомый момент времeни, по формуле можно найти высоту, на которой находится тело.
Максимальная высота подъема тела легко определяется из условия, что вертикальная составляющая скорости в этой точке равна пулю Тогда
Дальность полета l — расстояние, пройденное телом за время полета вдоль оси Ох с постоянной скоростью (см. рис. 24). Она определяется по формуле
Таким образом, дальность полета определяется модулем начальной скорости тела и углом его бросания
Заметим, что согласно формуле (9) при неизменном модуле начальной скорости тела максимальная дальность полета достигается при т. е. при угле бросания = 45°.
- Движение тела, брошенного под углом к горизонту
- Принцип относительности Галилея
- Движение в гравитационном поле
- Зависимость веса тела от вида движения
- Вертикальное движение тел в физик
- Неравномерное движение по окружности
- Равномерное движение по окружности
- Взаимная передача вращательного и поступательного движения