Как найти начальную скорость пули

Как найти начальную скорость пули игрушечного пистолета, пользуясь только рулеткой? При выстреле 1) вертикально вверх и 2) горизонтально поверхности земли. Сопротивлением воздуха пренебречь, что допустимо при малых скоростях движения.

Если сопротивление воздуха не учитывать, то при стрельбе вверх скорость считтать по формуле равенства кинетической и потенциальной энергий V^2=2*g*H (V – начальная скорость, g – 9.8, H – высота верхней точки траектории пули).

При горизонтальной V=S/sqrt(2h/g) (S – расстояние от ствола до места падения пули, h – высота ствола над поверхностью).

автор вопроса выбрал этот ответ лучшим

Михаи­л Белод­едов
[26.2K]

9 лет назад 

1) sqrt(2gh), где g – ускорение свободного падения, h – высота подьема над точкой старта.

2) s*sqrt(g/(2h)), где g – ускорение свободного падения, h – высота старта, s – пройденный путь до приземления.

Только это не на смекалку, это обычные школьные задачи.

bezde­lnik
[34.1K]

9 лет назад 

Задача на смекалку проста. Кинетическая энергия пули в момент выстрела вверх Ек =(mV^2)/2 будет равна потенциальной энергии пули на высоте взлета Еп = mgH. Отсюда начальная скорость пули V = √2gH. Например при высоте взлета 10 м начальная скорость V = √(2*981*10)= 14 м/c. При выстреле горизонтально начальная скорость будет такой же – винтовка и пуля одинаковые.

Знаете ответ?

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 декабря 2019 года; проверки требуют 4 правки.

Начальная скорость пули — скорость движения пули у дульного среза ствола.

За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытным путём с последующими расчетами. Дульная скорость сильно зависит от длины ствола: чем длиннее ствол, тем большее время пороховые газы могут воздействовать на пулю разгоняя её. Для пистолетных патронов дульная скорость примерно равна 300—500 м/с, для промежуточных и винтовочных 700—1000 м/с.

Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия.

При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное действие пули и пробивное действие пули, а также уменьшается влияние внешних условий на её полет.

Даже обычные пули, которые имеют начальную скорость более 1000 м/с обладают мощным фугасным действием. Это фугасное действие обладает экспансивным ростом, по мере того как начальная скорость переходит границу в 1000 м/с.

Основные факторы, влияющие на начальную скорость пули[править | править код]

  • вес пули;
  • вес порохового заряда;
  • форма и размер зёрен пороха (скорость сгорания пороха);
  • тип (марка) пороха.

Дополнительные факторы, влияющие на начальную скорость пули[править | править код]

  • длина ствола;
  • температура и влажность порохового заряда;
  • плотность заряжания;
  • силы трения между пулей и каналом ствола;
  • температура окружающей среды.

Влияние длины ствола[править | править код]

  • Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше начальная скорость. При постоянной длине ствола и постоянном весе порохового заряда начальная скорость тем больше, чем меньше вес пули.

Влияние характеристик порохового заряда[править | править код]

  • Формы и размеры пороха оказывают существенное влияние на скорость горения порохового заряда, а следовательно, и на начальную скорость пули. Они подбираются соответствующим образом при конструировании оружия.
  • С повышением влажности порохового заряда уменьшаются скорость его горения и начальная скорость пули.
  • С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличиваются максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полета пули. В связи с этим необходимо учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).
  • Изменение веса порохового заряда приводит к изменению количества пороховых газов, а следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули. Чем больше вес порохового заряда, тем больше максимальное давление и начальная скорость пули.

Длина ствола и вес порохового заряда увеличиваются при конструировании оружия до наиболее рациональных размеров.

Ссылки[править | править код]

  • Устройство для баллистических испытаний патронов стрелкового оружия
  • ОРУЖЕЙНАЯ МАСТЕРСКАЯ:НАЧАЛЬНАЯ СКОРОСТЬ ПУЛИ:ФАКТОРЫ ВЛИЯНИЯ

How fast a bullet is traveling when it leaves the end of a gun’s barrel, called the muzzle velocity, is of great interest to both those who work in the field of ballistics and physics students looking to cover a few key concepts in one, well, shot.

If the mass ​m​ and muzzle velocity ​v​ of a bullet are known, its kinetic energy and momentum can be determined from the relationships ​Ek = (1/2)​m​v2 and momentum ​p​ = ​m​​v​. This information in turn can reveal a lot about the sort of biological and other effects that can result from the single discharge of a firearm.

Muzzle Velocity Equation

If you know the acceleration of the bullet, you can determine muzzle velocity from the kinematics equation

v^2 = v_0^2 + 2ax

where ​v0 = initial velocity = 0, ​x​ = distance traveled inside the gun barrel, and ​v​ = muzzle velocity.

If you aren’t given the value of the acceleration but instead know the firing pressure inside the barrel, a muzzle velocity formula can be derived from the relationships between net force ​F​ (mass times acceleration), area ​A​, mass ​m​, pressure ​P​ (force divided by area) and acceleration ​a​ (force divided by mass).

Because ​P​ = ​F​/​A​, ​F​ = ​m​a​, and the area ​A​ of the cross-section of a cylinder (which a gun muzzle can be assumed to be) is π​r2 (​r​ being the radius of the muzzle), ​a​ can be expressed in terms of these other quantities:

a = frac{Pπr^2}{m}

Alternatively you could get a rough estimate of the bullet’s velocity by measuring the distance from the muzzle to a target and dividing this by the time it takes the bullet to reach the target, though there will be some loss due to air resistance. The best way to determine muzzle velocity is by using a chronograph.

Kinematic Equations for Projectile Motion

The standard ​equations of motion​ govern everything that moves, from bullets to butterflies. Here we specifically present the form these equations take in the case of projectile motion.

All projectile-motion problems are free-fall problems, because after an initial velocity is given to the projectile at time ​t​ = 0 of the problem, the only force acting on the projectile is gravity. So no matter how fast a bullet is fired, it is falling toward Earth just as quickly as if it had been simply dropped from your hand. This counter-intuitive property of motion rears its head repeatedly in projectile-motion problems.

Note that these equations are independent of mass and do not take into account air resistance, a common qualification in simple physics calculations. ​x​ and ​y​ are horizontal and vertical displacement in meters (m), ​t​ is time in seconds (s), ​a​ is acceleration in m/s2, and ​g​ = the acceleration due to gravity on Earth, ​9.81 m/s2​.

begin{aligned} &x = x_0 + v_xt ;text{(constant v)} \ &y = y_0 + frac{1}{2}(v_{0y} + v_y)t \ &v_y = v_{0y}-gt \ &y = y_0 + v_{0y}t-frac{1}{2}gt^2 \ &v_y^2 = v_{0y}^2-2g(y-y_0)end{aligned}

By using these equations, you can determine the path of a fired bullet and even correct for drop due to gravity when aiming at a distant target.

Selected Muzzle Velocities

Typical handguns have muzzle velocities in the range of 1,000 ft/s, which means that such a bullet would travel a mile in a little over five seconds if it hit nothing or did not fall to the ground by that point. Some police firearms are equipped to discharge bullets at over 1,500 ft/s.

  • To convert from ft/s to m/s, divide by 3.28.   

Muzzle Velocity Calculator

See the Resources for an online tool that allows for the input of very granular information about specific firearms and bullets to achieve estimates of muzzle velocity and other data related to ballistics.

Добавил:

Sekretar

Вовсе не секретарь

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

Скачиваний:

30

Добавлен:

17.08.2022

Размер:

188.72 Кб

Скачать

Начальная скорость пули, образование траектории.

Начальной
скоростью называется скорость движения
пули у дульного среза ствола. За начальную
скорость принимается условная скорость,
которая несколько больше дульной и
меньше максимальной. Она определяется
опытным путем с последующими расчетами.
Величина начальной скорости пули
указывается в таблицах стрельбы и в
боевых характеристиках оружия.

Начальная скорость является одной из
важнейших характеристик боевых свойств
оружия. При увеличении начальной скорости
увеличивается дальность полета пули,
дальность прямого выстрела, убойное и
пробивное действие пули, а также
уменьшается влияние внешних условий
на ее полет.

Величина начальной
скорости пули зависит от длины ствола;
веса пули; веса, температуры и влажности
порохового заряда, формы и размеров
зерен пороха и плотности заряжания.

Чем
длиннее ствол, тем большее время на пулю
действуют пороховые газы и тем больше
начальная скорость. При постоянной
длине ствола и постоянном весе порохового
заряда начальная скорость тем больше,
чем меньше вес пули.

Изменение веса
порохового заряда приводит к изменению
количества пороховых газов, а,
следовательно, и к изменению величины
максимального давления в канале ствола
и начальной скорости пули. Чем больше
вес порохового заряда, тем больше
максимальное давление и начальная
скорость пули.

Длина ствола и вес
порохового заряда увеличиваются при
конструировании оружия до наиболее
рациональных размеров.

С повышением
температуры порохового заряда
увеличивается скорость горения пороха,
а поэтому увеличивается максимальное
давление и начальная скорость. При
понижении температуры заряда начальная
скорость уменьшается. Увеличение
(уменьшение) начальной скорости вызывает
увеличение (уменьшение) дальности полета
пули. В связи с этим необходимо учитывать
поправки дальности на температуру
воздуха и заряда (температура заряда
примерно равна температуре воздуха).

С
повышением влажности порохового заряда
уменьшается скорость его горения и
начальная скорость пули.

Форма и
размеры пороха оказывают существенное
влияние на скорость горения порохового
заряда, а, следовательно, и на начальную
скорость пули. Они подбираются
соответствующим образом при конструировании
оружия.

Плотностью заряжания называется
отношение веса заряда к объему гильзы
при вставленной пуле (каморы сгорания
заряда). При глубокой посадке пуля
значительно увеличивается плотность
заряжания, что может привести при
выстреле к резкому скачку давления и
вследствие этого к разрыву ствола,
поэтому такие, патроны нельзя использовать
для стрельбы. При уменьшении (увеличении)
плотности заряжания увеличивается
(уменьшается) начальная скорость пули,
отдача оружия и угол вылета.

3.
2. Образование траектории

Траекторией
называется кривая линия, описываемая
центром тяжести пули в полете.

Пуля
при полете в воздухе подвергается
действию двух сил: силы тяжести и силы
сопротивления воздуха.

Сила тяжести
заставляет пулю постепенно понижаться,
а сила сопротивления воздуха непрерывно
замедляет движение пули и стремится
опрокинуть ее.

В результате действия
этих сил скорость полета пули постепенно
уменьшается, а ее траектория представляет
собой по форме неравномерно изогнутую
кривую линию.

Соседние файлы в папке ОГП

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Министерство общего и профессионального образования

Свердловской области

Муниципальное автономное общеобразовательное учреждение

«Верхнедубровская средняя общеобразовательная школа»

Измерение скорости полета пули

Исследовательский проект

Исполнитель:

Лукинских Татьяна

ученица 10 класса,

Руководитель:

Купреева С.А. учитель физики

Первой кв. категории

Верхнее Дуброво
2015г

Содержание

Введение

Занимаясь в военно-патриотическом клубе «Летучая мышь» при стрельбе из винтовки мне стало интересно, какова же скорость пули при выстреле. Ведь нажав на курок,она мгновенно попадает в цель.

Специалисты и модернизаторы оружия измеряют начальную скорость пули для того,чтобы сравнить скорость до и после починки или изменений в конструкции арбалета, винтовки или пистолета. Рядовому стрелку хронограф тоже может принести ощутимую пользу, помочь повысить свое мастерство, лучше узнать свое оружие, и получать больше удовольствия от стрельбы.

Измерения позволят узнать, сколько выдает ваше оружие метров в секунду тем или иным боеприпасом, что позволит подобрать оптимальный его вес. А зная точный вес снаряда и его начальную скорость легко подсчитать сколько джоулей выдает ваше оружие. В первую очередь он служит оружейникам при модернизации оружия, а также для сравнения начальной скорости у пистолетов и винтовок до и после проделанных изменений.

Стрелкам любителям хронограф полезен, ведь он помогает определить возможности оружия при покупке его в магазинах, так как не всегда озвученные характеристики пневматики настоящие. Ещё этот прибор помогает поближе узнать свою винтовку или пистолет.

В этом учебном году у нас появился элективный курс по физике, на котором мы решаем различные задания из Единого Государственного Экзамена прошлых лет, чтобы лучше сдать его по окончанию 11 класса. Так как я собираюсь в техническое Высшее учебное заведение, то мне этот курс очень полезен. Я выбрала эту тему, потому что такие задания часто встречаются в экзамене в части С, потому что эта тема актуальна на сегодняшний день, а данный проект поможет мне получше разобраться в понимании таких задач. Так же меня заинтересовало то, какая же скорость пули после того, как она преодолевает какое-то препятствие.

Первоначально я предположила,что в нашем мире существует какой-нибудь физический способ для определения скорости полета пули.

Для проверки гипотезы я поставила цель: выявить среднюю скорость пули всеми возможными способами.

Таким образом, объектом моего исследования является сама пуля, а предметом исследования является скорость пули.

Для достижения результата я решила несколько исследовательских задач:

1.Найти нужную информацию
2.Проанализировать полученную информацию и ресурсы
4.Выполнить заплонированные технологические задачи
5.Проанализировать выполненный проект

В моем проекте использованы такие методы,как:

  1. Аналитический метод решения задачи по механике

  2. Экспериментальный метод решения задачи

  3. Экспериментальная проверка эталоном (промышленным прибором)

Глава 1. Теоретические методы определения скорости полёта пули.

1.1 Параболический метод1.

Криволинейное баллистическое движение тела можно рассматривать как результат сложения двух прямолинейных движений: равномерного движения по горизонтали и равнопеременного движения по вертикали. По вертикали на пулю будет действовать сила тяжести и отклонять ее от горизонтали вниз. По горизонтали пуля летит по инерции и отклонения не будет.

Определим основные параметры баллистического движения пули, выпущенной по горизонтали: время падения по вертикали и дальность полета.

Для измерения необходимо выстрелить, целясь в центр мишени, находящейся на некоторой высоте от пола, с определенного расстояния , держа оружие на таком же расстоянии от пола, как и мишень, то есть оружие и центр мишени должны находиться на одной линии, параллельной поверхности пола.

Во время полета на пулю будет действовать сила тяжести, отклоняющая пулю вниз по вертикали. Это расстояние обозначим за Х. После выстрела необходимо измерить, на сколько пуля отклонилась от ее центра.

Рисунок 1. «Отклонение пули от горизонта под действием силы тяжести»

Для увеличения точности измерения надо производить несколько выстрелов и брать среднее отклонение пули.
, где g=9,8 м/с2-ускорение свободного падения, t-время полета.

Дальность полета пули S определяется по формуле:

, где V-искомая скорость пули.

1.2. Определение скорости пули с помощью баллистического маятника2.

Баллистический маятник — прибор для определения эффективности взрывчатого вещества. Представляет собой подвешенный на металлических тягах цилиндрический груз, в который вкладывается заряд взрывчатки, соответствующий эталону — 200 граммам тротила3. При подрыве взрывчатого вещества фиксируют величину отклонения маятника. Для этой цели он оборудуется специальной измерительной линейкой.

Баллистический маятник несколько иной конструкции может также применяться в баллистике — для установления скорости пуль и артиллерийских снарядов, в криминалистике — для экспертизы, например, поражающих свойств самодельного оружия. в этом случае баллистический маятник представляет собой тяжёлое тело на длинных нитях.

Летящая пуля имеет импульс,который она передаст маятнику при попадании в него. В результате маятник отклонится, поднявшись на высоту h.

hello_html_mc675868.png

Рисунок 2. «Баллистический маятник»

При решении задачи используем Закон сохранения импульса и Закон сохранения энергии.

Mпули*Vпули=Mмаятника*Vмаятника – закон сохранения импульса

По закону сохранения энергии кинетическая энергия пули переходит в потенциальную энергию поднятого маятника.

= – закон сохранения энергии, где g=9,8 м/с2 является ускореним свободного падения

Кроме того придется решить геометрическую задачу на определение катета прямоугольного треугольника b по гипотенузе с и косинусу прилежащего угла:

1.3. Измерение скорости пули методом Штерна4.

В 1920 г. О. Штерн разработал метод молекулярных пучков и с его помощью экспериментально измерил скорость теплового движения молекул газа. Установка Штерна была усовершенствована в 1929 г. Ламертом. В высоком вакууме вращаются, насаженные на общую ось, два круглых диска 1 и 2 с радиальными узкими прорезями, смещенными друг относительно друга на угол. Вся установка приводилась во вращение с постоянной угловой скоростью. Атомы , вылетевшие со скоростью достигают мишени 5, если время их пролета расстояния между дисками совпадает со временем поворота диска 2 на угол.

hello_html_m134e55ee.png

Рисунок 3. «Установка Штерна»

Эту идею можно использовать в качестве конструкции механического хронографа, который представляет собой два диска, закрепленных на одной вращающейся оси . Диски изготовили из плотной бумаги и разместили на оси проигрывателя пластинок.

При выстреле пуля пробивает сначала первый диск, затем второй. Время движения пули между дисками определяемт по величине угла , на который сместится пулевая пробоина на втором диске относительно пробоины на первом диске.

hello_html_3a3a6e73.png

Рисунок 4 «Схема опыта Штерна»

Зная расстояние между дисками 2 и их период вращения, скорость полета пули можно вычислить по формуле:

=V, где S-расстояние между дисками.

Зная N-число оборотов за секунду, можно найти период обращения дисков.

α-угол смещения пробоин

1.4. Прибор для измерения скорости пули5

Прибор для измерения скорости пули называется хронограф.

Виды хронографов для пневматического оружия:

Рогатый хронограф6. Преимуществами такого вида выступает маленькая цена и не ограниченная рамка. Также он простой и удобный и его можно использовать с любым типом пневматического оружия. При стрельбе с рук, из-за нестабильного положения ствола по отношению к оси хронографа, высокая нестабильность результатов измерений. Возможно будет создана модель с более широкой активной зоной или разработают дополнительные приспособления, которые обеспечат защиту от случайных попаданий. Также вполне может быть, что продумают фиксацию ствола при выстрелах относительно оси самого устройства.

Наствольный хронограф7. Достоинства этого вида – это портативность, дешевизна и простота при изготовлении. При этом он предоставляет высокую стабильность самих результатов при измерении, благодаря постоянству положения ствола относительно расположенных датчиков. Недостатками является его ствольное крепление, что сильно усложняет подготовку к самим измерениям, при этом такое крепление подходит не для всех типов оружия. В частности имеется значительный минус для CO2 пневматики — это большая погрешность измерений при стрельбе. В перспективе такой вид возможно модифицируют, что приведёт к появлению хронографа, который интегрирован в саундмодератор для использования только на одном оружии. Ещё возможно совместят дисплей индикации с оптическим прицелом.

Рамочный хронограф8. Этот вид характеризуется как простой и удобный прибор при использовании на всех типах пневматики. Ещё этот вид хронографа может измерить скорость пули на любом расстоянии от ствола. Но у него ограниченная рамка – активная зона, что приводит к повреждению устройства. Но рамочный вид хронографа сильно зависит от освещения, из-за чего у него такая большая нестабильность результатов при измерении. В будущем возможна настройка при плохом освещении, но это новшество существенно поднимет цену на устройство.

Глава 2 Экспериментальная часть

2.1 Параболический метод

Прежде всего нужно было установить уровень горизонта, чтобы ствол и мишень были на одном горизонтальном уровне9. Для этого можно использовать прибор для установления горизонтальности поверхности – уровень и сообщающиеся сосуды уровень жидкости в которых всегда устанавливается на одном уровне – горизонтальном.

Расстояние от ружья до цели – S=386 cм.
Смещение по вертикали
Х от места попадания пули до выбранной цели оказалось 3мм или 0,003м.

Тогда время падения пули t = = = =0,025c. Столько же времени пуля летит от ружья до цели. Тогда скорость пули можно определить: V= = 154,4 м/с

Скорость оказалась довольно высокой, меньше конечно настоящей убойной скорости примерно в 4.5 раза. Наш отечественный патрон 9x54R, диаметром ведущей части пули 9,27 мм, весом пули 15 г имеет начальную скорость 680 м/сек10.

Трудность эксперимента заключается в том,что происходит отдача при выстреле. Это объясняется реактивным движением,от которого невозможно избавится.

2.2. Баллистический Маятник.

В качестве бруска возьмем коробку и начиним пулеулавливающим материалом – пластилином. Подвесим на четырех нитях – нити с левой стороны сходятся вместе в верхней точке крепления, нити с правой стороны – сходятся вверху подальше от точки крепления нитей с левой стороны. Таким образом мы устраняем вращение маятника11.

Длина подвеса 200 см от оси подвеса до середины бруска. В общем – от потолка до стола.

Для оценки отклонения маятника используем ползунок. Маятник толкает вдоль линейки ползунок – футляр от спичечного коробка, и мы потом по ползунку видим отклонение маятника. Главное требование к ползунку – минимальный вес и хорошее скольжение по поверхности.

Массу пули можно точно определить, взвесив 10 пуль на электронных весах12.

m10 пуль=6,88 г
m1 пули=0,688 г

С помощью ползунка успокаиваем маятник и находим положение покоя. Выставляем по ползунку линейку на ноль.

Выбираем расстояние до маятника. Оказалось достаточно 1.5 метра.

Стараемся попасть в центр13.

После выстрела, по ползунку определяем отклонение маятника по спичечному коробку. Оно оказалось 14 см.

Зная массу изготовленного маятника – Mмаятника=200,38 г14, приходится учитывать изменение массы маятника с каждым выстрелом:
M в эксперименте=Mмаятника+m1пули =201,068г, так как при каждом выстреле масса маятника увеличивается на массу одной пули.

По закону сохранения импульса импульс пули передается импульсу маятника:
m1V=(M+m1)U , где m1V– импульс пули, (M+m1)U– импульс маятника после выстрела.

По закону сохранения энергии кинетическая энергия маятника, полученная от удара пули переходит в потенциальную энергию поднятого маятника: Екр

=hello_html_646270b9.png

Отсюда: =hg

Из треугольника ОАВ,найдём сторону ОА, используя теорему Пифагора:
ОА==1,99 м

Тогда высота подъема маятника:

h=2м-ОА=2-1,99 =0,01м=1см

Можно узнать скорость маятника, которую он получил в результате попадания пули: U== = 17 м/с

Теперь можно найти скорость пули:

V= = = 49,9 м/с

Большая погрешность эксперимента по сравнению с первым опытом, так как есть потери энергии на тепло в 3 раза, в связи с тем, что пуля плавит пластилин, а значит теряется механическая энергия на тепло.

2.3 Опыт по методу Штерна.

Для применения метода Штерна нам пришлось использовать обычный проигрыватель пластинок15, на ось которого укрепили два картонных диска на расстоянии:

h=10,5 см=0,105 м.

Радиус картонных дисков составил:

R=10 см=0,1 м.

Проигрыватель произвел 5 оборотов за 8,27 с.

Отсюда время одного оборота Т=1,654 с.

В результате выстрела16 по движущимся дискам пуля пробила отверстия в разных местах, отклонение L составило -3 мм=0,003 м17
Решаем задачу:
Применяем формулу длины окружности –
= .

Для определения времени Х пролета пули от одного диска до другого воспользуемся пропорцией:

=

Подставив численные данные, получим:

=,

Отсюда

х==0,008 с- время полета пули между двумя дисками

Теперь найдём скорость пули :

V=

V==13,125 м/с

Погрешность этого эксперимента составляет:

*100= *100=9%

Неточности этого эксперимента заключаются в том,что измеряется не скорость вылета, а так же происходит потеря энергии в 10 раз при пробивании первого диска. Картон оказался хорошим пулеулавливателем.

2.4. Хронограф

Этот метод я считаю эталоном определения скорости пули, так как хронограф – электронное устройство, которое имеет максимально малую погрешность. Любой способ непосредственного измерения величины имеет малую погрешность. Кроме того прибор позволяет определить непосредственно скорость пули при выстреле – начальную скорость пули.

Выстреливаем в отверстие хронографа несколько раз и находим среднее арифметическое всех значений. Так мы найдём начальную скорость пули при вылете из винтовки18.

1 выстрел=142 м/с

2 выстрел=144 м/с

3 выстрел=144 м/с

142+144+144=430 м/с – сумма значений скорости пули трех выстрелов

=143.3м/с – среднее значение.

2.5. Анализ экспериментов.

Сравнительный анализ значений скорости пули показал , что самый точный физический метод определения скорости пули – параболический, он дал наименьшую погрешность, относительно хронографа, самый грубый результат дает метод Штерна. Задачи с использованием баллистического маятника наиболее распространены на экзамене, являсь задачами повышенной сложности, но я считаю, что они на практике дают далеки от реальности.

Результат эксперимента

1 эксперимент.

Параболический метод.

154,4 м/с

2 эксперимент.

Баллистический маятник.

49,9 м/с

3 эксперимент. Метод Штерна.

13,125 м/с

4 эксперимент.Хронограф.

143,4 м/с

Таблица 6. «Результат эксперимента»

Заключение

В начале проекта я выдвинула гипотезу о том, что существует физический способ определения скорости полета пули. Моя гипотеза подтвердилась. Действительно, есть такие способы и при том не один.

В моем проекте было выполнено четыре эксперимента:

  1. Измерение скорости пули параболическим методом

  2. Измерение скорости пули с помощью баллистического маятника

  3. Измерение скорости по опыту Штерна

  4. Измерение скорости пули с помощью специального прибора хронографа.

Наиболее точным опытом оказался параболический метод. Он более близок к показаниям хронографа, являющегося эталоном в данном эксперименте. Наиболее простым в исполнении был способ измерения скорости пули с помощью баллистического маятника. Но в решении наиболее простым оказался метод Штерна.

Проблемы моего эксперимента заключались в создании идеальных условий,так как при решении задач по физике не учитывается сопротивление воздуха и материалов.Так же были и другие нюансы, такие как отдача при выстреле, потеря энергии на тепло. Я поняла, что школьная физика далека от реальности, я думаю, что специалисты с высшим образованием умеют умеют учитывать все особенности физических процессов.

В конечном результате проекта я научилась решать задачи по кинематике и динамике, которые часто встречаются в части С – вузовской части, на Едином государственном экзамене.

Список литературы

  1. Лабораторный практикум по физике (В. Г. Дубровский, А. А. Корнилович,И. И. Суханов)

  2. Учебник физики для общеобразовательных учреждений 10 класс (В.А.Касьянов 2003 год)

  3. ЕГЭ 2008. Физика. Репетитор. В.А.Грибов,

  4. Н.К.Ханнанов,М.:Эксмо,2008.

Интернет ресурсы:

  1. http://goldendart.ru

  2. http://pnu.edu.ru

  3. http://ngpedia.ru

Приложение

hello_html_m58ebc271.png

Приложение 1. Рогатый хронограф

hello_html_59c6ef88.png

Приложение 2. Наствольный хронограф

hello_html_m61d27e84.png

Приложение 3. Рамочный хронограф

Приложение 4. Установление уровня горизонта.

hello_html_m40a16089.jpg

hello_html_m5123f2dd.jpghello_html_m7483f22c.jpg

Приложение 5. Баллистический маятник.

hello_html_531cc4da.jpg

Приложение 6. Определение массы пули.

hello_html_m6ad4043a.jpg

Приложение 7. Место попадания пули.

hello_html_365de073.jpg

Приложение 8. Определение массы пластилина для изготовления маятника.

hello_html_m192dcc10.jpg

Приложение 9. Установка по методу Штерна.

hello_html_761db3fd.jpg

Приложение 10. Выстрел по движущимся дискам.

hello_html_3f88e757.jpg

Приложение 11. Определение отклонения места попадания пули в результате вращения диска.

hello_html_m1aaa4ba3.jpghello_html_m69c71bd3.jpg

hello_html_m1aaa4ba3.jpghello_html_m69c71bd3.jpg

Приложение 12. Выстрел в хронограф.

hello_html_m36412dde.jpg

1 Учебник физики для общеобразовательных учреждений 10 класс (В.А.Касьянов 2003 год)

2 Лабораторный практикум по физике (В. Г. Дубровский, А. А. Корнилович,И. И. Суханов)

3 wikipedia.org

4 Н.К.Ханнанов,М.:Эксмо,2008.

5http://goldendart.ru

6 Приложение 1.

7Приложение 2

8Приложение 3

9Приложение 4

10http://www.ebftour.ru

11Приложение 5

12 Приложение 6

13Приложение 7

14Приложение 8

15Приложение 9

16Приложение 10

17Приложение 11

18Приложение 12

Добавить комментарий