Как найти наибольшее число являющееся решением неравенства

Наибольшее решение неравенства




При изучении темы «Линейные неравенства» встречаются задания, в которых требуется найти наибольшее решение неравенства либо наибольшее целое (или натуральное) решение неравенства.

Рассмотрим примеры выполнения таких заданий.

1) Найти наибольшее целое решение неравенства:

    [{(3 - 2x)^2} + (3 - 4x)(x + 5) ge 82]

Раскроем скобки и упростим правую часть неравенства. Первые скобки раскрываем по формуле квадрата разности:

    [9 - 12x + 4{x^2} + 3x + 15 - 4{x^2} - 20x ge 82]

    [24 - 29x ge 82]

Неизвестные — в одну сторону, известные — в другую с противоположными знаками:

    [ - 29x ge 82 - 24]

Обе части неравенства делим на число, стоящее перед иксом

    [ - 29x ge 58___left| {:( - 29) < 0} right.]

При делении на отрицательное число знак неравенства изменяется на противоположный:

    [x le frac{{58}}{{ - 29}}]

    [x le - 2]

Наибольшее решение неравенства — x= -2.

Для большей наглядности решение неравенства можно изобразить на числовой прямой: najti-naibolshee-reshenie-neravenstva

Ответ: -2.

2) Найти наибольшее натуральное решение неравенства:

    [(x - 3)(x + 3) < 2{(x - 2)^2} - x(x + 1)]

Раскроем скобки. В левой части — произведение суммы и разности, в правой — квадрат разности:

    [{x^2} - {3^2} < 2({x^2} - 4x + 4) - {x^2} - x]

    [{x^2} - 9 < 2{x^2} - 8x + 8 - {x^2} - x]

    [{x^2} - 9 < {x^2} - 9x + 8]

Неизвестные — в одну сторону, известные — в другую с противоположными знаками

    [{x^2} - {x^2} + 9x < 8 + 9]

    [9x < 17___left| {:9 > 0} right.]

Обе части неравенства делим на число, стоящее перед иксом. При делении на положительное число знак неравенства не изменяется:

    [x < frac{{17}}{9}]

    [x < 1frac{8}{9}]

Наибольшее натуральное решение неравенства x=1.

Ответ: 1.

3) Найти наибольшее решение неравенства:

    [frac{{2x - 1}}{6} - frac{{x + 8}}{2} + 1 ge x - frac{{x - 2}}{3}]

Обе части неравенства умножим на наименьший общий знаменатель:

    [frac{{2x - {1^{backslash 1}}}}{6} - frac{{x + {8^{backslash 3}}}}{2} + {1^{backslash 6}} ge {x^{backslash 6}} - frac{{x - {2^{backslash 2}}}}{3}___left| { cdot 6 > 0} right.]

При умножении на положительное число знак неравенства не изменяется:

    [(2x - 1) - 3(x + 8) + 6 ge 6x - 2(x - 2)]

Как показывает практика, произведение дополнительного множителя и числителя лучше записывать с помощью скобок. Если перед дробью стоит знак «минус», числитель также лучше заключить в скобки. Такая запись позволяет избежать ошибок, связанных с раскрытием скобок.

    [2x - 1 - 3x - 24 + 6 ge 6x - 2x + 4]

    [ - x - 19 ge 4x + 4]

    [ - x - 4x ge 4 + 19]

    [ - 5x ge 23___left| {:( - 5) < 0} right.]

Обе части неравенства делим на число, стоящее перед иксом. При делении на отрицательное число знак неравенства изменяется на противоположный:

    [x le frac{{23}}{{ - 5}}]

    [x le - 4,6]

Наибольшее решение неравенства равно -4,6 (все остальные значения x меньше него).

Ответ: -4,6.

4) Определить наибольшее решение неравенства:

    [x - 2 - frac{{x + 3}}{4} le frac{{x - 1}}{2}]

Обе части неравенства умножаем на наименьший общий знаменатель 6. При умножении на положительное число знак неравенства не изменяется:

    [{x^{backslash 4}} - {2^{backslash 4}} - frac{{x + {3^{backslash 1}}}}{4} < frac{{x - {1^{backslash 2}}}}{2}___left| { cdot 4 > 0} right.]

    [4x - 8 - (x + 3) < 2(x - 1)]

Раскрываем скобки:

    [4x - 8 - x - 3 < 2x - 2]

Упрощаем:

    [3x - 11 < 2x - 2]

Неизвестные — в одну сторону, известные — в другую с противоположными знаками:

    [3x - 2x < - 2 + 11]

    [x < 9]

Наибольшее значение в данном случае указать нельзя (x=9 не входит в решение).

Ответ: неравенство не имеет наибольшего значения.

Содержание

  1. Решение линейных неравенств
  2. Как решить линейное неравенство
  3. Правило переноса в неравенствах
  4. Правило умножения или деления неравенства на число
  5. Наибольшее решение неравенства
  6. Наибольшее целое решение системы неравенств

Решение линейных неравенств

Прежде чем перейти к определению и решению неравенств давайте вспомним, какие знаки используют в математике для сравнения величин.

Символ Название Тип знака
> больше строгий знак
(число на границе не включается )
строгий знак
(число на границе не включается )
больше или равно нестрогий знак
(число на границе включается )
меньше или равно нестрогий знак
(число на границе включается )

Теперь мы можем разобраться, что называют линейным неравенством и чем неравенство отличается от уравнения.

В отличии от уравнения в неравенстве вместо знака равно « = » используют любой знак сравнения: « > », « », « ≤ » или « ≥ ».

Линейным неравенством называют неравенство, в котором неизвестное стоит только в первой степени.

Рассмотрим пример линейного неравенства.

Как решить линейное неравенство

Чтобы решить неравенство, нужно чтобы в левой части осталось только неизвестное в первой степени с коэффициентом « 1 ».

При решении линейных неравенств используют правило переноса и правило деления неравенства на число.

Правило переноса в неравенствах

Также как и в уравнениях, в неравенствах можно переносить любой член неравенства из левой части в правую и наоборот.

При переносе из левой части в правую (и наоборот) член неравенства меняет свой знак на противоположный .

Вернемся к нашему неравенству и используем правило переноса.

Для того, чтобы понять, что получается при решении неравенства, нам нужно вспомнить, понятие числовой оси.

Нарисуем числовую ось для неизвестного « x » и отметим на ней число « 14 ».

При нанесении числа на числовую ось соблюдаются следующие правила:

  • если неравенство строгое, то число отмечается как «пустая» точка. Это означает, что число не входит в область решения;
  • если неравенство нестрогое, то число отмечается как «заполненная» точка. Это означает, что число входит в область решения.

Заштрихуем на числовой оси по полученному ответу « x » все решения неравенства, то есть область слева от числа « 14 ».

Рисунок выше говорит о том, что любое число из заштрихованной области при подстановке в исходное неравенство « x − 6 » даст верный результат.

Возьмем, например число « 12 » из заштрихованной области и подставим его вместо « x » в исходное неравенство « x − 6 ».

Другими словами, можно утверждать, что любое число из заштрихованной области будет являться решением неравенства.

Решить неравенство — это значит найти множество чисел, которые при подстановке в исходное неравенство дают верный результат.

Решением неравенства называют множество чисел из заштрихованной области на числовой оси.

В нашем примере ответ « x » можно понимать так: любое число из заштрихованной области (то есть любое число меньшее « 14 ») будет являться решением неравенства « x − 6 ».

Правило умножения или деления неравенства на число

Рассмотрим другое неравенство.

Используем правило переноса и перенесём все числа без неизвестного, в правую часть.

Теперь нам нужно сделать так, чтобы при неизвестном « x » стоял коэффициент « 1 ». Для этого достаточно разделить и левую, и правую часть на число « 2 ».

При умножении или делении неравенства на число, на это число умножается (делится) и левая, и правая часть.

  • Если неравенство умножается (делится) на положительное число, то
    знак самого неравенства остаётся прежним .
  • Если неравенство умножается (делится) на отрицательное число, то
    знак самого неравенства меняется на противоположный .

Разделим « 2x > 16 » на « 2 ». Так как « 2 » — положительное число, знак неравенства останется прежним.

Рассмотрим другое неравенство.

Разделим неравенство на « −3 ». Так как мы делим неравенство на отрицательное число, знак неравенства поменяется на противоположный.

Источник

Наибольшее решение неравенства

При изучении темы «Линейные неравенства» встречаются задания, в которых требуется найти наибольшее решение неравенства либо наибольшее целое (или натуральное) решение неравенства.

Рассмотрим примеры выполнения таких заданий.

1) Найти наибольшее целое решение неравенства :

Раскроем скобки и упростим правую часть неравенства. Первые скобки раскрываем по формуле квадрата разности:

Неизвестные — в одну сторону, известные — в другую с противоположными знаками:

При делении на отрицательное число знак неравенства изменяется на противоположный:

Наибольшее решение неравенства — x= -2.

Для большей наглядности решение неравенства можно изобразить на числовой прямой:

2) Найти наибольшее натуральное решение неравенства :

Раскроем скобки. В левой части — произведение суммы и разности, в правой — квадрат разности:

Неизвестные — в одну сторону, известные — в другую с противоположными знаками

0> right.]» title=»Rendered by QuickLaTeX.com»/>

Обе части неравенства делим на число, стоящее перед иксом. При делении на положительное число знак неравенства не изменяется:

Наибольшее натуральное решение неравенства x=1.

3) Найти наибольшее решение неравенства :

Обе части неравенства умножим на наименьший общий знаменатель:

0> right.]» title=»Rendered by QuickLaTeX.com»/>

При умножении на положительное число знак неравенства не изменяется:

Как показывает практика, произведение дополнительного множителя и числителя лучше записывать с помощью скобок. Если перед дробью стоит знак «минус», числитель также лучше заключить в скобки. Такая запись позволяет избежать ошибок, связанных с раскрытием скобок.

Обе части неравенства делим на число, стоящее перед иксом. При делении на отрицательное число знак неравенства изменяется на противоположный:

Наибольшее решение неравенства равно -4,6 (все остальные значения x меньше него).

4) Определить наибольшее решение неравенства :

Обе части неравенства умножаем на наименьший общий знаменатель 6. При умножении на положительное число знак неравенства не изменяется:

0> right.]» title=»Rendered by QuickLaTeX.com»/>

Неизвестные — в одну сторону, известные — в другую с противоположными знаками:

Наибольшее значение в данном случае указать нельзя (x=9 не входит в решение).

Ответ: неравенство не имеет наибольшего значения.

Источник

Наибольшее целое решение системы неравенств

Задание, которое часто встречается в алгебре,- найти наибольшее целое решение системы неравенств.

Чтобы найти наибольшее целое решение системы неравенств, надо решить её и выбрать из полученного множества решений наибольшее целое число (если такое есть).

Найти наибольшее целое решение системы неравенств:

2x + 2\ 1 — 3x

Неизвестные переносим в одну сторону, известные — в другую с противоположным знаком:

2 — 12\ — 3x + 5x

Упрощаем и делим каждое неравенство на число, стоящее перед иксом. При делении на положительное число b» href=»http://www.algebraclass.ru/axb/» target=»_blank»>знак неравенства не меняется:

— 10___left| <:5 >0> right.\ 2x 0> right. end right.]» title=»Rendered by QuickLaTeX.com»/>

— 2\ x

Отмечаем решение каждого из неравенств на числовой прямой. Решением системы является пересечение решений неравенств (то есть общая часть, где штриховка есть на каждой числовой прямой). Поскольку неравенства строгие, концы промежутков не включаем в решение.

Из целых решений системы выбираем наибольшее и записываем ответ.

Неизвестные — в одну сторону, известные — в другую с противоположным знаком:

Делим обе части неравенства на число, стоящее перед иксом. При делении при делении на отрицательное число знак неравенства меняется на противоположный, при делении на положительное число — не изменяется:

0> right. end right.]» title=»Rendered by QuickLaTeX.com»/>

Решения неравенств отмечаем на числовых прямых и из полученного множества решений выбираем наибольшее.

Поскольку неравенства нестрогие, концы промежутка входят в решение. Значит, наибольшее целое решение системы равно 2.

4x end right.]» title=»Rendered by QuickLaTeX.com»/>

Обе части каждого из неравенств умножаем на наименьший общий знаменатель. В первом неравенстве он равен 12, во втором — 2. При умножении на положительное число знак неравенства не изменяется:

0> right.\ frac<<7>>> <2>+ <3^<backslash 2>> > 4>___left| < cdot 2 >0> right. end right.]» title=»Rendered by QuickLaTeX.com»/>

8x end right.]» title=»Rendered by QuickLaTeX.com»/>

Неизвестные — в одну сторону, известные — в другую с противоположным знаком:

— 6 end right.]» title=»Rendered by QuickLaTeX.com»/>

Обе части первого неравенства делим на положительное число, знак неравенства при этом не изменяется. При делении обеих частей на отрицательное число знак второго неравенства изменяется на противоположный:

0> right.\ — x > — 6___left| <:( – 1)

Оба неравенства с одинаковым знаком. Применяя правило «меньше меньшего», приходим к неравенству x Рубрика: Неравенства | Комментарии

Источник

ребят объясните как это решить, задание : найдите наибольшее целочисленное решение неравенства.

Senpoliya

Светило науки – 5081 ответ – 81895 раз оказано помощи

-/-/-/-/-/-/-/-/-/-/-/-/-/–|-/-//-/–|———————>
                                -1     -1/2

-1 – наибольшее целое решение неравенства

nukalka

Светило науки – 112 ответов – 0 раз оказано помощи

Сначала решаете это неравенство, а потом из множества решений находите наибольшее целое число. Теперь решаем неравенство. 6.25=2.25^2, поэтому переписываем это неравенство в виде:
2.5^(2x+3)≤2.5^2.
Основания одинаковы, поэтому данное неравенство напишем следующим образом:
2x+3≤2, решаем данное очень простое неравенство.
2x≤-1
x≤-1/2,
наибольшим целочисленным решением является число -1. Удачи!

Решить неравенство – это значит найти все его решения.

Решением неравенства с одной переменной называют множество таких значений переменной, при которых данное неравенство верно.

Алгоритм решения.

Раскрыть скобки, если они имеются. Слагаемые с переменной записать в левой части неравенства, а свободные члены – в правой. При переносе слагаемого из одной части неравенства в другую меняем его знак на противоположный. Привести подобные слагаемые в левой и правой частях неравенства. Разделить обе части неравенства на коэффициент при переменной. При делении на отрицательное число знак неравенства меняется на противоположный. Изобразить полученные решения неравенства на координатной прямой. Записать решения в виде числового промежутка.

При задании найти наименьшее целое решение неравенства выписываем крайнее левое целое число из полученного промежутка.

При задании найти наибольшее целое решение неравенства выписываем крайнее правое целое число из полученного промежутка.

Пример 1.

а) Решить неравенство 3x-15<0.

б) Указать наибольшее целое решение.

Решение.  а) Перенесём слагаемое, не содержащее переменную в правую часть неравенства, поменяв его знак на противоположный. Получим 3x<15

Разделим обе части неравенства на коэффициент при переменной. 3x<15  |:3.

Получим x<5. Изобразим решение неравенства на числовой прямой. Так как неравенство строгое, то точка, соответствующая числу 5 будет выколотой на чертеже.

Записываем решение в виде числового промежутка. (-∞; 5).

б) Неравенство строгое, поэтому число 5 не является его решением, следовательно, наибольшим целым решением будет число 4.

Ответ: а) (-∞; 5); б) 4.

Пример 2.

а) Решить неравенство 6 + 2x ≥ 7х.

б) Указать наибольшее целое решение.

Решение.  а) Соберём слагаемые, содержащие х в левой части неравенства, а число 6 перенесём в правую часть. При переносе слагаемого не забываем менять его знак на противоположный.

Получаем 2х -7х ≥ -6.

Приводим подобные слагаемые в левой части неравенства.

-5х ≥ -6. Делим обе части неравенства на (-5). При этом меняются не только знаки левой и правой частей неравенства, но и знак самого неравенства.

-5х ≥ -6  |:(-5)  →  x ≤ 1,2. Изобразим решение неравенства на числовой прямой. Так как неравенство нестрогое, то значение 1,2 является его решением (точка на чертеже закрашенная).

Записываем решение в виде числового промежутка. (-∞; 1,2].

б) Наибольшее целое решение — это число 1.

Ответ: а) (-∞; 1,2]; б) 1.

Пример 3.

а) Решить неравенство 2(x -7,5)+3 ≤ 5 -4(11+2х).

б) Указать наибольшее целое решение.

Решение.  а) Раскрываем скобки.

2х-15+3 ≤ 5 -44 -8х; собираем слагаемые с переменной в левой части неравенства, а свободные числа – в правой.

2х+8х ≤ 5 -44+15 -3. Приведём подобные слагаемые в обеих частях неравенства.

10х ≤ -27. Делим обе части неравенства на 10.

10х ≤ -27  |:10  →  x ≤ -2,7. Изобразим решение неравенства на числовой прямой. Точка, соответствующая числу (-2,7), на чертеже закрашена, так неравенство нестрогое.

Записываем решение в виде числового промежутка. (-∞; -2,7].

б) Наибольшее целое решение — это число -3.

Ответ: а) (-∞; -2,7]; б) -3.

Пример 4.

б) Указать наименьшее целое решение.

Решение.

Умножим обе части данного неравенства на 6 (наименьший общий знаменатель дробей) и получим:

3(3х-1)+2(5-х) < 12x. Раскроем скобки.

9х-3+10-2х< 12x. Соберём слагаемые, содержащие переменную в левой части неравенства, а свободные члены – в правой.

9х-2х-12х < 3-10. Приведём подобные слагаемые.

-5х < -7. Делим обе части неравенства на (-5) – отрицательное число, поэтому меняем и знак самого неравенства на противоположный.

Получаем х > 1,4. Изобразим на числовой прямой все значения переменной х, которые удовлетворяют последнему неравенству.

Записываем решение в виде числового промежутка. (1,4; +∞).

б) Наименьшее целое решение — это число 2.

Ответ: а) (1,4; +∞); б) 2.

Пример 5.

б) Указать наименьшее целое решение.

Решение.

Умножим обе части данного неравенства на 20 (наименьший общий знаменатель дробей) и получим:

5(6х-5) ≥ 4(3х+2,75). Раскроем скобки.

30х-25 ≥ 12х+11. Соберём слагаемые, содержащие переменную в левой части неравенства, а свободные члены – в правой.

30х-12х ≥ 11+25. Приведём подобные слагаемые.

18х ≥ 36. Делим обе части неравенства на 18.

Получаем х ≥ 2. Изобразим на числовой прямой значения переменной х, удовлетворяющие последнему неравенству.

Записываем решение в виде числового промежутка. [2; +∞).

б) Наименьшее целое решение — это число 2.

Ответ: а) [2; +∞); б) 2.

Выполните интерактивное задание.


    При решении неравенств вы должны свободно владеть понятием числового неравенства, знать, что такое решение неравенства, что значит решить неравенство, помнить свойства неравенств. То же относится и к системам числовых неравенств. Все эти сведения вы можете найти в любом пособии для поступающих в вузы. 
    Напомним свойства числовых неравенств.
    1. Если а > b , то b < а; наоборот, если а < b, то b > а.
    2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c.
    3. Если а > b, то а + c > b+ c (и  а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину.
    4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать.

Замечание.

Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным.
    5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое.
    6. Если а > b и m – положительное число, то m а > m b и  , т.е. обе части неравенства можно умножить или разделить на одно и то же положительное число ( знак неравенства остаётся тем же ).
    Если же а > b и n – отрицательное число, то n а < n b и , т.е. обе части неравенства можно умножить или разделить на одно и то же отрицательное число, но при этом знак неравенства нужно переменить на противоположный.
    7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.

    8. Если а > b, где а, b > 0, то  и если а < b , то .

Виды неравенств и способы их решения

1. Линейные неравенства и системы неравенств

Пример 1. Решить неравенство .
    Решение:
          .
    Ответ: х < – 2.

Пример 2. Решить систему неравенств  
    Решение:
         .
    Ответ: (– 2; 0].

Пример 3. Найти наименьшее целое решение системы неравенств 

    Решение:
        
    Ответ: 

2. Квадратные неравенства

Пример 4. Решить неравенство х2 > 4.
    Решение:
        х2 > 4   (х – 2)∙(х + 2) > 0.
        Решаем методом интервалов.

        

        

Ответ:

3. Неравенства высших степеней

Пример 5. Решить неравенство (х + 3)∙(х2 – 2х + 1) > 0. 
    Решение:
          
    Ответ: 

Пример 6. Найти середину отрезка, который является решением неравенства 4х2 – 24х + 24 < 4у2, где   .
    Решение:
        Область определения неравенства: .
        С учётом области определения 4х2 – 24х + 24 < 4у2 будет равносильно неравенству

        

        Решаем методом интервалов.

        
        Решение неравенства: .
        Середина отрезка: .
    Ответ: .

4. Рациональные неравенства

Пример 7. Найти все целые решения, удовлетворяющие неравенству .
    Решение:
             
        

        

        Методом интервалов:

        

        Решение неравенства: .
        Целые числа, принадлежащие полученным полуинтервалам: – 6; – 5; – 4; 1. 
    Ответ:  – 6; – 5; – 4; 1.

5. Иррациональные неравенства

Помните! Начинать решение иррациональных неравенств нужно с нахождения области определения.

Пример 8. Решить неравенство .
    Решение:    
        Область определения: .
        Так как арифметический корень не может быть отрицательным числом, то .
    Ответ: .

Пример 9. Найти все целые решения неравенства .

    Решение:

        Область определения .

        – быть отрицательным не может, следовательно, чтобы произведение было неотрицательным достаточно потребовать выполнения неравенства , при этом учитывая область определения. Т.е. исходное неравенство равносильно системе 

        Целыми числами из этого отрезка будут 2; 3; 4.

    Ответ: 2; 3; 4.

Пример 10. Решить неравенство .

    Решение:

        Область определения:  

        Преобразуем неравенство: . С учётом области определения видим, что обе части неравенства –  положительные числа. Возведём обе части в квадрат и получим неравенство, равносильное  исходному.

        

        

         т.е. , и этот числовой отрезок включён в область определения.

    Ответ: .

Пример 11. Решить неравенство .

    Решение:

        Раскрываем знак модуля.

        
        Объединим решения систем 1) и 2): .

    Ответ: 

6. Показательные, логарифмические неравенства и системы неравенств

Пример 12. Решите неравенство .

    Решение:

                      .

    Ответ: .

Пример 13. Решите неравенство .

    Решение:

        .

    Ответ: .

Пример 14. Решите неравенство .

    Решение:

        

    Ответ: .

Пример 15. Решите неравенство .

    Решение:

        
    Ответ: .    

Задания для самостоятельного решения

Базовый уровень

 Целые неравенства и системы неравенств

    1) Решите неравенство 2х – 5 ≤ 3 + х.

    2) Решите неравенство – 5х > 0,25. 

    3) Решите неравенство .

    4) Решите неравенство 2 – 5х ≥ – 3х.

    5) Решите неравенство х + 2 < 5x – 2(x – 3).

    6) Решите неравенство 
 .

    7) Решите неравенство (х – 3) (х + 2) > 0.

    8) Решить систему неравенств  

    9) Найдите целочисленные решения системы неравенств 

    10) Решить систему неравенств .

    11) Решить систему неравенств  

    12) Найти наименьшее целое решение неравенства  

    13) Решите неравенство .

    14) Решите неравенство .

    15) Решите неравенство .

    16) Решите неравенство .

    17) Найдите решение неравенства , принадлежащие промежутку .

    18) Решить систему неравенств  

    19) Найти все целые решения системы  

Рациональные неравенства и системы неравенств

    20) Решите неравенство .

    21) Решите неравенство .

    22) Определите число целых решений неравенства .

    23) Определите число целых решений неравенства .

    24) Решите неравенство .

    25) Решите неравенство 2x<16 .

    26) Решите неравенство .

    27) Решите неравенство .

    28) Решите неравенство .

    29) Найдите сумму целых решений неравенства  на отрезке [– 7, 7].

    30) Решите неравенство .

    31) Решите неравенство .

Иррациональные неравенства

    32) Решите неравенство .

    33) Решите неравенство 

    34) Решите неравенство .

Показательные, логарифмические неравенства и системы неравенств

    35) Решите неравенство .

    36) Решите неравенство .

    37) Решите неравенство .

    38) Решите неравенство .

    39) Решите неравенство .

    40) Решите неравенство 49∙7х < 73х + 3.

    41) Найдите все целые решения неравенства .

    42) Решите неравенство .

    43) Решите неравенство .

    44) Решите неравенство 7x+1-7x<42 .

    45) Решите неравенство log3(2x2+x-1)>log32 .

    46) Решите неравенство log0,5(2x+3)>0 .

    47) Решите неравенство .

    48) Решите неравенство .

    49) Решите неравенство .

    50) Решите неравенство logx+112>logx+12 .

    51) Решите неравенство logx9<2.

    52) Решите неравенство .

Повышенный уровень

    53) Решите неравенство |x-3|>2x.

    54) Решите неравенство 2│х + 1| > х + 4.

    55) Найдите наибольшее целое решение неравенства .

    56) Решить систему неравенств  

    57) Решить систему неравенств .

    58) Решите неравенство .

    59) Решите неравенство 25•2x-10x+5x>25 .

    60) Решите неравенство .

Ответы

1) х ≤ 8; 2) х < – 0,05; 3) х ≥ 5; 4) х ≤ 1; 5) х > –2; 6) х < 11; 7) ; 8) (-2;0]; 9) – 1; 10) х ≥ 7,5;               11); 12) 1; 13); 14) х ≤ – 0,9; 15) х < – 1; 16) х < 24; 17); 18) ; 19) 3, 4, 5; 

20) (0; 2); 21) (0; 1,5); 22) 3; 23) 6; 24) (–1; 1,5); 25) х < 4; 26); 27) (– 3; 17);                                           28)

; 29) – 10; 30) (0; + ∞); 31); 32) [1;17); 33) x > 17; 34) х ≥ 2; 35);   36) х < 2; 37) х > 0; 38) х ≤ 3; 39) х > – 3,5; 40) х > – 0,5; 41) 0, 1, 2, 3, 4, 5; 42) х < 3; 43) ; 44) х < 1;                           45) 46) (– 1,5; – 1); 47) х < 0; 48); 49) ; 50) х > 0;            51) ; 52) ; 53) х < 1; 54); 55) – 1; 56) ; 57) [3,5; 10]; 58) (0, 1); 59) (0; 2); 60) 

.

Добавить комментарий