Как найти наибольшее целое в математике

Как понять наибольшее целое решение

Настя Руднева



Ученик

(92),
закрыт



3 года назад

Прост делала алгебру и тут у меня ступор

Dem0nist

Ученик

(132)


3 года назад

Целое число – число не имеющее дробной части (1,2,3, 0, -1 и т. д.)
К примеру, есть число 6.3
Оно находиться в промежутке от 6 до 7, но поскольку оно меньше семи, следует, что наибольшим целым будет 6

Наибольшее целое решение системы неравенств




Задание, которое часто встречается в алгебре,- найти наибольшее целое решение системы неравенств.

Чтобы найти наибольшее целое решение системы неравенств, надо решить её и выбрать из полученного множества решений наибольшее целое число (если такое есть).

Рассмотрим примеры.

Найти наибольшее целое решение системы неравенств:

    [1)left{ begin{array}{l} 7x + 12 > 2x + 2\ 1 - 3x < 9 - 5x end{array} right.]

Неизвестные переносим в одну сторону, известные — в другую с противоположным знаком:

    [left{ begin{array}{l} 7x - 2x > 2 - 12\ - 3x + 5x < 9 - 1 end{array} right.]

Упрощаем и делим каждое неравенство на число, стоящее перед иксом. При делении на положительное число знак неравенства не меняется:

    [left{ begin{array}{l} 5x > - 10___left| {:5 > 0} right.\ 2x < 8___left| {:2 > 0} right. end{array} right.]

    [left{ begin{array}{l} x > - 2\ x < 4 end{array} right.]

Отмечаем решение каждого из неравенств на числовой прямой. Решением системы является пересечение решений неравенств (то есть общая часть, где штриховка есть на каждой числовой прямой). Поскольку неравенства строгие, концы промежутков не включаем в решение.

naibolshee-celoe-reshenie-sistemy-neravenstv

Из целых решений системы выбираем наибольшее и записываем ответ.

Ответ: 3.

    [2)left{ begin{array}{l} 3x - 11 le 7x + 1\ 8x - 4 le 5x + 2 end{array} right.]

Неизвестные — в одну сторону, известные — в другую с противоположным знаком:

    [left{ begin{array}{l} 3x - 7x le 1 + 11\ 8x - 5x le 2 + 4 end{array} right.]

Делим обе части неравенства на число, стоящее перед иксом. При делении при делении на отрицательное число знак неравенства меняется на противоположный, при делении на положительное число — не изменяется:

    [left{ begin{array}{l} - 4x le 12___left| {:( - 4) < 0} right.\ 3x le 6___left| {:3 > 0} right. end{array} right.]

    [left{ begin{array}{l} x ge - 3\ x le 2 end{array} right.]

Решения неравенств отмечаем на числовых прямых и из полученного множества решений выбираем наибольшее.

najti-naibolshee-celoe-reshenie-sistemy-neravenstv

Поскольку неравенства нестрогие, концы промежутка входят в решение. Значит, наибольшее целое решение системы равно 2.

Ответ: 2.

    [3)left{ begin{array}{l} frac{{2x}}{3} - frac{x}{4} < 2\ frac{x}{2} + 3 > 4x end{array} right.]

Обе части каждого из неравенств умножаем на наименьший общий знаменатель. В первом неравенстве он равен 12, во втором — 2. При умножении на положительное число знак неравенства не изменяется:

    [left{ begin{array}{l} frac{{2{x^{backslash 4}}}}{3} - frac{{{x^{backslash 3}}}}{4} < {2^{backslash 12}}___left| { cdot 12 > 0} right.\ frac{{7{x^{backslash 1}}}}{2} + {3^{backslash 2}} > 4{x^{backslash 2}}___left| { cdot 2 > 0} right. end{array} right.]

    [left{ begin{array}{l} 8x - 3x < 24\ 7x + 6 > 8x end{array} right.]

Неизвестные — в одну сторону, известные — в другую с противоположным знаком:

    [left{ begin{array}{l} 8x - 3x < 24\ 7x - 8x > - 6 end{array} right.]

Обе части первого неравенства делим на положительное число, знак неравенства при этом не изменяется. При делении обеих частей на отрицательное число знак второго неравенства изменяется на противоположный:

    [left{ begin{array}{l} 5x < 24___left| {:5 > 0} right.\ - x > - 6___left| {:( - 1) < 0} right. end{array} right.]

    [left{ begin{array}{l} x < 4,8\ x < 6 end{array} right.]

Оба неравенства с одинаковым знаком. Применяя правило «меньше меньшего», приходим к неравенству x<4,8.

najti-naibolshee-celoe-reshenie-sistemy

Наибольшее целое число, меньшее 4,8, равно 4.

Ответ:4.

math4school.ru

Уравнения в целых числах

Немного теории

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

способ перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод бесконечного спуска.

Задачи с решениями

1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

2. Решить в целых числах уравнение:

а) 20х + 12у = 2013;

в) 201х – 1999у = 12.

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

Поскольку числа 5 и 7 взаимно простые, то

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x0 = 1273·12 = 15276, y0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

3. Решить в целых числах уравнение:

а) x 3 + y 3 = 3333333;

б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).

а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;

б) в целых числах уравнение x + y = x 2 – xy + y 2 .

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x 2 – (y + 1)x + y 2 – y = 0.

Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?

Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:

y = xn = n(2n 2 +1) = 2n 3 +n.

Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).

6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.

Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

и исходное уравнение примет вид

Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x1 2 + y1 2 + z1 2 + u1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x1 2 + y1 2 + z1 2 + u1 2 не делится даже на 4. Значит,

и мы получаем уравнение

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

7. Докажите, что уравнение

(х – у) 3 + (y – z) 3 + (z – x) 3 = 30

не имеет решений в целых числах.

Воспользуемся следующим тождеством:

(х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .

если х = 1, то у 2 = 1,

если х = 3, то у 2 = 9.

Этим случаям соответствуют следующие пары чисел:

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

9. Решите следующую систему уравнений в натуральных числах:

a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).

3abc > 0, то a 3 > b 3 + c 3 ;

таким образом имеем

b 2 2 + х = у 4 + у 3 + у 2 + у.

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у 2 + 1),

х(х + 1) = (у 2 + у)(у 2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

Задачи без решений

1. Решить в целых числах уравнение:

б) х 2 + у 2 = х + у + 2.

2. Решить в целых числах уравнение:

а) х 3 + 21у 2 + 5 = 0;

б) 15х 2 – 7у 2 = 9.

3. Решить в натуральных числах уравнение:

4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение

5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.

Наибольшее целое решение системы неравенств

Задание, которое часто встречается в алгебре,- найти наибольшее целое решение системы неравенств.

Чтобы найти наибольшее целое решение системы неравенств, надо решить её и выбрать из полученного множества решений наибольшее целое число (если такое есть).

Найти наибольшее целое решение системы неравенств:

2x + 2\ 1 — 3x

Неизвестные переносим в одну сторону, известные — в другую с противоположным знаком:

2 — 12\ — 3x + 5x

Упрощаем и делим каждое неравенство на число, стоящее перед иксом. При делении на положительное число b» href=»http://www.algebraclass.ru/axb/» target=»_blank»>знак неравенства не меняется:

— 10___left| <:5 >0> right.\ 2x 0> right. end right.]» title=»Rendered by QuickLaTeX.com»/>

— 2\ x

Отмечаем решение каждого из неравенств на числовой прямой. Решением системы является пересечение решений неравенств (то есть общая часть, где штриховка есть на каждой числовой прямой). Поскольку неравенства строгие, концы промежутков не включаем в решение.

Из целых решений системы выбираем наибольшее и записываем ответ.

Неизвестные — в одну сторону, известные — в другую с противоположным знаком:

Делим обе части неравенства на число, стоящее перед иксом. При делении при делении на отрицательное число знак неравенства меняется на противоположный, при делении на положительное число — не изменяется:

0> right. end right.]» title=»Rendered by QuickLaTeX.com»/>

Решения неравенств отмечаем на числовых прямых и из полученного множества решений выбираем наибольшее.

Поскольку неравенства нестрогие, концы промежутка входят в решение. Значит, наибольшее целое решение системы равно 2.

4x end right.]» title=»Rendered by QuickLaTeX.com»/>

Обе части каждого из неравенств умножаем на наименьший общий знаменатель. В первом неравенстве он равен 12, во втором — 2. При умножении на положительное число знак неравенства не изменяется:

0> right.\ frac<<7>>> <2>+ <3^<backslash 2>> > 4>___left| < cdot 2 >0> right. end right.]» title=»Rendered by QuickLaTeX.com»/>

8x end right.]» title=»Rendered by QuickLaTeX.com»/>

Неизвестные — в одну сторону, известные — в другую с противоположным знаком:

— 6 end right.]» title=»Rendered by QuickLaTeX.com»/>

Обе части первого неравенства делим на положительное число, знак неравенства при этом не изменяется. При делении обеих частей на отрицательное число знак второго неравенства изменяется на противоположный:

0> right.\ — x > — 6___left| <:( – 1)

Оба неравенства с одинаковым знаком. Применяя правило «меньше меньшего», приходим к неравенству x Рубрика: Неравенства | Комментарии

Метод подсчёта количества решений

Линейные алгебраические уравнения — одни из самых простых уравнений, которые мы можем решить. Если в уравнении только одна переменная, решение тривиально, в то время как для системы линейных уравнений существует множество способов найти уникальные решения.

В этой статье нас интересует частный случай линейного уравнения с несколькими переменными. Хорошо известно, что подобное уравнение имеет бесконечное число решений. Мы наложим определённые ограничения и в значительной степени сократим количество решений.

Общая форма интересующего нас уравнения:

где n и m — положительные целые числа.

Наша задача — найти число решений этого уравнения, предполагая, что xᵢ являются целыми числами. Это предположение значительно снижает число решений заданного уравнения.

Нам нужен метод

Давайте начнём с частного случая общего уравнения:

Нетрудно найти все решения этого уравнения методом простого счёта. Решения заданы парами (x₁, x₂):

Мы видим, что уравнение имеет шесть решений. Также нетрудно предположить, что, если мы заменим правую часть определённым положительным целым числом m, решения будут выглядеть так:

и мы сможем подсчитать число решений — m+1.

Это было просто, верно?

Теперь возьмём немного более сложный вариант с тремя переменными, скажем:

С несколько большими усилиями, чем в предыдущем примере, находим решения в виде наборов из трёх чисел (x₁, x₂, x₃):

Число решений в этом случае равно 10.

Легко представить, что метод прямого счёта может стать очень утомительным для уравнения с большим количеством переменных. Он также становится утомительным, если целое число в правой части уравнения становится больше — например, если в правой части у нас будет 8, а не 3, решений будет уже 45. Разумеется, не хотелось бы искать все эти решения методом прямого счёта.

Значит, нужен эффективный метод.

Разрабатываем метод

Существует ещё один способ, которым можно решить предыдущие два уравнения. Давайте снова начнём с этого уравнения:

Одним из решений было (5, 0). Давайте преобразуем его в:

Мы разложили решение на нули и единицы, соответствующие каждому числу. Ненулевую часть (в данном случае 5) мы разложили на соответствующее число единиц, а ноль преобразовали в ноль. Таким же образом мы можем разложить и другое решение:

Мы поменяли прежнее расположение нуля, чтобы получить новое решение. Итак, два числа в парах (обозначенные красным и голубым) разделены нулём (чёрный) в разложенном виде. Таким же образом запишем оставшиеся решения:

Записав решения таким образом, видим закономерность. Кажется, все решения — это просто перестановки нулей и единиц. Вопрос о том, сколько существует решений, становится эквивалентным вопросу как много таких перестановок нулей и единиц может быть сделано, начиная с любой из конфигураций.

В данном случае у нас есть 6 местоположений в разложенной конфигурации для размещения нулей и единиц. Мы можем выбрать простейшее решение в качестве начальной конфигурации:

Теперь всё, что нам нужно найти, это общее число способов, которыми можно заполнить шесть местоположений пятью единицами и одним нулём.

Подобные задачи подсчёта мы можем решить различными способами, но наиболее эффективным будет способ, разработанный в такой области математики как комбинаторика, которая даёт нам формулу для числа способов перестановки r объектов в n местоположений:

где n! (читается как “n факториал”) определяется как произведение всех целых чисел от 1 до n, т.е. n! = 1 × 2 × 3 × ⋅ ⋅ ⋅ × n. Мы также определяем 0! = 1.

Эта формула обычно записывается в компактной форме как:

Теперь, возвращаясь к задаче, мы можем использовать эту формулу для нахождения числа способов перестановки пяти единиц в шести местоположениях:

Это то же самое число, что мы получили методом прямого счёта!

Выглядит многообещающе, поэтому давайте проверим, сможем ли мы найти таким способом число решений второго линейного уравнения:

Некоторые решения можно записать в разложенном виде:

В этот раз нам нужно заполнить тремя единицами и двумя нулями пять местоположений. Используя формулу мы можем найти число способов расположения чисел:

И опять то же число, что мы получили методом прямого счёта. Мы можем также найти число решений для нерешённого случая, где в правой части уравнения 8 вместо 3. Одним из решений будет:

а нам нужно найти число способов разместить 8 единиц в 10 местоположениях, и это будет:

как и утверждалось выше.

Если мы уверены в том, что этот метод работает для всех случаев, нам нужна общая формула. Напомним, что общее уравнение имеет вид:

Простейшее решение этого уравнения:

Поскольку существует n переменных, количество нулей в этом решении равно n-1. Таким образом, разложение выглядит так:

В разложенной конфигурации видим m и n-1 нулей (как утверждалось выше).

Следовательно, общее число местоположений, которые нужно заполнить, равно (m+n-1). Единственное, что остаётся — найти число способов, которыми можно заполнить m+n-1 местоположений m единиц, что определяется по формуле:

источники:

http://www.algebraclass.ru/naibolshee-celoe-reshenie-sistemy-neravenstv/

http://nuancesprog.ru/p/8926/

Как найти наибольшее из чисел

Если необходимо узнать наибольшее число в какой-то последовательности чисел, сделать это можно, например, с помощью программного обеспечения, установленного в ваш компьютер. А если процедуру нахождения надо воплотить в каком-либо языке программирования, следует составить алгоритм и реализовать его средствами, доступными в конкретном языке.

Как найти наибольшее из чисел

Инструкция

Для нахождения наибольшего числа в заданном множестве можно воспользоваться, например, табличным редактором Microsoft Office Excel. Запустив его, введите числа множества в соседние ячейки таблицы – по горизонтали или по вертикали, это не имеет значения. Если общее количество чисел велико и вводить его вручную затруднительно, то можно попробовать сделать это методом копирования и вставки.

Поместите в первую свободную ячейку после колонки (или строки) с числами функцию нахождения наибольшего числа. Для этого щелкните эту ячейку и нажмите пиктограмму «Вставить функцию», помещенную в начале «строки формул» над таблицей. Excel запустит «Мастер функций», в котором вам нужно в выпадающем списке «Категория» выбрать «Статистические», а затем в списке функций щелкнуть строку «МАКС» и нажать кнопку «OK». В следующем окне мастер функций сам выделит весь диапазон введенных вами числовых значений, в котором надо осуществлять поиск. Нажмите кнопку «OK» и увидите наибольшее число введенной последовательности.

Если необходимо найти наибольшее число множества средствами какого-либо языка программирования, то алгоритм может быть, например, таким: сначала присвойте результирующей переменной значение первого числа множества. Затем последовательно перебирайте числа множества, сравнивая их с результирующей переменной. Если это число больше, то присваивайте его значение результирующей переменной. Например, на языке PHP это может выглядеть так:$arr = array(15, 18, 92, 56, 92);
$max = $arr[0];
foreach($arr as $val) if($val > $max) $max = $val;
echo $max;

Однако в большинстве языков есть встроенные функции либо для поиска в массиве максимального значения, либо для сортировки массива по возрастанию или убыванию. Поэтому организовывать такие циклы вычислений нет необходимости, проще воспользоваться встроенными функциями. Например, в языке PHP приведенный в предыдущем шаге код можно заменить таким:$arr = array(15, 18, 92, 56, 92);
rsort($arr);
echo $arr[0];Здесь использована функция сортировки массива от максимального значения к минимальному (rsort). В результате ее работы самый первый элемент массива ($arr[0]) будет содержать значение наибольшего числа в массиве.

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как находить наибольшее целое решение неравенства и наименьшее? например вот…


0 голосов

Как находить наибольшее целое решение неравенства и наименьшее? например вот (х-2)/4-(2х+3)/3 > 1 мое решение НОЗ=15.сокращаем. получаем 3х-6-10х-15>15 -7х>36 П О М О Г И Т Е!!!







спросил

29 Апр, 18


от
anelmagadieva_zn
Начинающий

(634 баллов)



в категории Математика







оставил комментарий

29 Апр, 18


от
Lukmore_zn
Начинающий

(728 баллов)



может НОЗ=12? а -5х>30?






оставил комментарий

29 Апр, 18


от
Lukmore_zn
Начинающий

(728 баллов)



в знаменателях 3 и 4






оставил комментарий

29 Апр, 18


от
anelmagadieva_zn
Начинающий

(634 баллов)



попробуйте решите сами. я могу допустить ошибку. вроде все правильно






оставил комментарий

29 Апр, 18


от
Lukmore_zn
Начинающий

(728 баллов)



я решил, поэтому и поправляю






оставил комментарий

29 Апр, 18


от
anelmagadieva_zn
Начинающий

(634 баллов)



спасибо



1 Ответ


0 голосов






ответил

29 Апр, 18


от
miron2077_zn
БОГ

(649k баллов)



Лучший ответ

Здесь наименьший общий знаменатель 12


image






оставил комментарий

29 Апр, 18


от
anelmagadieva_zn
Начинающий

(634 баллов)



ответьте на вопрос как находить наибольшее целое не-ва и наименьшее))






оставил комментарий

29 Апр, 18


от
miron2077_zn
БОГ

(649k баллов)



Я нахожу по числовой оси






оставил комментарий

29 Апр, 18


от
anelmagadieva_zn
Начинающий

(634 баллов)



спасибо. просто последние месяцы я не находилась в школе по сильной болезни. вы мне помогли






оставил комментарий

29 Апр, 18


от
Lukmore_zn
Начинающий

(728 баллов)



-6 не входит в промежуток, поэтому -7 – это наибольшее целое






оставил комментарий

29 Апр, 18


от
kuzma1133_zn
Начинающий

(462 баллов)



Чтобы найти наибольшее целое решение системы неравенств, надо решить её и выбрать из полученного множества решений наибольшее целое число






оставил комментарий

29 Апр, 18


от
anelmagadieva_zn
Начинающий

(634 баллов)



извините ошибочка. в первой дроби знаменатель не 4, а 5. я вот и думаю почему не сходится.

Добавить комментарий