Голосование за лучший ответ
Shadow Dragnil
Ученик
(109)
7 лет назад
Если у двух (или нескольких) дробей знаменатель одинаковый (то, что ниже черточки), то
наименьшей дробью будет та, у которой числитель (то, что сверху черточки) наименьший, а наибольшей та, у которой числитель (то, что сверху черточки) наибольший.
22/23
Если у двух (или нескольких) дробей числитель одинаковый (то, что сверху черточки), то наименьшей дробью будет та, у которой знаменатель (то, что ниже черточки) наибольший, а наибольшей та, у которой знаменатель (то, что ниже черточки) наименьший.
31/53
Источник: Мои мозги)))
Вячеслав Алексеев
Гуру
(2533)
7 лет назад
В а ты тупик) У них знаменатели (то, что внизу) одинаковые, а числители (то, что наверху) разные. Значит, чем больше числитель, тем больше дробь. Тут самая большая – предпоследняя (22/23). Представь пирог. Его поделили на 23 части. И взяли столько, сколько написано вверху
В б наоборот – числители одинаковые, зато разные знаменатели. Представь себе пирог. Его разделили на столько частей, сколько написано внизу дроби. Из них взяли 31 часть. Чем на большее число частей поделили пирог, тем меньше часть (следовательно, находим где в знаменателе самое большое число – 53). Следовательно, пирог поделили на 53 части (маленькие) и из них взяли 31.
Ответы: 22/23 (самая большая в а)
31/53 (самая маленькая в б)
В остальных случаях только приводить к общему знаменателю 🙂
Чтобы узнать наибольшую из этих десятичных дробей, нужно вначале найти дробь с наибольшей целой частью: у дробей 9,8 и 9,4 целые части – 9, у дробей 10,14 и 10,3 целые части – 10. Целая часть 10 больше целой части 9, значит дроби 9,8 и 9,4 можем больше не сравнивать – они в любом случае будут меньше двух оставшихся(10,14 и 10,3).
Теперь у нас осталось две дроби – 10,14 и 10,3. Целые части у них одинаковые, значит теперь нам нужно сравнивать дробные части. Начнём сравнение с десятых частей (10, 1 и 10, 3). У дроби 10,14 десятичная часть – 1, у дроби 10,3 десятичная часть – 3. Десятичная часть 1 в любом случае будет меньше десятичной части 3, значит можно даже не смотреть на сотую часть первой дроби(,14). Также есть способ полегче: 10,3 = 10,30(к концам десятичных дробей можно прибавлять сколько угодно нолей, они все равно не изменятся). Теперь у нас есть дроби 10,14 и 10,30. Как уже можно понять, сотая часть 14 меньше сотой части 30, а это значит, что десятичная дробь 10,14 меньше десятичной дроби 10,3.
Итак, можно составить тройное неравенство: 9,4 < 9,8 < 10,14 < 10,3. Из этого неравенства, да и из самих вычислений можно легко понять, что десятичная дробь 10,3 является наибольшей в данном списке.
Загрузить PDF
Загрузить PDF
Сравнивают дроби обычно для того, чтобы узнать, какая больше, а какая меньше. Чтобы сравнить дроби, вам нужно привести их к одному знаменателю, тогда дробь с большим числителем большая, а с меньшим — меньшая. Самое сложное — это уяснить, как делать так, чтобы дроби имели одинаковые знаменатели, но все не так сложно, как кажется. Мы расскажем, как все это делать. Читайте дальше!
Шаги
-
1
Узнайте, какие у дробей знаменатели — одинаковые или нет. Знаменатель — это число под дробной линией, внизу, а числитель — вверху.[1]
Например, у дроби 5/7 и 9/13 не одинаковые знаменатели. Вам нужно привести их к одному знаменателю.[2]
- Если знаменатели у дробей одинаковые, тогда вам нужно всего лишь сравнить числители, чтобы узнать, какая дробь больше.
-
2
Найдите общий знаменатель. Чтобы сравнить дроби, прежде всего нужно найти общий знаменатель.[3]
Это нужно для сравнения, а также для проведения математических действий с дробями, сложения, вычитания и так далее. В случае сложения или вычитания необходимо искать наименьший общий знаменатель. Однако в данном случае (сравнение дробей) можно лишь умножить знаменатели обеих дробей, и получившееся число будет общим знаменателем. Помните, этот способ нахождения общего знаменателя работает ТОЛЬКО при сравнении дробей (а не сложении, вычитании, и так далее)- 7 x 13 = 91, новый общий знаменатель будет 91.
-
3
Измените числители дробей.[4]
Когда вы найдете общий знаменатель, в данном случае это 91, вам нужно будет изменить числители, чтобы значение дроби осталось тем же. Для этого нужно умножить числители одной дроби на знаменатель второй, а числитель второй на знаменатель первой. Вот так:- В начальной дроби 5/7 мы умножили 7 на 13 и получили 91, теперь надо умножить 5 на 13, чтобы получить новый числитель. 5/7 x 13/13 = 65/91.
- В дроби 9/13 мы умножили 13 на 7, чтобы получить новый знаменатель 91, теперь умножаем 9 на 7 и получаем новый числитель. 9 x 7 = 63, так что наша новая дробь выглядит так 63/91.
-
4
Сравните дроби — числители дробей. Дробь с большим числителем — бо́льшая.[5]
Дробь 65/91 больше, чем дробь 63/91, потому что 65 больше 63. Значит, наша начальная дробь 5/7 больше дроби 9/13.Реклама
Об этой статье
Эту страницу просматривали 45 099 раз.