Как найти наибольший делитель одного числа

Для этого термина существует аббревиатура «НОД», которая имеет и другие значения, см. Нод.

Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей[1]. Пример: для чисел 54 и 24 наибольший общий делитель равен 6.

Наибольший общий делитель существует и однозначно определён, если хотя бы одно из чисел m или n не равно нулю.

Возможные обозначения наибольшего общего делителя чисел m и n:

Понятие наибольшего общего делителя естественным образом обобщается на наборы из более чем двух целых чисел.

Связанные определения[править | править код]

Наименьшее общее кратное[править | править код]

Наименьшее общее кратное (НОК) двух целых чисел m и n — это наименьшее натуральное число, которое делится на m и n (без остатка). Обозначается НОК(m,n) или [m,n], а в английской литературе {mathrm  {lcm}}(m,n).

НОК для ненулевых чисел m и n всегда существует и связан с НОД следующим соотношением:

(m,n)cdot [m,n]=mcdot n

Это частный случай более общей теоремы: если a_{1},a_{2},dots ,a_{n} — ненулевые числа, D — какое-либо их общее кратное, то имеет место формула:

D=[a_{1},a_{2},dots ,a_{n}]cdot left({frac  {D}{a_{1}}},{frac  {D}{a_{2}}},dots ,{frac  {D}{a_{n}}}right)

Взаимно простые числа[править | править код]

Числа m и n называются взаимно простыми, если у них нет общих делителей, кроме pm 1. Для таких чисел НОД{displaystyle (m,n)=1}. Обратно, если НОД{displaystyle (m,n)=1,} то числа взаимно просты.

Аналогично, целые числа a_{1},a_{2},dots a_{k}, где kgeq 2, называются взаимно простыми, если их наибольший общий делитель равен единице.

Следует различать понятия взаимной простоты, когда НОД набора чисел равен 1, и попарной взаимной простоты, когда НОД равен 1 для каждой пары чисел из набора. Из попарной простоты вытекает взаимная простота, но не наоборот. Например, НОД(6,10,15) = 1, но любые пары из этого набора не взаимно просты.

Способы вычисления[править | править код]

Эффективными способами вычисления НОД двух чисел являются алгоритм Евклида и бинарный алгоритм.

Кроме того, значение НОД(m,n) можно легко вычислить, если известно каноническое разложение чисел m и n на простые множители:

n=p_{1}^{{d_{1}}}cdot dots cdot p_{k}^{{d_{k}}},
m=p_{1}^{{e_{1}}}cdot dots cdot p_{k}^{{e_{k}}},

где p_{1},dots ,p_{k} — различные простые числа, а d_{1},dots ,d_{k} и e_{1},dots ,e_{k} — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда НОД(n,m) и НОК[n,m] выражаются формулами:

(n,m)=p_{1}^{{min(d_{1},e_{1})}}cdot dots cdot p_{k}^{{min(d_{k},e_{k})}},
[n,m]=p_{1}^{{max(d_{1},e_{1})}}cdot dots cdot p_{k}^{{max(d_{k},e_{k})}}.

Если чисел более двух: a_{1},a_{2},dots a_{n}, их НОД находится по следующему алгоритму:

d_{2}=(a_{1},a_{2})
d_{3}=(d_{2},a_{3})

………
d_{n}=(d_{{n-1}},a_{n}) — это и есть искомый НОД.

Свойства[править | править код]

  • Основное свойство: наибольший общий делитель m и n делится на любой общий делитель этих чисел. Пример: для чисел 12 и 18 наибольший общий делитель равен 6; он делится на все общие делители этих чисел: 1, 2, 3, 6.
  • Если m делится на n, то НОД(m, n) = n. В частности, НОД(n, n) = n.
  • {displaystyle (a,b)=(a-b,b)}. В общем случае, если {displaystyle a=b*q+c}, где {displaystyle a,b,c,q} – целые числа, то {displaystyle (a,b)=(b,c)}.
  • (acdot m,acdot n)=|a|cdot (m,n) — общий множитель можно выносить за знак НОД.
  • Если D=(m,n), то после деления на D числа становятся взаимно простыми, то есть, left({{frac  {m}{D}},{frac  {n}{D}}}right)=1. Это означает, в частности, что для приведения дроби к несократимому виду надо разделить её числитель и знаменатель на их НОД.
  • Мультипликативность: если a_{1},a_{2} взаимно просты, то:
(a_{1}cdot a_{2},b)=(a_{1},b)cdot (a_{2},b)
left{acdot m+bcdot nmid a,bin mathbb{Z } right}
и поэтому (m,n) представим в виде линейной комбинации чисел m и n:

(m,n)=ucdot m+vcdot n.
Это соотношение называется соотношением Безу, а коэффициенты u и v — коэффициентами Безу. Коэффициенты Безу эффективно вычисляются расширенным алгоритмом Евклида. Это утверждение обобщается на наборы натуральных чисел — его смысл в том, что подгруппа группы mathbb {Z} , порождённая набором {a_{1},a_{2},dots ,a_{n}}, — циклическая и порождается одним элементом: НОД(a1, a2, … , an).

Вариации и обобщения[править | править код]

Понятие делимости целых чисел естественно обобщается на произвольные коммутативные кольца, такие, как кольцо многочленов или гауссовы целые числа. Однако, определить НОД(a, b) как наибольший из общих делителей a, b нельзя, так как в таких кольцах, вообще говоря, не определено отношение порядка. Поэтому в качестве определения НОД берётся его основное свойство:

Наибольшим общим делителем НОД(a, b) называется тот общий делитель, который делится на все остальные общие делители a и b.

Для натуральных чисел новое определение эквивалентно старому. Для целых чисел НОД в новом смысле уже не однозначен: противоположное ему число тоже будет НОД. Для гауссовых чисел число различных НОД возрастает до 4.

НОД двух элементов коммутативного кольца, вообще говоря, не обязан существовать. Например, для нижеследующих элементов a и b кольца {mathbb  {Z}}left[{sqrt  {-3}}right] не существует наибольшего общего делителя:

a=4=2cdot 2=left(1+{sqrt  {-3}}right)left(1-{sqrt  {-3}}right),qquad b=left(1+{sqrt  {-3}}right)cdot 2.

В евклидовых кольцах наибольший общий делитель всегда существует и определён с точностью до делителей единицы, то есть количество НОД равно числу делителей единицы в кольце.

См. также[править | править код]

  • Бинарный алгоритм вычисления НОД
  • Делимость
  • Алгоритм Евклида
  • Наименьшее общее кратное

Литература[править | править код]

  • Виноградов И. М. Основы теории чисел. М.-Л.: Гос. изд. технико-теоретической литературы, 1952, 180 с.

Примечания[править | править код]

  1. Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. страница 857

Математика

5 класс

Урок № 43

Наибольший общий делитель (НОД)

Перечень рассматриваемых вопросов:

– делители числа;

– кратные числа;

– разложение на простые множители;

– НОД.

Тезаурус

Простое число – это натуральное число, которое больше 1 и делится только на 1 и само на себя.

Составные числа – это непростые натуральные числа больше 1.

Взаимно простые числа – это числа, которые не имеют общих простых делителей.

Обязательная литература:

  1. Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. ­– 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

Начнём наше занятие словами известной поговорки: «Учить – ум точить». Сегодня мы будем оттачивать умение находить общие делители сразу нескольких чисел.

Итак, рассмотрим два числа: 12 и 15. Выпишем все делители этих чисел. 12 – делители 1, 2, 3, 4, 6, 12.

15 – делители 1, 3, 5, 15.

Найдём общие делители этих чисел – это числа 1 и 3. Введём новое понятие – «наибольший общий делитель», который кратко обозначают НОД.

У этих чисел наибольший общий делитель равен 3.

Записывается – НОД (12; 15) = 3. НОД чисел двенадцать и пятнадцать равен трём.

Правило нахождения НОД:

  1. разложим числа на простые множители;
  2. подчеркнём одинаковые множители этих чисел;
  3. перемножим общие множители одного из чисел, это и будет НОД заданных чисел.

Найдём НОД чисел 15 и 16.

НОД (15; 16) = ?

Разложим числа на простые множители.

Видно, что из всех множителей – общий лишь 1.

Такие числа, которые не имеют общих простых делителей, называются взаимно простыми числами. Любые два простых числа или два соседних натуральных числа будут взаимно простыми.

Найдём НОД (10; 100).

Разложим числа на простые множители.

Выделим общие делители у этих чисел, это 2 и 5.

Умножим их и получим наибольший общий делитель: НОД (10; 100) = 2 · 5 = 10.

Обратите внимание на то, что 100 делится нацело на 10 и НОД тоже равен 10. Поэтому можно сделать вывод: если одно из двух чисел делится нацело на другое, то НОД этих чисел равен меньшему из них.

Найдём наибольший общий делитель трёх чисел.

НОД (42; 70; 98) = ?

Разложим числа на простые множители:

Выделим общие делители у этих чисел, это 2 и 7.

Умножим их и получим наибольший общий делитель: НОД (42; 70; 98) = 2 · 7 = 14

Некоторые задачи можно решить при помощи НОД проще, чем каким-либо другим способом.

Например, решим такую задачу.

Для участия в соревнованиях нужно разделить 35 детей в возрасте 14 лет и 21 ребёнка в возрасте 12 лет на команды так, чтобы они состояли только из одновозрастных спортсменов. Какое наибольшее число участников одного возраста может быть в команде?

Решение: чтобы решить эту задачу нужно найти НОД (21; 35).

Разложим числа на простые множители:

Следовательно, НОД (21; 35) = 7 – это и будет наибольшим числом участников в команде.

Ответ: 7 человек.

Тренировочные задания

№ 1. Какую цифру нужно подставить в число НОД (7; 2_) вместо пропуска, чтобы получить НОД = 7?

Варианты ответов: 1, 2, 3.

Решение: разложим на множители оба числа, при этом вместо пропуска подставим по порядку все цифры. А далее найдём подходящий НОД этих чисел, равный 7. Получим следующее разложение:

Из всех разложений на множители под НОД (7; 2) = 7 подходит только число 21.

Ответ: искомая цифра – 1.

№ 2. В продуктовых наборах должно быть одинаковое количество груш и апельсинов. Всего приготовили 120 груш и 126 апельсинов. В какое наибольшее количество наборов можно разложить их поровну?

Решение: чтобы решить эту задачу, нужно найти НОД заданных чисел, он и будет являться искомым ответом, т. е. наибольшим количеством наборов при равном разложении фруктов.

НОД (120; 126) = 2 · 3 = 6

Ответ: 6 наборов.

Эта статья посвящена такому вопросу, как нахождение наибольшего общего делителя. Сначала мы объясним, что это такое, и приведем несколько примеров, введем определения наибольшего общего делителя 2, 3 и более чисел, после чего остановимся на общих свойствах данного понятия и докажем их.

Что такое общие делители

Чтобы понять, что из себя представляет наибольший общий делитель, сначала сформулируем, что вообще такое общий делитель для целых чисел.

В статье о кратных и делителях мы говорили, что у целого числа всегда есть несколько делителей. Здесь же нас интересуют делители сразу некоторого количества целых чисел, особенно общие (одинаковые) для всех. Запишем основное определение.

Определение 1

Общим делителем нескольких целых чисел будет такое число, которое может быть делителем каждого числа из указанного множества.

Пример 1

Вот примеры такого делителя: тройка будет общим делителем для чисел -12 и 9, поскольку верны равенства 9=3·3 и −12=3·(−4). У чисел 3 и -12 есть и другие общие делители, такие, как 1, −1 и −3. Возьмем другой пример. У четырех целых чисел 3, −11, −8 и 19 будет два общих делителя: 1 и -1.

Зная свойства делимости, мы можем утверждать, что любое целое число можно разделить на единицу и минус единицу, значит, у любого набора целых чисел уже будет как минимум два общих делителя.

Также отметим, что если у нас есть общий для нескольких чисел делитель b, то те же числа можно разделить и на противоположное число, то есть на -b.  В принципе, мы можем взять лишь положительные делители, тогда все общие делители также будут больше 0. Такой подход также можно использовать, однако совсем игнорировать отрицательные числа не следует.

Что такое наибольший общий делитель (НОД)

Согласно свойствам делимости, если b является делителем целого числа a, которое не равно 0, то модуль числа b не может быть больше, чем модуль a, следовательно, любое число, не равное 0, имеет конечное число делителей. Значит, число общих делителей нескольких целых чисел, хотя бы одно из которых отличается от нуля, также будет конечным, и из всего их множества мы всегда можем выделить самое большое число (ранее мы уже говорили о понятии наибольшего и наименьшего целого числа, советуем вам повторить данный материал).

В дальнейших рассуждениях мы будем считать, что хотя бы одно из множества чисел, для которых нужно найти наибольший общий делитель, будет отлично от 0. Если они все равны 0, то их делителем может быть любое целое число, а поскольку их бесконечно много, выбрать наибольшее мы не сможем. Иначе говоря, найти наибольший общий делитель для множества чисел, равных 0, нельзя.

Переходим к формулировке основного определения.

Определение 2

Наибольшим общим делителем нескольких чисел является самое большое целое число, которое делит все эти числа.

На письме наибольший общий делитель чаще всего обозначается аббревиатурой НОД. Для двух чисел его можно записать как НОД (a, b).

Пример 2

Какой можно привести пример НОД для двух целых чисел? Например, для 6 и -15 это будет 3. Обоснуем это. Сначала запишем все делители шести: ±6, ±3, ±1, а потом все делители пятнадцати: ±15, ±5, ±3 и ±1. После этого мы выбираем общие: это −3, −1, 1 и 3. Из них надо выбрать самое большое число. Это и будет 3.

Для трех и более чисел определение наибольшего общего делителя будет почти таким же.

Определение 3

Наибольшим общим делителем трех чисел и более будет самое большое целое число, которое будет делить все эти числа одновременно.

Для чисел a1, a2, …, an делитель удобно обозначать как НОД (a1, a2, …, an). Само значение делителя записывается как НОД (a1, a2, …, an) =b.

Пример 3

Приведем примеры наибольшего общего делителя нескольких целых чисел: 12, -8, 52, 16. Он будет равен четырем, значит, мы можем записать, что НОД (12, -8, 52, 16) =4.

Проверить правильность данного утверждения можно с помощью записи всех делителей этих чисел и последующего выбора наибольшего из них.

На практике часто встречаются случаи, когда наибольший общий делитель равен одному из чисел. Это происходит тогда, когда на данное число можно разделить все остальные числа (в первом пункте статьи мы привели доказательство этого утверждения).

Пример 4

Так, наибольший общий делитель чисел 60, 15 и -45 равен 15, поскольку пятнадцать делится не только на 60 и -45, но и на само себя, и большего делителя для всех этих чисел не существует.

Особый случай составляют взаимно простые числа. Они представляют собой целые числа с наибольшим общим делителем, равным 1.

Основные свойства НОД и алгоритм Евклида

У наибольшего общего делителя есть некоторые характерные свойства. Сформулируем их в виде теорем и докажем каждое из них.

Отметим, что данные свойства сформулированы для целых чисел больше нуля, а делители мы рассмотрим только положительные.

Определение 4

Числа a и b имеют наибольший общий делитель, равный НОД для b и a, то есть НОД (a, b)=НОД (b, a). Перемена мест чисел не влияет на конечный результат.

Данное свойство следует из самого определения НОД и не нуждается в доказательствах.

Определение 5

Если число a можно разделить на число b, то множество общих делителей этих двух чисел будет аналогично множеству делителей числа b, то есть НОД (a, b)=b.

Докажем это утверждение.

Доказательство 1

Если у чисел a и b есть общие делители, то на них можно разделить любое из них. В то же время если a будет кратным b, то любой делитель b будет делителем и для a, поскольку у делимости есть такое свойство, как транзитивность. Значит, любой делитель b будет общим для чисел a и b. Это доказывает, что если мы можем разделить a на b, то множество всех делителей обоих чисел совпадет с множеством делителей одного числа b. А поскольку наибольший делитель любого числа есть само это число, то наибольший общий делитель чисел a и b будет также равен b, т.е. НОД (a, b)=b. Если a=b, то НОД (a, b)=НОД (a, a)=НОД (b, b) =a=b, например, НОД (132, 132) =132.

Используя это свойство, мы можем найти наибольший общий делитель двух чисел, если одно из них можно разделить на другое. Такой делитель равен одному из этих двух чисел, на которое можно разделить второе число. К примеру, НОД (8, 24) =8, так как 24 есть число, кратное восьми.

Определение 6

Если верно равенство a=b·q+c (здесь все переменные являются целыми числами), то все общие делители двух чисел a и b будут такими же, как и у чисел b и c, то есть НОД (a, b)=НОД (b, c).

Доказательство 2

Попробуем доказать данное свойство. У нас изначально есть равенство a=b·q+c, и любой общий делитель a и b будет делить и c, что объясняется соответствующим свойством делимости. Поэтому любой общий делитель b и c будет делить a. Значит, множество общих делителей a и b совпадет с множеством делителей b и c, в том числе и наибольшие из них, значит, равенство НОД (a, b)=НОД (b, c) справедливо.

Определение 7

Следующее свойство получило название алгоритма Евклида. С его помощью можно вычислить наибольший общий делитель двух чисел, а также доказать другие свойства НОД.

Перед тем, как сформулировать свойство, советуем вам повторить теорему, которую мы доказывали в статье о делении с остатком. Согласно ей, делимое число a можно представить в виде b·q+r, причем b здесь является делителем, q – некоторым целым числом (его также называют неполным частным), а r – остатком, который удовлетворяет условию 0≤r≤b.

Допустим, у нас есть два целых числа больше 0, для которых будут справедливы следующие равенства:

a=b·q1+r1, 0<r1<bb=r1·q2+r2, 0<r2<r1r1=r2·q3+r3, 0<r3<r2r2=r3·q4+r4, 0<r4<r3⋮rk-2=rk-1·qk+rk, 0<rk<rk-1rk-1=rk·qk+1

Эти равенства заканчиваются тогда, когда rk+1 становится равен 0. Это случится обязательно, поскольку последовательность b> r1> r2> r3, … представляет собой ряд убывающих целых чисел, который может включать в себя только конечное их количество. Значит, rk является наибольшим общим делителем a и b, то есть, rk=НОД (a, b).

В первую очередь нам надо доказать, что rk – это общий делитель чисел a и b, а после этого – то, что rk является не просто делителем, а именно наибольшим общим делителем двух данных чисел.

Просмотрим список равенств, приведенный выше, снизу вверх. Согласно последнему равенству,
rk−1 можно разделить на rk. Исходя из этого факта, а также предыдущего доказанного свойства наибольшего общего делителя, можно утверждать, что rk−2 можно разделить на rk, так как
rk−1 делится на rk и rk делится на rk.

Третье снизу равенство позволяет нам сделать вывод, что rk−3 можно разделить на rk, и т.д. Второе снизу – что b делится на rk, а первое – что a делится на rk. Из всего этого заключаем, что rk – общий делитель a и b.

Теперь докажем, что rk=НОД (a, b). Что для этого нужно сделать? Показать, что любой общий делитель a и b будет делить rk. Обозначим его r0.

Просмотрим тот же список равенств, но уже сверху вниз. Исходя из предыдущего свойства, можно заключить, что r1 делится на r0, значит, согласно второму равенству r2 делится на r0. Идем по всем равенствам вниз и из последнего делаем вывод, что rk делится на r0. Следовательно, rk=НОД (a, b).

Рассмотрев данное свойство, заключаем, что множество общих делителей a и b аналогично множеству делителей НОД этих чисел. Это утверждение, которое является следствием из алгоритма Евклида, позволит нам вычислить все общие делители двух заданных чисел.

Перейдем к другим свойствам.

Определение 8

Если a и b являются целыми числами, не равными 0, то должны существовать два других целых числа u0 и v0, при которых будет справедливым равенство НОД (a, b) =a·u0+b·v0.

Равенство, приведенное в формулировке свойства, является линейным представлением наибольшего общего делителя a и b. Оно носит название соотношения Безу, а числа u0 и v0 называются коэффициентами Безу.

Доказательство 3

Докажем данное свойство. Запишем последовательность равенств по алгоритму Евклида:

a=b·q1+r1, 0<r1<bb=r1·q2+r2, 0<r2<r1r1=r2·q3+r3, 0<r3<r2r2=r3·q4+r4, 0<r4<r3⋮rk-2=rk-1·qk+rk, 0<rk<rk-1rk-1=rk·qk+1

Первое равенство говорит нам о том, что r1=a−b·q1. Обозначим 1=s1 и −q1=t1 и перепишем данное равенство в виде r1=s1·a+t1·b. Здесь числа s1 и t1 будут целыми. Второе равенство позволяет сделать вывод, что r2=b−r1·q2=b−(s1·a+t1·b) ·q2=−s1·q2·a+(1−t1·q2) ·b. Обозначим −s1·q2=s2 и 1−t1·q2=t2 и перепишем равенство как r2=s2·a+t2·b, где s2 и t2 также будут целыми. Это объясняется тем, что сумма целых чисел, их произведение и разность также представляют собой целые числа. Точно таким же образом получаем из третьего равенства r3=s3·a+t3·b, из следующего r4=s4·a+t4·b и т.д. В конце заключаем, что rk=sk·a+tk·b при целых sk и tk. Поскольку rk=НОД (a, b), обозначим sk=u0 и tk=v0, В итоге мы можем получить линейное представление НОД в требуемом виде: НОД (a, b) =a·u0+b·v0.

Определение 9

НОД (m·a, m·b) =m·НОД(a, b) при любом натуральном значении m.

Доказательство 4

Обосновать это свойство можно так. Умножим на число m обе стороны каждого равенства в алгоритме Евклида и получим, что НОД (m·a, m·b) =m·rk, а rk – это НОД (a, b). Значит, НОД (m·a, m·b) =m·НОД(a, b). Именно это свойство наибольшего общего делителя используется при нахождении НОД методом разложения на простые множители.

Определение 10

Если у чисел a и b есть общий делитель p, то НОД (a:p, b:p)=НОД(a, b):p. В случае, когда p=НОД (a, b) получим НОД (a:НОД(a, b), b:НОД (a, b)=1, следовательно, числа a:НОД(a, b) и b:НОД (a, b) являются взаимно простыми.

Поскольку a=p·(a:p) и b=p·(b:p), то, основываясь на предыдущем свойстве, можно создать равенства вида НОД(a, b)=НОД(p·(a:p), p·(b:p))=p·НОД(a:p, b:p), среди которых и будет доказательство данного свойства. Это утверждение мы используем, когда приводим обыкновенные дроби к несократимому виду.

Определение 11

Наибольшим общим делителем a1, a2, …, ak будет число dk, которое можно найти, последовательно вычисляя НОД (a1, a2)=d2, НОД (d2, a3) =d3, НОД (d3, a4) =d4, …, НОД (dk-1, ak) =dk.

Это свойство полезно при нахождении наибольшего общего делителя трех и более чисел. С помощью него можно свести это действие к операциям с двумя числами. Его основой является следствие из алгоритма Евклида: если множество общих делителей a1, a2 и a3 совпадает с множеством d2 и a3, то оно совпадет и с делителями d3. Делители чисел a1, a2, a3 и a4 совпадут с делителями d3, значит, они совпадут и с делителями d4, и т.д. В конце мы получим, что общие делители чисел a1, a2, …, ak совпадут с делителями dk, а поскольку наибольшим делителем числа dk будет само это число, то НОД (a1, a2, …, ak) =dk.

Это все, что мы хотели бы рассказать о свойствах наибольшего общего делителя.

Наибольший общий делитель


Наибольший общий делитель

4.3

Средняя оценка: 4.3

Всего получено оценок: 223.

4.3

Средняя оценка: 4.3

Всего получено оценок: 223.

Наибольший общий делитель – это еще один показатель, позволяющий упростить работу с дробями. Очень часто в результате вычислений получаются дроби с очень большими значениями числителя и знаменателя. Сокращать поэтапно такие числа можно, но это крайне долго, поэтому проще сразу найти НОД и сократить на него. Разберемся в теме подробнее.

Что такое НОД?

Наибольший общий делитель (НОД) ряда чисел – это наибольшее число, на которое можно без остатка разделить каждое из чисел ряда.

Это значение чаще всего используется для ряда из двух чисел. Просто потому, что сокращаются обычно два числа: числитель и знаменатель дроби. Нахождение НОД для большего количества значений не всегда оправдано, но вырабатывает навык.

Как найти НОД?

Для того, чтобы найти НОД необходимо каждое из чисел разложить на простые множители и выделить общую часть.

Специальной формулы для этого не придумали, зато есть алгоритм вычисления.

Приведем пример нахождения наибольшего общего делителя двух натуральных чисел: 540 и 252. Разложим 640 на простые множители. Последовательность действий такова:

  • Делим число на наименьший из возможных простых чисел. То есть, если число можно разделить на 2, 3 или 5, то сначала нужно делить на 5. Просто, чтобы не запутаться.
  • Получившийся результат делим на наименьшее из возможных простых чисел.
  • Повторяем деление каждого полученного результата, пока не получим простое число.

Теперь проведем ту же процедуру на практике.

  • 540 : 2=270
  • 270:2=135
  • 135 : 3 =45
  • 45 : 3=15
  • 15 : 5 = 3

Запишем результат в виде равенства 540=2*2*3*3*3*5. Для того, чтобы записать результат, нужно последнее получившееся число умножить на все делители.

Аналогично поступим с числом 252:

  • 252 : 2=126
  • 126: 2=63
  • 63 : 3=21
  • 21 : 3 = 7

Запишем результат: 252=2*2*3*3*7.

В каждом разложении есть одинаковые числа. Найдем их, это два числа 2 и два числа 3. Отличаются только 7 и 3*5.

Для того, чтобы найти НОД нужно перемножить общие множетели. То есть в произведении будет две двойки и две тройки.

НОД=2*2*3*3=36

Как можно это использовать?

Задача: сократить дробь $$252over540$$.

НОД для двух этих чисел мы уже находили, теперь просто воспользуемся уже посчитанным значением.

НОД = 36

Сократим числитель и знаменатель дроби на 36 и получим ответ.

$${252over540} ={7over15}$$ – чтобы быстро сократить, достаточно посмотреть на разложение чисел.

Если 540=2*2*3*3*3*5, а НОД=36=2*2*3*3, то 540 = 36*3*5. И если мы поделим 540 на 36, то получим 3*5=15.

Без НОД нам пришлось бы в одну длинную строку писать сокращения. К тому же, бывают случаи, когда непонятно, можно ли сократить дробь вообще. Для таких ситуаций в математике и придумали разложение чисел на простые множители и НОД.

Заключение

Что мы узнали?

Мы узнали, что такое наибольший общий делитель пары чисел, разобрались, как можно использовать показатель на практике, решили задачу на нахождение НОД и применение НОД для сокращения дробей. Поняли, что с использованием НОД можно проще и быстрее сократить громоздкие дроби, найдя НОД для числителя и знаменателя.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.3

Средняя оценка: 4.3

Всего получено оценок: 223.


А какая ваша оценка?

Наибольшим общим делителем (НОД) двух целых чисел называется наибольший из их общих делителей. К примеру для чисел 12 и 8, наибольшим общим делителем будет 4.

Как найти НОД?

Способов найти НОД несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОД при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:

  1. разложить оба числа на простые множители (подробнее о разложении чисел на простые множители смотрите тут);
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Примеры нахождения наибольшего общего делителя

Рассмотрим приведенный алгоритм на конкретных примерах:

Пример 1: найти НОД 12 и 8

1. Раскладываем 12 и 8 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 2 и 2

3. Перемножаем эти множители и получаем: 2 · 2 = 4

Ответ: НОД (8; 12) = 2 · 2 = 4.

Пример 2: найти НОД 75 и 150

Этот пример, как и предыдущий с легкостью можно высчитать в уме и вывести ответ 75, но для лучшего понимания работы алгоритма, проделаем все шаги:

1. Раскладываем 75 и 150 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 3, 5 и 5

3. Перемножаем эти множители и получаем: 3 · 5 · 5 = 75

Ответ: НОД (75; 150) = 3 · 5 · 5 = 75.

Частный случай или взаимно простые числа

Нередко встречаются ситуации, когда оба числа взаимно простые, т.е. общий делитель равен единице. В этом случае, алгоритм будет выглядеть следующим образом:

Пример 3: найти НОД 9 и 5

1. Раскладываем 5 и 9 на простые множители:

Видим, что одинаковых множителей нет, а значит, что это частный случай (взаимно простые числа). Общий делитель — единица.

Добавить комментарий