Как найти наибольшую диагональ шестиугольника

Найдите большую диагональ правильного шестиугольника, периметр которого 36 см.

На этой странице вы найдете ответ на вопрос Найдите большую диагональ правильного шестиугольника, периметр которого 36 см?. Вопрос
соответствует категории Геометрия и уровню подготовки учащихся 10 – 11 классов классов. Если ответ полностью не удовлетворяет критериям поиска, ниже можно
ознакомиться с вариантами ответов других посетителей страницы или обсудить с
ними интересующую тему. Здесь также можно воспользоваться «умным поиском»,
который покажет аналогичные вопросы в этой категории. Если ни один из
предложенных ответов не подходит, попробуйте самостоятельно сформулировать
вопрос иначе, нажав кнопку вверху страницы.

Правильным шестиугольником называется шестиугольник, у которого все стороны и углы равны. Правильный шестиугольник обладает следующими свойствами.

– Сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.

– Большая диагональ правильного шестиугольника является диаметром описанной вокруг него окружности и равна двум его сторонам.

– Меньшая диагональ правильного шестиугольника в раз больше его стороны.

– Угол между сторонами правильного шестиугольника равен 120°.

– Меньшая диагональ правильного шестиугольника перпендикулярна его стороне.

– Треугольник, образованный стороной шестиугольника, его большей и меньшей диагоналями, прямоугольный, а его острые углы равны 30° и 60°.

Гексагон — правильный выпуклый многоугольник с шестью сторонами или шестиугольник.

Шестиугольник – это многоугольник, имеющий шесть сторон и шесть углов. В правильном шестиугольнике все стороны равны, а углы образуют шесть равносторонних треугольников.

Выпуклый шестиугольник – это многоугольник, с общим количеством вершин, равным шести, при этом все точки такого шестиугольника лежат по одну сторону от прямой, которая проведена между двумя любыми соседними его вершинами.

Правильный шестиугольник – это шестиугольник, все стороны которого равны между собой.

Сумма углов выпуклого шестиугольника определяется по общей формуле 180°(n-2) и равна 180 ( 6 – 2 ) = 720 градусов.

При решении задач для нахождения площади произвольного (неправильного) шестиугольника используют метод трапеций, который заключается в разбиении фигуры на отдельные трапеции, площадь каждой из которых можно найти по известным всем формулам.

Свойства правильного шестиугольника

  • все внутренние углы равны между собой
  • каждый внутренний угол правильного шестиугольника равен 120 градусам
  • все стороны равны между собой
  • сторона правильного шестиугольника равна радиусу описанной окружности
  • большая диагональ правильного шестиугольника является диаметром описанной вокруг него окружности и равна двум его сторонам
  • меньшая диагональ правильного шестиугольника в ( sqrt <3>) раз больше его стороны.
  • vеньшая диагональ правильного шестиугольника перпендикулярна его стороне
  • правильный шестиугольник заполняет плоскость без пробелов и наложений
  • диагонали пересекаются в одной точке и делят его на 6 равносторонних треугольников, у которых высота равна радиусу вписанной в правильный шестиугольник окружности. 6.
  • инвариантен относительно поворота плоскости на угол, кратный относительно центра описанной окружности (слово “инвариантный” означает, что при таких поворотах правильный шестиугольник перейдёт в себя, то есть такие повороты являются его симметриями)
  • nреугольник, образованный стороной шестиугольника, его большей и меньшей диагоналями, прямоугольный, а его острые углы равны 30° и 60° .

Внутренние углы Внутренние углы в правильном шестиугольнике равны (120^circ) :

Апофема Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)

Апофема Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)

Радиус вписанной окружности правильного шестиугольника равен апофеме:

(r = m = alargefrac<<sqrt 3 >><2>
ormalsize)

Радиус описанной окружности равен стороне правильного шестиугольника:

Периметр правильного шестиугольника

Площадь правильного шестиугольника Формула площади правильного шестиугольника через длину стороны

(S = pr = largefrac<<3sqrt 3 >><2>
ormalsize),
где (p) − полупериметр шестиугольника.

Площадь правильного шестиугольника Формула площади правильного шестиугольника через радиус вписанной окружности

Площадь правильного шестиугольника Формула площади правильного шестиугольника через радиус описанной окружности

Правильным шестиугольником называется выпуклый многоугольник с шестью одинаковыми сторонами и шестью углами.

Внутренние углы в правильном шестиугольнике равны (120^circ):
(alpha = 120^circ)

Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)
(m = alargefrac >
ormalsize)

Радиус вписанной окружности правильного шестиугольника равен апофеме:
(r = m = alargefrac >
ormalsize)

Радиус описанной окружности равен стороне правильного шестиугольника:
(R = a)

Периметр правильного шестиугольника
(P = 6a)

Площадь правильного шестиугольника
(S = pr = largefrac >
ormalsize),
где (p) − полупериметр шестиугольника.

Самая известная фигура, у которой больше четырех углов — это правильный шестиугольник. В геометрии он часто используется в задачах. А в жизни именно такой вид имеют соты на срезе.

Чем он отличается от неправильного?

Во-первых, шестиугольником является фигура с 6 вершинами. Во-вторых, он может быть выпуклым или вогнутым. Первый отличается тем, что четыре вершины лежат по одну сторону от прямой, проведенной через две другие.

В-третьих, правильный шестиугольник характеризуется тем, что все его стороны равны. Причем каждый угол фигуры тоже имеет одинаковое значение. Чтобы определить сумму всех его углов, потребуется воспользоваться формулой: 180º * (n — 2). Здесь n — число вершин фигуры, то есть 6. Простой расчет дает значение в 720º. То есть каждый угол равен 120 градусам.

В повседневной деятельности правильный шестиугольник встречается в снежинке и гайке. Химики видят ее даже в молекуле бензола.

Какие свойства требуется знать при решении задач?

К тому, что указано выше, следует добавить:

  • диагонали фигуры, проведенные через центр, делят ее на шесть треугольников, которые являются равносторонними;
  • сторона правильного шестиугольника имеет значение, которое совпадает с радиусом описанной около него окружности;
  • используя такую фигуру, есть возможность заполнить плоскость, причем между ними не получится пропусков и не будет наложений.

Введенные обозначения

Традиционно сторона правильной геометрической фигуры обозначается латинской буквой «а». Для решения задач требуются еще площадь и периметр, это S и P соответственно. В правильный шестиугольник бывает вписана окружность или описана около него. Тогда вводятся значения для их радиусов. Обозначаются они соответственно буквами r и R.

В некоторых формулах фигурируют внутренний угол, полупериметр и апофема (являющаяся перпендикуляром к середине любой стороны из центра многоугольника). Для них используются буквы: α, р, m.

Формулы, которые описывают фигуру

Для расчета радиуса вписанной окружности потребуется такая: r = (a * √3) / 2, причем r = m. То есть такая же формула будет и для апофемы.

Поскольку периметр шестиугольника — это сумма всех сторон, то он определится так: P = 6 * a. С учетом того, что сторона равна радиусу описанной окружности, для периметра существует такая формула правильного шестиугольника: P = 6 * R. Из той, что приведена для радиуса вписанной окружности, выводится зависимость между а и r. Тогда формула принимает такой вид: Р = 4 r * √3.

Для площади правильного шестиугольника может пригодиться такая: S = p * r = (a 2 * 3 √3) / 2.

Задачи

№ 1. Условие. Имеется правильная шестиугольная призма, каждое ребро которой равно 4 см. В нее вписан цилиндр, объем которого необходимо узнать.

Решение. Объем цилиндра определяется как произведение площади основания на высоту. Последняя совпадает с ребром призмы. А она равна стороне правильного шестиугольника. То есть высота цилиндра — тоже 4 см.

Чтобы узнать площадь его основания, потребуется вычислить радиус вписанной в шестиугольник окружности. Формула для этого указана выше. Значит, r = 2√3 (см). Тогда площадь круга: S = π * r 2 = 3,14 * (2√3 ) 2 = 37,68 (см 2 ).

Осталось сосчитать объем: V = 37, 68 * 4 = 150,72 (см 3 ).

Ответ. V = 150,72 см 3 .

№ 2. Условие. Вычислить радиус окружности, которая вписана в правильный шестиугольник. Известно, что его сторона равна √3 см. Чему будет равен его периметр?

Решение. Эта задача требует использования двух из указанных формул. Причем их необходимо применять, даже не видоизменяя, просто подставить значение стороны и вычислить.

Таким образом, радиус вписанной окружности получается равным 1,5 см. Для периметра оказывается верным такое значение: 6√3 см.

Ответ. r = 1,5 см, Р = 6√3 см.

№ 3. Условие. Радиус описанной окружности равен 6 см. Какое значение в этом случае будет у стороны правильного шестиугольника?

Решение. Из формулы для радиуса вписанной в шестиугольник окружности легко получается та, по которой нужно вычислять сторону. Ясно, что радиус умножается на два и делится на корень из трех. Необходимо избавиться от иррациональности в знаменателе. Поэтому результат действий принимает такой вид: (12 √3) / (√3 * √3), то есть 4√3.

Правильный многоугольник

Правильный многоугольник — это многоугольник, все стороны и углы которого равны.

Вокруг правильного многоугольника можно описать окружность и в него можно вписать окружность. Центры этих окружностей совпадают.

Правильный шестиугольник

Правильный шестиугольник – это шестиугольник, все стороны и углы которого равны.

Описанный многоугольник

Если все стороны многоугольника касаются некоторой окружности , то он называется описанным многоугольником .

Шестиугольник представляет собой геометрическую фигуру, многоугольник, который имеет шесть углов и
шесть сторон.

Также существует правильный шестиугольник. Он обладает следующим свойством: все ребра и углы равны.
Каждый угол составляет 120 градусов. А также он состоит из шести правильных и равных
треугольников.

  • Длинная диагональ правильного шестиугольника через
    площадь
  • Котроткая диагональ правильного шестиугольника через
    площадь
  • Длинная диагональ правильного шестиугольника через
    сторону
  • Короткая диагональ правильного шестиугольника через
    сторону

Длинная диагональ через площадь

Длинной диагональю на рисунке являются отрезки ВЕ, AD и CF. Все диагонали будут равны между собой.
Это свойство касается как правильной фигуры, так и неправильной. Для нахождения длинной диагонали
правильного шестиугольника понадобится площадь полной фигуры (правильного шестиугольника), которую
можно найти по формуле S = (a * a * √3 * 6) / 4. А диагональ находится по
следующим образом:

D = √((S / 3√3) * 8)

где S — площадь правильного шестиугольника.

Цифр после
запятой:

Результат в:

Пример. Сторона шестиугольника равна 6 см. Тогда площадь: S = (6 * 6 * √3 * 6) / 4 = 54√3 см. D = √((54√3 / 3√3) * 8) = 12 см.

Короткая диагональ через площадь

Короткими диагоналями можно назвать BD, BF, AE или же DF. Для нахождения неизвестной стороны также,
как и в прошлой ситуации, понадобится площадь фигуры, которую возможно найти по следующей формуле:
S = (a * a * √3 * 6) / 4. После этого найденная величина подставляется в
готовую формулу:

D = √((S / √3) * 2)

где S — площадь правильного многоугольника.

Цифр после
запятой:

Результат в:

Пример. Как и в прошлой задаче, ребро равно 6 см. Тогда площадь правильного
шестиугольника = 54√3 см. Далее можно находить и искомую диагональ: D = √((54√3 / √3) * 2) = 6√3

Длинная диагональ через сторону

Длинной диагональю на рисунке являются отрезки ВЕ, AD и CF. Длинную диагональ правильно
шестиугольника можно вычислить и без нахождения площади. Для выполнения математических действий и
нахождения неизвестной переменной надо знать лишь ребро многоугольника:

D = 2a

где a — сторона правильного шестиугольника.

Цифр после
запятой:

Результат в:

Длинная диагональ состоит из двух сторон треугольников, прилегающих друг к другу, поэтому сторону
умножаем на 2.

Пример. В задаче дан правильный шестиугольник. Его ребро равно 3 см. Тогда длинная
диагональ равна 6 см.

Короткая диагональ через сторону

Также существует и другой способ нахождения короткой диагонали, равностороннего шестиугольника.
Например, диагонали BD. Для нахождения достаточно лишь знание стороны фигуры:

D = √(3 * a * a)

где a — сторона правильного шестиугольника.

Цифр после
запятой:

Результат в:

Пример. Сторона АВ равна 10 см. Тогда BD = D = √(3 * 10 * 10) = 10√3 см = 17 см.

Для более простого понимания такой темы, как вычисление диагонали правильного шестиугольника, стоит
для начала увидеть, что данный многоугольник состоит из шести равносторонних и равных между собой
треугольников. (Неправильный шестиугольник условно можно разделить на шесть равнобедренных
треугольник). О – это центр правильного шестиугольника. Он делит диагонали на равные отрезки. Также
точка пересечения длинных диагоналей является центром вписанной и описанных окружностей. Все
диагонали также равны между собой и делят углы на две равные части, то есть выполняют функцию
биссектрисы, а также высоты или медианы, так как были проведены в равнобедренном треугольнике. Таким
образом будет легче находить какие-то неизвестные отрезки.

Однако существует и более сложный метод – через нахождение площади фигуры. Данную формулу запомнить
просто: S = (a * a * √3) / 4 – она необходима, чтобы вычислить площадь
равностороннего треугольника, где величина а является стороной. А вышеупомянутая фигура состоит из
шести таких геометрических фигур, поэтому конечная формула будет выглядеть так: S = (a * a * √3 * 6) / 4

Таким образом, шестиугольник является не такой уж и сложной фигурой, как кажется на первый взгляд.
Достаточно изучить элементарные свойства и запомнить их.

Найдите правильный ответ на вопрос ✅ «В правильном шестиугольнике сторона равна 10 см. Найти наибольшую диагональ этого шестиугольника. …» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.

Смотреть другие ответы

Дано треугольник OBS угол B=90 градусов угол S=45 градусов OB=1008 СМ Найти SB

Ответы (1)

Дано abcd-параллелограмм, BCA=31 градусов, BAC=25 градусов

Ответы (1)

Один угол параллелограмма в 4 разОдин угол параллелограмма в 4 раза больше другого. Найдите больший угол. Ответ дайте в градусах. а больше другого. Найдите больший угол.

Ответы (1)

NK на 19 см. больше MN, MK = 81 см. Найти : MK, NK

Ответы (1)

Начертите угол AOB и лучи ОК и ОМ, проходящие между сторонами этого угла, так, чтобы угол AOB = 90, AOK = 40, MOB = 30, Найдите KOM

Ответы (1)

Главная » Геометрия » В правильном шестиугольнике сторона равна 10 см. Найти наибольшую диагональ этого шестиугольника.

UCHEES.RU – помощь студентам и школьникам


В 17:49 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Чему равна длина наибольшей диагонали правильного шестиугольника, вписанного в окружность радиуса 10 см?

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике “ЕГЭ (школьный)”. Ваш вопрос звучал следующим образом: Чему равна длина наибольшей диагонали правильного шестиугольника, вписанного в окружность радиуса 10 см?

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

решение к заданию по математике
 

НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Брагина Гера Куприяновна – автор студенческих работ, заработанная сумма за  прошлый месяц 58 559 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.


2020 – 2023 – UCHEES.RU

Добавить комментарий