Как найти наименьшее частное 5 класс

Содержание материала

  1. Определение частного чисел (деление)
  2. Видео
  3. Неполное частное
  4. Как найти частное чисел
  5. Проверка деления умножением
  6. Увеличение или уменьшение делимого
  7. Нахождение значения частного чисел
  8. Деление с остатком

Определение частного чисел (деление)

Частное чисел — это результат получаемый при определении количества содержания одного числа в другом. Проще говоря это обычное деление. При этом общепринятые оперируемые понятия для частного это делимое, делитель и само частное — результат.

 

Пример. Найти частное чисел:

1) 20:2=10;

2) 35:7=5.

Ответ: 20:2=10 и  35:7=5.

Это был самый простой пример. Все самое интересное впереди! Проблемы с делением начинаются тогда, когда числа становятся большими и выходят за рамки таблицы умножения. Здесь приходится делить большое число по определенному правилу. Такое деление еще называется деление в столбик. 

Пример. Найти частное чисел:

1) 894:3=298

-894| 3__ 6    |298-29  27— 24  24    0

Ответ: 894:3=298

Видео

Неполное частное

Неполное частное – результат, который получился после деления с остатком.

Под делением с остатком понимается нахождение наибольшего целого числа, которое в произведении с делителем дает число, не превышающее делимое. Это искомое и называют неполным частным.

Разность между делимым и произведением делителя на неполное частное называется остатком, который всегда меньше делителя.

Например, 17 не делится без остатка на 5.

Наибольшее число, результат умножения которого на 5 не превосходит 17, это 3. 3 в данном случае является неполным частным.

Чтобы получить остаток, нужно из 17 вычесть произведение 3 и 5, то есть 17 – 3*5 = 2. Остаток – 2.

Как найти частное чисел

Пришли в цирк трое ребят: Вася, Коля и Оля. На входе их встречал клоун Бим, который дарил детям шарики. У него в руках было 6 шариков, но дарил он их за отгадки. Клоун спросил у ребят:

— Мне надо подарить вам шарики, какое математическое действие я буду применять?

— Деление! — быстро ответил Коля. — Ты же будешь делить шарики между нами.

Клоун хитро прищурился:

 — А как называются члены деления?

 — Мы недавно это изучали! — воскликнула Оля. — Всё количество шариков, которое ты будешь делить, называется делимое. У тебя сейчас 6 шариков, значит здесь делимое 6!

— А то, на сколько ребят ты их разделишь, называется делитель, — вмешался Вася. — Нас трое ребят, значит делитель 3!

Коля продолжил:

 — У каждого из нас будет часть шариков, и результат от деления называется частным.

— Какое же здесь будет частное? — спрашивает Бим.

Два! — не сговариваясь, хором ответили ребята.

 — Правильно, каждому из вас достанется по два шарика, это и есть частное.

Ребята ответили на все вопросы Бима, и каждый получил по два шарика — как результат деления:

6 (делимое) : 3 (делитель) = 2 (частное).

Запишем цифрами:

6:3=2

Делимое Делитель Частное
6 3 2

В этом выражении 6 (делимое) стоит самым первым, 3 (делитель) — на втором месте. А частное (2) — после знака равенства справа.

Итак, частное — это число, которое получается в результате деления делимого на делитель.

Проверка деления умножением

— Я что-то не пойму. Это уже умножение, а не деление! — говорит Бим. — Выходит, что деление — действие обратное умножению. То есть, мы можем проверить деление умножением?

— Да, — ответил Бом.

Деление — действие, обратное умножению. Для того чтобы проверить деление, надо провести умножение.

Центр образовательных технологий Advance 

Увеличение или уменьшение делимого

Некоторые другие соотношения вытекают из этих. Например, если увеличить или уменьшить делимое в n раз, то в результате частное также повысится или понизится в n раз соответственно. 

Изложенное правило имеет такой вид:

Приведём пример:

12 ⁄ 2 = 6 и пусть n = 3.

Проведём увеличение и уменьшение делимого:

(12∗3) /2 = 6∗3 — увеличили делимое на 3, равенство верное: 36 / 2 = 18;

(12 / 3) / 2 = 6 / 3 — уменьшили делимое на 3, равенство все равно верное: 4 / 2 = 2.

То есть, в три раза увеличив делимое, можно в три раза увеличить частное. Аналогично выполняется и уменьшение.

Нахождение значения частного чисел

Пример:

12 : 3 = 4 (в числе 12 4 раза содержится по 3)

15 : 5 = 3 (в числе 15 5 раз содержится по 5)

Нужно знать, что правильность определения частного от деления числа всегда можно проверить путем перемножения его на делитель, либо делимое поделить на частное и получить делитель.

Например:

20 : 4 = 5

Перемножим частное двух чисел на делитель и получим делимое:

4 * 5 = 20

Разделим делимое на частное и получим делитель:

20 : 5 = 4

Таким образом, мы доказали правильность определения частного.

Деление с остатком

Деление с остатком есть отыскание наибольшего целого числа, которое в произведении с делителем дает число, не превышающее делимое. Искомое число называется неполным частным. Разность между делимым и произведением делителя на неполное частное называется остатком. Он всегда меньше делителя.

19 не делится нацело на 5.Числа 1, 2, 3 в произведение с 5 дают 5, 10, 15,не превосходящие делимое 19,но уже 4 дает в произведении с 5 число 20, большее, чем 19.Поэтому неполное частное есть 3.Разность между 19 и произведением 3 · 5 = 15 есть 1915 = 4;поэтому остаток есть 4.

Теги








паровоз (комментарий)- даже я знаю!


25 Апр, 20


давайте думать так.

у нас первый и второй вариант явно подходят к ответу, но какой из них выбрать?

приведём к общему знаменателю 2 вариант и первый.

5/127 и 3/7 12  для того что-бы определить ответ сравниваем числители(знаменатели можно не писать-для сравнения они нам не нужны)

5*7 =35

3*12 =36

35<36

значит выбираем первый вариант.smiley

Значение частного двух чисел в математике

Содержание:

  • Что такое частное чисел
  • Деление как операция

    • Основные свойства деления
  • Неполное частное
  • Изменение частного в зависимости от изменения делимого и делителя
  • Задачи, примеры вычисления частного

    • Задача 1
    • Задача 2

Что такое частное чисел

Частное чисел – это результат деления одного числа на другое. Оно показывает, сколько раз число a содержится в числе b.

Деление как операция

Деление – арифметическая операция, обратная умножению, суть которой заключается в нахождении одного из сомножителей по произведению и другому множителю. В данном случае произведение переходит в делимое, имеющийся сомножитель – в делитель, искомый сомножитель – в частное.

Подобно тому, как неоднократно прибавить число – это значит умножить, так и неоднократно вычесть – это значит разделить.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

На письме данную операцию можно обозначать разными символами:

  • : двоеточием;
  • ÷ обелюсом;
  • / косой чертой (слеш);
  • — горизонтальной чертой (знак дроби).

Процесс деления имеет следующий вид:

(frac{делимое}{делитель}=частное)

В цифрах данное выражение можно записать так:

(15 : 5 = 3,)

(15 ÷ 5 = 3,)

(15/5 = 3,)

(frac{15}{5}=3.)

Основные свойства деления

Деление не коммутативно, то есть не перестановочно – от перемены мест элементов операции частное изменяется:

(a : b ≠ b : a;)

Деление не ассоциативно – то есть при последовательном выполнении деления трех или более чисел последовательность операций имеет значение, при смене порядка выполнения изменится результат:

((a : b):c ≠ a : (b : c);)

Деление дистрибутивно справа – на одном и том же множестве две бинарные операции имеют свойство согласованности:

((a + b): x = (a : x)+(b : x);)

Имеется единственный нейтральный элемент – число 1, при делении на единицу результатом является исходное число (делимое):

(а : 1 = а;)

Имеется единственный обратный элемент – число 1, при делении единицы на число результатом является число, обратное исходному (делителю):

(1 : а = а^-1, а ≠ 0;)

Существует единственный нулевой элемент – число 0, при делении нуля на любое число результатом будет нуль:

(0 : а = 0, а ≠ 0;)

Деление на нулевой элемент не определено:

(а : 0 = ∞, а ≠ 0;)

Деление на противоположный элемент дает минус единицу:

(а : (-а) = -1.)

Неполное частное

Неполное частное – результат, который получился после деления с остатком.

Под делением с остатком понимается нахождение наибольшего целого числа, которое в произведении с делителем дает число, не превышающее делимое. Это искомое и называют неполным частным.

Разность между делимым и произведением делителя на неполное частное называется остатком, который всегда меньше делителя.

Например, 17 не делится без остатка на 5.

Наибольшее число, результат умножения которого на 5 не превосходит 17, это 3. 3 в данном случае является неполным частным.

Чтобы получить остаток, нужно из 17 вычесть произведение 3 и 5, то есть 17 – 3*5 = 2. Остаток – 2.

Изменение частного в зависимости от изменения делимого и делителя

Изменение делимого:

  • увеличение делимого в несколько раз приведет к тому, что частное увеличится во столько же раз:

((а * x) : b = c * x;)

  • уменьшение делимого в несколько раз приведет к тому, что частное уменьшится во столько же раз:

((a : x) : b = c : x.)

Изменение делителя:

  • увеличение делителя в несколько раз приведет к тому, что частное уменьшится во столько же раз:

(а : (b * x) = c : x;)

  • уменьшение делителя в несколько раз приведет к тому, что частное увеличится во столько же раз:

(а : (b : x) = c * x.)

Частное не изменится, если делимое и делить одновременно увеличить или уменьшить в одинаковое количество раз:

((а * x) : (b * x) = c;)

((а : x) : (b : x) = c;)

Задачи, примеры вычисления частного

Для того, чтобы проиллюстрировать данную арифметическую операцию, решим простые задачи.

Задача 1

В книге 891 страница. Она поделена на 9 равных глав. Узнайте, сколько страниц в одной главе.

Решение:

Для этого количество страниц разделим на количество глав:

891 : 9 = 99 (страниц)

Ответ: 99 страниц.

Задача 2

У Антона есть 22 апельсина. Он хочет приготовить из них компот. Для одного литра компота ему понадобится 3 апельсина. Нужно вычислить, сколько литров напитка сможет приготовить Антон и сколько апельсинов у него останется.

Решение:

22 : 3 = 7 (литров) (остаток 1)

Ответ: 7 литров, 1 апельсин останется.

Насколько полезной была для вас статья?

У этой статьи пока нет оценок.

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Частное чисел в математике: что это такое простыми словами для детей

Частное чисел в математике: что это такое? В школе учат действие деление, где есть делимое, делитель и частное. Что означают эти названия? Давайте разбираться!

Содержание статьи:

Частное чисел в математике: что это такое

Однажды клоун Бим решил выучить математическое действие деление и нашел для себя в интернете вот такое определение:

Определение. Говорят, что a делится на b, если существует натуральное число с, при умножении которого на b получается а: a=b*c. При этом записывают: a:b=с, — и называют а — делимым, b — делителем, с — частным.

Как мне это понять? — задумался Бим. — Но скоро представление, пойду ребят к нам приглашать.

Как найти частное чисел

Частное чисел в математике: что это такое простыми словами для детей

Пришли в цирк трое ребят: Вася, Коля и Оля. На входе их встречал клоун Бим, который дарил детям шарики. У него в руках было 6 шариков, но дарил он их за отгадки. Клоун спросил у ребят:

— Мне надо подарить вам шарики, какое математическое действие я буду применять?

— Деление! — быстро ответил Коля. — Ты же будешь делить шарики между нами.

Клоун хитро прищурился:

— А как называются члены деления?

— Мы недавно это изучали! — воскликнула Оля. — Всё количество шариков, которое ты будешь делить, называется делимое. У тебя сейчас 6 шариков, значит здесь делимое 6!

— А то, на сколько ребят ты их разделишь, называется делитель, — вмешался Вася. — Нас трое ребят, значит делитель 3!

Коля продолжил:

— У каждого из нас будет часть шариков, и результат от деления называется частным.

— Какое же здесь будет частное? — спрашивает Бим.

Два! — не сговариваясь, хором ответили ребята.

— Правильно, каждому из вас достанется по два шарика, это и есть частное.

Ребята ответили на все вопросы Бима, и каждый получил по два шарика — как результат деления:

6 (делимое) : 3 (делитель) = 2 (частное).

Частное чисел в математике: что это такое простыми словами для детей

Запишем цифрами:

6:3=2

В этом выражении 6 (делимое) стоит самым первым, 3 (делитель) — на втором месте. А частное (2) — после знака равенства справа.

Итак, частное — это число, которое получается в результате деления делимого на делитель.

Полное и неполное частное

А потом было замечательное представление.

В антракте дети пошли в буфет. На подносе лежало семь пирожных. Как же их разделить поровну на трёх ребят?

Друзья задумались и взяли по 2 пирожных, а последним, которое было в остатке, угостили клоуна Бима.

Частное чисел в математике: что это такое простыми словами для детей

— Теперь я понял! — воскликнул Бим. — Если нельзя всё число пирожных поделить между ребятами без остатка, то такой результат от деления называется неполным частным. А то, что осталось после деления, так и называется остатком и записывается это вот так:

7:3=2(1)

Здесь 7 (делимое) по-прежнему стоит в начале выражения, 3 (делитель)в середине, 2 (неполное частное)справа. Но после неполного частного ещё пишем в скобках остаток (1).

  • Полное частное — результат деления, когда делимое делится нацело на делитель (остаток равен 0, его и писать незачем).
  • Неполное частное — это результат деления с остатком (когда делимое не делится нацело на делитель).

Как найти делитель

Когда дети ушли занимать свои места, буфетчица подошла к Биму и спросила:

— Я забыла, сколько было ребят. Помню только, что каждый из них съел по два пирожных, а всего им досталось 6 штук. Сколько же посетителей было у меня?

Тут в буфет заглянул дрессировщик Бом и быстренько решил эту задачку. Он разделил 6 (делимое) на 2 (частное) и получил 3 (делитель).

— Всего было трое ребят, — ответил Бом.

— Верно! — вспомнил Бим.

Для того чтобы найти делитель, надо делимое разделить на частное.

6:2=3

Здесь 6 – делимое, 2 – частное, а 3 – делитель.

Как найти делимое

— А сколько ты подарил всего шариков трём ребятам? — спросил Бом.

— Забыл, — ответил Бим. — Помню только, что детей было трое, и каждому досталось по два шарика.

Бом и говорит:

— Тогда надо 3 (делитель) умножить на 2 (частное), получится 6.

Для того чтобы найти делимое, надо делитель умножить на частное.

Запишем это цифрами:

3*2=6.

3 — наш делитель, 2 — частное, а 6 — делимое.

Проверка деления умножением

— Я что-то не пойму. Это уже умножение, а не деление! — говорит Бим. — Выходит, что деление — действие обратное умножению. То есть, мы можем проверить деление умножением?

— Да, — ответил Бом.

Деление — действие, обратное умножению. Для того чтобы проверить деление, надо провести умножение.

Заключение

А клоун для себя сделал плакаты и теперь каждый день может сразу вспомнить, что:

Определение. Говорят, что а делится на b, если существует число с, при умножении которого на b получается а: a= b*c. При этом записывают: a:b=с, — и называют а — делимым, b — делителем, с — частным.

  • Деление — действие, обратное умножению;
  • умножение проверяет правильность математического действия — деления;
  • для того чтобы найти делимое, надо делитель умножить на частное;
  • для того чтобы найти делитель, надо делимое разделить на частное.

Итак, теперь мы знаем, что же такое частное в математике. Оказывается, оно бывает полным и неполным! Кроме того, нетрудно будет найти делитель, делимое и проверить деление умножением. И если учитель спросит в школе: «Частное чисел в математике: что это такое?» — сможем ответить сразу. И пусть любой пример или задача на эту тему будет вам по плечу!

Оригинальная идея подачи материала принадлежит Стуловой Лилии Валериевне (преподаватель математики от 5 лет и старше).

Математика – царица наук. Она хоть и сложна, и многие боятся некоторых запутанных формул и вычислений, но все они состоят из простых арифметических действий сложения, вычитания, умножения и деления. 

Производные операции от этих действий называются суммой, разностью, произведением и частным. Что такое частное в математике и каковы его главные свойства – будет подробно рассказано далее.

Основное свойство частного

Деление – это арифметическая операция, обратная умножению. С ее помощью можно просто узнать, сколько в первом числе содержится значений второго.

Делимое делитель частное

По аналогии с умножением, которое способно заменить собой многократное сложение, дробление способно заменить многократное вычитание.

Например, необходимо разделить 10 на 2. Это означает, что требуется узнать, сколько раз число 2 содержится в 10. Делая это вычитанием можно получить следующее:

10 — 2 — 2 — 2 — 2 — 2 = 0.

Проводя постепенное вычитание до нуля, можно определить, что двойка содержится в десятке ровно 5 раз и не образует остаток. Сделать это можно было однократно поделив два значения:

10 : 2 = 5.

Частное чисел – это итог процесса деления одного значения на второе. Пример:

28 : 7 = 4,

где 28 — делимое;

7 — делитель;

4 — частное.

Проверка деления

Одно из важнейших правил деления частного, называемое основным свойством частного, заключается в том, что если делимое и делитель умножить или разделить на одно и то же число, то итог этой операции и, соответственно частное, не изменится:

700

При делении числа самого на себя результатом всегда будет единица, то есть справедливо равенство:

701

Справедливо и другое правило: если разделить определенную величину на единицу, то итогом процесса будет сама эта величина, то есть делимое:

702

Увеличение или уменьшение делимого

Некоторые другие соотношения вытекают из этих. Например, если увеличить или уменьшить делимое в n раз, то в результате частное также повысится или понизится в n раз соответственно. 

Изложенное правило имеет такой вид:

703

Приведём пример:

12 ⁄ 2 = 6 и пусть n = 3.

Проведём увеличение и уменьшение делимого:

(12∗3) /2 = 6∗3 – увеличили делимое на 3, равенство верное: 36 / 2 = 18;

(12 / 3) / 2 = 6 / 3 – уменьшили делимое на 3, равенство все равно верное: 4 / 2 = 2.

То есть, в три раза увеличив делимое, можно в три раза увеличить частное. Аналогично выполняется и уменьшение.

Увеличение или уменьшение делителя

Следующее правило звучит так: если увеличить или уменьшить делитель в n раз, то результат деления понизится или повысится в n-нное количество раз:

704

Для примера требуется взять частное двух значений 54 и 6:

a / b = c и пусть n = 3.

Проведём увеличение и уменьшение делителя:

54 / (6∗3) = 9 / 3 – увеличили делитель в 3 раза, равенство верное: 54 / 18 =3;

54 / (6 / 3) = 9∗3 – уменьшили делитель в 3 раза, получаем равенство: 54 / 2 = 27. 

Увеличив делитель в 3 раза, во столько же раз уменьшили частное. Уменьшив делитель в три раза, делитель, напротив, увеличился в три раза.

Проверить эти «законы» можно в любом онлайн калькуляторе или вручную в уме или на бумаге. 

Данные правила являются фундаментальными и составляют базу арифметики, с которой начинается математика и остальные области знаний.

Добавить комментарий