Как найти наименьшее общее целое

Нахождение НОД и НОК чисел

Онлайн-калькулятор “Нахождение НОД и НОК чисел“. Наш калькулятор поможет вам найти наибольший общий делить (НОД) и наименьшее общее кратное (НОК) чисел. Особенностью данного калькулятора является то, что он может находить НОК и НОД не только двух чисел, но и трех или четырех чисел. Введите натуральные числа и нажмите кнопку “Вычислить” и наш калькулятор не просто выдаст ответ, но и представит подробное решение, где последовательно будет изложен порядок нахождения НОД и НОК чисел.

Выберите количество чисел, для которых требуется найти НОД и НОК:

2 числа    
3 числа    
4 числа

Первое число Второе число

Наибольший общий делитель нескольких чисел – это наибольшее натуральное целое число, на которое эти числа делятся без остатка. Наибольший общий делитель обозначается следующим образом: НОД (18; 48) = 6

Наименьшее общее кратно нескольких чисел – это самое меньшее число, которое делится на каждое из этих чисел без остатка. Например: НОК (18; 48) = 144

Это следует знать!
Как определить, что число делится на 3 без остатка? Очень просто – на 3 делятся только те числа, сумма цифр которых делится на 3. Например: число 795 делится на 3, так как сумма его цифр 7 + 9 + 5 = 21 делится на 3.
21 : 3 = 7

НОК чисел онлайн

Наименьшим общим кратным(НОК) натуральных чисел называется наименьшее натуральное число которое делится на эти числа без остатка

Выберите количество чисел для нахождения НОК

2 числа3 числа4 числа5 чисел6 чисел

Введите числа

Нахождение НОК двух чисел с помощью разложения на простые множители

1) Для начала нужно каждое число разложить на простые множители

2) Потом подчеркнуть множители второго числа которых нет в первом

3) Перемножить множители первого числа с подчёркнутыми множителями второго

4) Наименьшим общим кратным будет произведение простых множителей первого числа и простых множителей второго числа которые не вошли в первое

Разберём пример

Найдём НОК(4,6)

Разложим числа

4 = 2 × 2

6 = 2 × 3

Подчеркнём множители которых нет в первом числе

6 = 2 × 3

Перемножим множители первого числа с подчёркнутыми множителями второго

НОК(4, 6) = 2 × 2 × 3 = 12

НОК 3 чисел и более

Всё по аналогии с 2 числами

Разберём пример

Найдём НОК(4,6,30)

Разложим числа

4 = 2 × 2

6 = 2 × 3

30 = 2 × 3 × 5

Подчеркнём множители которых нет в первом числе

6 = 2 × 3

30 = 2 × 3 × 5

Перемножим множители первого числа с подчёркнутыми множителями второго

НОК(4, 6, 30) = 2 × 2 × 3 × 5 = 60

Что может калькулятор ?

Находить НОК 2 чисел

Находить НОК 3 чисел

Находить НОК 4 чисел

Находить НОК 5 чисел

Находить НОК 6 чисел

Отображает алгоритм нахождения НОК

Похожие калькуляторы


Калькулятор онлайн.
Нахождение (вычисление) НОД и НОК

Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей.
Пример: для чисел 6 и 9 наибольший общий делитель равен 3.

Наибольший общий делитель существует и однозначно определён, если хотя бы одно из чисел m или n не равно нулю.
В школьной программе обозначается так: НОД(m, n)

Понятие наибольшего общего делителя (НОД) распространяется на любой набор из более чем двух целых чисел.
Чаще всего НОД используется для сокращения дроби – если найти НОД числителя и знаменателя, то на это число можно сократить
числитель и знаменатель данной дроби.

Наименьшее общее кратное (НОК) двух целых чисел m и n это наименьшее натуральное число, которое делится на m и n без остатка.
В школьной программе обозначается так: НОК(m, n)
Пример: НОК(16, 20) = 80
Одно из наиболее частых применений НОК — приведение дробей к общему знаменателю.

С помощью данной математической программы вы можете найти (вычислить) НОД и НОК двух целых чисел.

Программа нахождения НОД и НОК не только выводит ответ задачи, но и отображает процесс вычисления НОД и НОК двух чисел.

Вводить можно только целые положительные числа.

Наши игры, головоломки, эмуляторы:

Немного теории.

Наибольший общий делитель (НОД). Взаимно простые числа

Определение. Наибольшее натуральное число, на которое делятся без остатка числа а и b, называют
наибольшим общим делителем (НОД) этих чисел.

Найдём наибольший общий делитель чисел 24 и 35.
Делителями 24 будут числа 1, 2, 3, 4, 6, 8, 12, 24, а делителями 35 будут числа 1, 5, 7, 35.
Видим, что числа 24 и 35 имеют только один общий делитель — число 1. Такие числа называют взаимно простыми.

Определение. Натуральные числа называют взаимно простыми, если их наибольший общий делитель (НОД) равен 1.

Наибольший общий делитель (НОД) можно найти, не выписывая всех делителей данных чисел.

Разложим на множители числа 48 и 36, получим:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Из множителей, входящих в разложение первого из этих чисел, вычеркнем те, которые не входят в разложение второго числа
(т. е. две двойки).
Остаются множители 2 * 2 * 3. Их произведение равно 12. Это число и является наибольшим общим делителем чисел 48 и 36.
Так же находят наибольший общий делитель трёх и более чисел.

Чтобы найти наибольший общий делитель нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел;
3) найти произ ведение оставшихся множителей.

Если все данные числа делятся на одно из них, то это число и является наибольшим общим делителем данных чисел.
Например, наибольшим общим делителем чисел 15, 45, 75 и 180 будет число 15, так как на него делятся все остальные числа: 45, 75 и 180.

Наименьшее общее кратное (НОК)

Определение. Наименьшим общим кратным (НОК) натуральных чисел а и b называют наименьшее натуральное число,
которое кратно и a и b.

Наименьшее общее кратное (НОК) чисел 75 и 60 можно найти и не выписывая подряд кратные этих чисел. Для этого разложим 75 и 60 на
простые множители: 75 = 3 * 5 * 5, а 60 = 2 * 2 * 3 * 5.
Выпишем множители, входящие в разложение первого из этих чисел, и добавим к ним недостающие множители 2 и 2 из разложения
второго числа (т.е. объединяем множители).
Получаем пять множителей 2 * 2 * 3 * 5 * 5, произведение которых равно 300. Это число является наименьшим общим кратным чисел 75 и 60.

Так же находят наименьшее общее кратное для трёх и более чисел.

Чтобы найти наименьшее общее кратное нескольких натуральных чисел, надо:
1) разложить их на простые множители;
2) выписать множители, входящие в разложение одного из чисел;
3) добавить к ним недостающие множители из разложений остальных чисел;
4) найти произведение получившихся множителей.

Заметим, что если одно из данных чисел делится на все остальные числа, то это число и является наименьшим общим кратным данных
чисел.
Например, наименьшим общим кратным чисел 12, 15, 20 и 60 будет число 60, так как оно делится на все данные числа.

Пифагор (VI в. до н. э.) и его ученики изучали вопрос о делимости чисел. Число, равное сумме всех его делителей (без самого числа),
они называли совершенным числом. Например, числа 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) совершенные. Следующие совершенные
числа — 496, 8128, 33 550 336. Пифагорейцы знали только первые три совершенных числа. Четвёртое — 8128 — стало известно в I в. н. э.
Пятое — 33 550 336 — было найдено в XV в. К 1983 г. было известно уже 27 совершенных чисел. Но до сих пор учёные не знают, есть ли
нечётные совершенные числа, есть ли самое большое совершенное число.
Интерес древних математиков к простым числам связан с тем, что любое число либо простое, либо может быть представлено в виде
произведения простых чисел, т. е. простые числа — это как бы кирпичики, из которых строятся остальные натуральные числа.
Вы, наверное, обратили внимание, что простые числа в ряду натуральных чисел встречаются неравномерно — в одних частях ряда их больше,
в других — меньше. Но чем дальше мы продвигаемся по числовому ряду, тем реже встречаются простые числа. Возникает вопрос: существует
ли последнее (самое большое) простое число? Древнегреческий математик Евклид (III в. до н. э.) в своей книге «начала», бывшей на
протяжении двух тысяч лет основным учебником математики, доказал, что простых чисел бесконечно много, т. е. за каждым простым числом
есть ещё большее простое число.
Для отыскания простых чисел другой греческий математик того же времени Эратосфен придумал такой способ. Он записывал все числа
от 1 до какого-то числа, а потом вычёркивал единицу, которая не является ни простым, ни составным числом, затем вычёркивал через
одно все числа, идущие после 2 (числа, кратные 2, т. е. 4, 6, 8 и т. д.). Первым оставшимся числом после 2 было 3. Далее
вычёркивались через два все числа, идущие после 3 (числа, кратные 3, т. е. 6, 9, 12 и т. д.). в конце концов оставались
невычеркнутыми только простые числа.

Алгоритмы вычисления наименьшего общего кратного (НОК) и наибольшего общего делителя (НОД) описаны в одной теме, т.к. для эффективного вычисления НОК нужно вычислить НОД.

1 Алгоритм расчета наибольшего общего делителя

Даны два целых числа A и B, их наибольший общий делитель — такое число C, что на него делится без остатка и A, и B

В школе нас учили искать НОД разложением на простые множители, однако такая задача крайне тяжело решается на компьютере, зато мы можем заставить его перебрать все числа от min(a, b) до единицы и проверить условие делимости, однако и это не самый эффективный способ.

Люди, интересующиеся алгоритмами, сразу вспомнять алгоритм Евклида, однако, на мой взгляд, нет смысла зубрить алгоритмы — наиболее ценно их понимание и способность разработать нечто аналогичное. Для этого я предлагаю пытаться визуализировать задачу.

Целое число — это количество чего-либо неделимого. На следующей картинке два числа показаны в виде прямоугольников, под значением числа можно понимать количество «блоков в прямоугольнике». Показано схематично (я не пытался рисовать точно).

В физической интерпретации — замените блоки на кирпичи. НОД — размер кузова грузовика, такой что им можно перевезти все кирпичи, наполняя каждый раз кузов доверху.

Эффективный алгоритм расчета НОД строится на следующих наблюдениях (постарайтесь их «почувствовать»):

  1. если A делится на B без остатка — то НОД(A, B) = B;
  2. любое число, которое делит оба числа A и B, делит также и A-B, поэтому
    НОД(A, B) <= НОД (A — B, B);. То есть уменьшение числа A на значение B не повлияет на результат вычисления НОД;
  3. мы можем воспользоваться предыдущим пунктом несколько (t) раз — если A = B*t + r для целых чисел t и r — то НОД(A, B) = НОД(r, B).

Из второго пункта следует идея следующего алгоритма поиска НОД: Отнимать от большего меньшее, пока числа не станут равны. Полученное число и является наибольшим общим делителем. Такой алгоритм будет работать значительно быстрее чем полный перебор, но и его можно улучшить — посмотрим визуализацию (исходное состояние показано выше):

В какой-то момент числа окажутся равны и мы получим результат. Этот момент обязательно настанет — в крайнем случае когда оба числа станут равны единице (потому что это ей кратны любые целые числа).

Из последней иллюстрации видно, что многократное вычитание можно заменить на получение остатка от деления (об этом же говорит третье «наблюдение»). Тогда алгоритм можно записать на псевдокоде следующим образом:

наибольший_общий_делитель(a, b) {
  если a делится на b без остатка то - верни b;
  если b делится на a без остатка то - верни a;
  
  если a > b - то верни наибольший_общий_делитель(a mod b, b);
  иначе верни наибольший_общий_делитель(a, b mod a);
}

Тут mod — операция получения остатка от деления.

2 Алгоритм расчета наименьшего общего кратного

Наименьшее общее кратное двух целых чисел A и B есть наименьшее натуральное число, которое делится на A и B без остатка.

Чтобы лучше понять о чем речь — предлагаю такую геометрическую интерпретацию: значения A и B задают длины отрезков. НОК — это длина другого отрезка, который можно составить как из целого количества отрезков A, так и отрезков B:

Для любых чисел мы можем найти общее кратное C = A*B, однако, оно не всегда будет наименьшим. Примитивный алгоритм вычисления НОК мог бы заключаться в переборе всех чисел от max(A, B) до A*B. Однако, это не самое эффективное решение. На самом деле, если длина отрезка A = 4, а B = 3, то перебирать надо все отрезки, кратные 4, т.е. max(A, B).

Обратите снимание, что если A и B взаимнопростые (иными словами НОД(A, B) = 1) — то НОК(A, B) = A*B. Если же у этих чисел есть делители d0, d1, ..., dn, то их общими кратными будут числа: (A*B)/d0, (A*B)/d1, … (A*B)/dn. Значит, чтобы найти наименьшее общее кратное, нужно найти наибольший из делителей:

наименьшее_общее_кратное(a, b) {
  верни (A*B)/наибольший_общий_делитель(a, b);
}

Что такое нок в математике? Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы узнаем, как найти наименьшее общее кратное, какие есть для этого способы для трех чисел и более, разберем вопрос о том, как находить НОК отрицательного числа. Также разберемся, что такое нок и нод, как найти нок и нод. 

Вычисление наименьшего общего кратного (НОК) через НОД

Мы уже узнали, что такое нок, а также установили связь наименьшего общего кратного с наибольшим общим делителем (кратность показывает в расчетах во сколько раз один показатель больше другого). Теперь как настоящие математики научимся определять НОК через НОД (нок и нод чисел натуральных). Сначала разберемся, как найти нок для положительных чисел. Сделать это можно и онлайн или на калькуляторе, но лучше научиться самостоятельно.

Определение 1

Поиск наименьшего общего кратного через наибольший общий делитель можно по формуле НОК(a, b)=a·b:НОД(a, b).

Пример 1

Необходимо найти НОК чисел 126 и 70.

Решение

Начнем решать. Примем a=126, b=70. Подставим значения в формулу вычисления наименьшего общего кратного через наибольший общий делитель НОК(a, b)=a·b:НОД(a, b).

Найдем НОД чисел 70 и 126. Для этого нам понадобится алгоритм Евклида: 126=70·1+56, 70=56·1+14, 56=14·4, следовательно, NOD(126, 70)=14.

Вычислим НОК: НОК(126, 70)=126·70:НОД(126, 70)=126·70:14=630.

Ответ: NOC(126, 70)=630.

Пример 2

Найдите нок чисел 68 и 34.

Решение

Как находить нод? НОД в данном случае нейти несложно, так как 68 делится на 34. Вычислим самое маленькое общее кратное по формуле: НОК(68, 34)=68·34:НОД(68, 34)=68·34:34=68.

Ответ: НОК(68, 34)=68.

В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b: если первое число делится на второе, что НОК этих чисел будет равно первому числу.

Нахождение НОК с помощью разложения чисел на простые множители

Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители. Перед тем, как это узнавать, дадим небольшое определение. 

Определение 2

Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:

  • составляем произведение всех простых множителей чисел, для которых нам нужно найти НОК;
  • исключаем их полученных произведений все простые множители;
  • полученное после исключения общих простых множителей произведение будет равно НОК данных чисел.

Этот способ нахождения наименьшего общего кратного основан на равенстве НОК(a, b)=a·b:НОД(a, b). Если посмотреть на формулу, то станет понятно: произведение чисел a и b равно произведению всех множителей, которые участвуют в разложении этих двух чисел. При этом НОД двух чисел равен произведению всех простых множителей, которые одновременно присутствуют в разложениях на множители данных двух чисел.

Пример 3

У нас есть два числа 75 и 210. Мы можем разложить их на множители следующим образом: 75=3·5·5 и 210=2·3·5·7. Если составить произведение всех множителей двух исходных чисел, то получится: 2·3·3·5·5·5·7.

Если исключить общие для обоих чисел множители 3 и 5, мы получим произведение следующего вида: 2·3·5·5·7=1050. Это произведение и будет нашим НОК для чисел 75 и 210.

Пример 4

Найдите НОК чисел 441 и 700, разложив оба числа на простые множители.

Решение

Найдем все простые множители чисел, данных в условии:

44114749713377

700350175357122557

Получаем две цепочки чисел: 441=3·3·7·7 и 700=2·2·5·5·7.

Произведение всех множителей, которые участвовали в разложении данных чисел, будет иметь вид: 2·2·3·3·5·5·7·7·7. Найдем общие множители. Это число 7. Исключим его из общего произведения: 2·2·3·3·5·5·7·7. Получается, что НОК(441, 700)=2·2·3·3·5·5·7·7=44 100.

Ответ: НОК(441, 700)= 44 100.

Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.

Определение 3

Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:

  • разложим оба числа на простые множители:
  • добавим к произведению простых множителей первого числа недостающие множители второго числа;
  • получим произведение, которое и будет искомым НОК двух чисел.
Пример 5

Вернемся к числам 75 и 210, для которых мы уже пробовали искать НОК в одном из прошлых примеров. Разложим их на простые множители: 75=3·5·5 и 210=2·3·5·7. К произведению множителей 3, 5 и 5 числа 75 добавим недостающие множители 2 и 7 числа 210. Получаем: 2·3·5·5·7. Это и есть НОК чисел 75 и 210.

Пример 6

Необходимо вычислить НОК чисел 84 и 648.

Решение

Разложим числа из условия на простые множители: 84=2·2·3·7 и 648=2·2·2·3·3·3·3. Добавим к произведению множителей 2, 2, 3 и 7 числа 84 недостающие множители 2, 3, 3 и
3 числа 648. Получаем произведение 2·2·2·3·3·3·3·7=4536. Это и есть наименьшее общее кратное чисел 84 и 648​​​​​​ ​.

Ответ: НОК(84, 648)=4 536.

Нахождение НОК трех и большего количества чисел

Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.

Теорема 1

Предположим, что у нас есть целые числа a1, a2, …, ak. НОК mk этих чисел находится при последовательном вычислении m2=НОК(a1, a2), m3=НОК(m2, a3), …, mk=НОК(mk−1, ak).

Теперь рассмотрим, как можно применять теорему для решения конкретных задач.

Пример 7

Необходимо вычислить наименьшее общее кратное четырех чисел 140, 9, 54 и 250.

Решение задания

Введем обозначения: a1=140, a2=9, a3=54, a4=250.

Начнем с того, что вычислим m2=НОК(a1, a2)=НОК(140, 9). Применим алгоритм Евклида для вычисления НОД чисел 140 и 9: 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4. Получаем: НОД(140, 9)=1, НОК(140, 9)=140·9:НОД(140, 9)=140·9:1=1 260. Следовательно, m2=1 260.

Теперь вычислим по тому е алгоритму m3=НОК(m2, a3)=НОК(1 260, 54). В ходе вычислений получаем m3=3 780.

Нам осталось вычислить m4=НОК(m3, a4)=НОК(3 780, 250). Действуем по тому же алгоритму. Получаем m4=94 500.

НОК четырех чисел из условия примера равно 94500.

Ответ: НОК(140, 9, 54, 250)=94 500.

Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.

Определение 4

Предлагаем вам следующий алгоритм действий: 

  • раскладываем все числа на простые множители;
  • к произведению множителей первого числа добавляем недостающие множители из произведения второго числа;
  • к полученному на предыдущем этапе произведению добавляем недостающие множители третьего числа и т.д.;
  • полученное произведение будет наименьшим общим кратным всех чисел из условия.
Пример 8

Необходимо найти НОК пяти чисел 84, 6, 48, 7, 143.

Решение

Разложим все пять чисел на простые множители: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7, 143=11·13. Простые числа, которым является число 7, на простые множители не раскладываются. Такие числа совпадают со своим разложением на простые множители.

Теперь возьмем произведение простых множителей 2, 2, 3 и 7 числа 84 и добавим к ним недостающие множители второго числа. Мы разложили число 6 на 2 и 3. Эти множители уже есть в произведении первого числа. Следовательно, их опускаем.

Продолжаем добавлять недостающие множители. Переходим к числу 48, из произведения простых множителей которого берем 2 и 2. Затем добавляем простой множитель 7 от четвертого числа и множители 11 и 13 пятого. Получаем: 2·2·2·2·3·7·11·13=48 048. Это и есть наименьшее общее кратное пяти исходных чисел.

Ответ: НОК(84, 6, 48, 7, 143)=48 048.

Нахождение наименьшего общего кратного отрицательных чисел

Для того чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.

Пример 9

НОК(54, −34)=НОК(54, 34), а НОК(−622, −46, −54, −888)=НОК(622, 46, 54, 888).

Такие действия допустимы в связи с тем, что если принять, что a и −a – противоположные числа,
то  множество кратных числа a совпадает со множеством кратных числа −a.

Пример 10

Необходимо вычислить НОК отрицательных чисел −145 и −45.

Решение

Произведем замену чисел −145 и −45 на противоположные им числа 145 и 45. Теперь по алгоритму вычислим НОК(145, 45)=145·45:НОД(145, 45)=145·45:5=1 305, предварительно определив НОД по алгоритму Евклида.

Получим, что НОК чисел −145 и −45 равно 1 305.

Ответ: НОК(−145, −45)=1 305.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Добавить комментарий