Что такое нок в математике? Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы узнаем, как найти наименьшее общее кратное, какие есть для этого способы для трех чисел и более, разберем вопрос о том, как находить НОК отрицательного числа. Также разберемся, что такое нок и нод, как найти нок и нод.
Вычисление наименьшего общего кратного (НОК) через НОД
Мы уже узнали, что такое нок, а также установили связь наименьшего общего кратного с наибольшим общим делителем (кратность показывает в расчетах во сколько раз один показатель больше другого). Теперь как настоящие математики научимся определять НОК через НОД (нок и нод чисел натуральных). Сначала разберемся, как найти нок для положительных чисел. Сделать это можно и онлайн или на калькуляторе, но лучше научиться самостоятельно.
Поиск наименьшего общего кратного через наибольший общий делитель можно по формуле НОК(a, b)=a·b:НОД(a, b).
Необходимо найти НОК чисел 126 и 70.
Решение
Начнем решать. Примем a=126, b=70. Подставим значения в формулу вычисления наименьшего общего кратного через наибольший общий делитель НОК(a, b)=a·b:НОД(a, b).
Найдем НОД чисел 70 и 126. Для этого нам понадобится алгоритм Евклида: 126=70·1+56, 70=56·1+14, 56=14·4, следовательно, NOD(126, 70)=14.
Вычислим НОК: НОК(126, 70)=126·70:НОД(126, 70)=126·70:14=630.
Ответ: NOC(126, 70)=630.
Найдите нок чисел 68 и 34.
Решение
Как находить нод? НОД в данном случае нейти несложно, так как 68 делится на 34. Вычислим самое маленькое общее кратное по формуле: НОК(68, 34)=68·34:НОД(68, 34)=68·34:34=68.
Ответ: НОК(68, 34)=68.
В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b: если первое число делится на второе, что НОК этих чисел будет равно первому числу.
Нахождение НОК с помощью разложения чисел на простые множители
Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители. Перед тем, как это узнавать, дадим небольшое определение.
Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:
- составляем произведение всех простых множителей чисел, для которых нам нужно найти НОК;
- исключаем их полученных произведений все простые множители;
- полученное после исключения общих простых множителей произведение будет равно НОК данных чисел.
Этот способ нахождения наименьшего общего кратного основан на равенстве НОК(a, b)=a·b:НОД(a, b). Если посмотреть на формулу, то станет понятно: произведение чисел a и b равно произведению всех множителей, которые участвуют в разложении этих двух чисел. При этом НОД двух чисел равен произведению всех простых множителей, которые одновременно присутствуют в разложениях на множители данных двух чисел.
У нас есть два числа 75 и 210. Мы можем разложить их на множители следующим образом: 75=3·5·5 и 210=2·3·5·7. Если составить произведение всех множителей двух исходных чисел, то получится: 2·3·3·5·5·5·7.
Если исключить общие для обоих чисел множители 3 и 5, мы получим произведение следующего вида: 2·3·5·5·7=1050. Это произведение и будет нашим НОК для чисел 75 и 210.
Найдите НОК чисел 441 и 700, разложив оба числа на простые множители.
Решение
Найдем все простые множители чисел, данных в условии:
44114749713377
700350175357122557
Получаем две цепочки чисел: 441=3·3·7·7 и 700=2·2·5·5·7.
Произведение всех множителей, которые участвовали в разложении данных чисел, будет иметь вид: 2·2·3·3·5·5·7·7·7. Найдем общие множители. Это число 7. Исключим его из общего произведения: 2·2·3·3·5·5·7·7. Получается, что НОК(441, 700)=2·2·3·3·5·5·7·7=44 100.
Ответ: НОК(441, 700)= 44 100.
Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.
Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:
- разложим оба числа на простые множители:
- добавим к произведению простых множителей первого числа недостающие множители второго числа;
- получим произведение, которое и будет искомым НОК двух чисел.
Вернемся к числам 75 и 210, для которых мы уже пробовали искать НОК в одном из прошлых примеров. Разложим их на простые множители: 75=3·5·5 и 210=2·3·5·7. К произведению множителей 3, 5 и 5 числа 75 добавим недостающие множители 2 и 7 числа 210. Получаем: 2·3·5·5·7. Это и есть НОК чисел 75 и 210.
Необходимо вычислить НОК чисел 84 и 648.
Решение
Разложим числа из условия на простые множители: 84=2·2·3·7 и 648=2·2·2·3·3·3·3. Добавим к произведению множителей 2, 2, 3 и 7 числа 84 недостающие множители 2, 3, 3 и
3 числа 648. Получаем произведение 2·2·2·3·3·3·3·7=4536. Это и есть наименьшее общее кратное чисел 84 и 648 .
Ответ: НОК(84, 648)=4 536.
Нахождение НОК трех и большего количества чисел
Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.
Предположим, что у нас есть целые числа a1, a2, …, ak. НОК mk этих чисел находится при последовательном вычислении m2=НОК(a1, a2), m3=НОК(m2, a3), …, mk=НОК(mk−1, ak).
Теперь рассмотрим, как можно применять теорему для решения конкретных задач.
Необходимо вычислить наименьшее общее кратное четырех чисел 140, 9, 54 и 250.
Решение задания
Введем обозначения: a1=140, a2=9, a3=54, a4=250.
Начнем с того, что вычислим m2=НОК(a1, a2)=НОК(140, 9). Применим алгоритм Евклида для вычисления НОД чисел 140 и 9: 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4. Получаем: НОД(140, 9)=1, НОК(140, 9)=140·9:НОД(140, 9)=140·9:1=1 260. Следовательно, m2=1 260.
Теперь вычислим по тому е алгоритму m3=НОК(m2, a3)=НОК(1 260, 54). В ходе вычислений получаем m3=3 780.
Нам осталось вычислить m4=НОК(m3, a4)=НОК(3 780, 250). Действуем по тому же алгоритму. Получаем m4=94 500.
НОК четырех чисел из условия примера равно 94500.
Ответ: НОК(140, 9, 54, 250)=94 500.
Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.
Предлагаем вам следующий алгоритм действий:
- раскладываем все числа на простые множители;
- к произведению множителей первого числа добавляем недостающие множители из произведения второго числа;
- к полученному на предыдущем этапе произведению добавляем недостающие множители третьего числа и т.д.;
- полученное произведение будет наименьшим общим кратным всех чисел из условия.
Необходимо найти НОК пяти чисел 84, 6, 48, 7, 143.
Решение
Разложим все пять чисел на простые множители: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7, 143=11·13. Простые числа, которым является число 7, на простые множители не раскладываются. Такие числа совпадают со своим разложением на простые множители.
Теперь возьмем произведение простых множителей 2, 2, 3 и 7 числа 84 и добавим к ним недостающие множители второго числа. Мы разложили число 6 на 2 и 3. Эти множители уже есть в произведении первого числа. Следовательно, их опускаем.
Продолжаем добавлять недостающие множители. Переходим к числу 48, из произведения простых множителей которого берем 2 и 2. Затем добавляем простой множитель 7 от четвертого числа и множители 11 и 13 пятого. Получаем: 2·2·2·2·3·7·11·13=48 048. Это и есть наименьшее общее кратное пяти исходных чисел.
Ответ: НОК(84, 6, 48, 7, 143)=48 048.
Нахождение наименьшего общего кратного отрицательных чисел
Для того чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.
НОК(54, −34)=НОК(54, 34), а НОК(−622, −46, −54, −888)=НОК(622, 46, 54, 888).
Такие действия допустимы в связи с тем, что если принять, что a и −a – противоположные числа,
то множество кратных числа a совпадает со множеством кратных числа −a.
Необходимо вычислить НОК отрицательных чисел −145 и −45.
Решение
Произведем замену чисел −145 и −45 на противоположные им числа 145 и 45. Теперь по алгоритму вычислим НОК(145, 45)=145·45:НОД(145, 45)=145·45:5=1 305, предварительно определив НОД по алгоритму Евклида.
Получим, что НОК чисел −145 и −45 равно 1 305.
Ответ: НОК(−145, −45)=1 305.
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Наименьшее о́бщее кратное (HOK) двух целых чисел — это наименьшее натуральное число, которое делится на оба без остатка, то есть кратно им обоим. К примеру, для чисел 6 и 4, наименьшим общим кратным будет 12.
Как найти НОК?
Способов найти НОК несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОК при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:
- разложить оба числа на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Примеры нахождения наименьшего общего кратного
Рассмотрим приведенный алгоритм на конкретных примерах:
Пример 1: найти НОК 4 и 6
1. Раскладываем 6 и 4 на простые множители:
2. Возьмем первую группу множителей: 2 · 3.
3. Смотрим вторую группу (2 · 2) и видим, что из двух двоек, одна присутствует в первом разложении. Таким образом, берем только одну двойку. Добавляем к первому разложению и получаем: 2 · 3 · 2
4. Вычисляем произведение: 2 · 3 · 2 = 12.
Ответ: НОК (6; 4) = 12
Пример 2: найти НОК 32 и 20
1. Раскладываем 32 и 20 на простые множители:
2. Возьмем первую группу множителей: 2 · 2 · 2 · 2 · 2.
3. Смотрим вторую группу (2 · 2 · 5) и видим, что из двух двоек и пятерки, обе двойки присутствуют в первом разложении. Таким образом, берем только пятерку. Добавляем к первому разложению и получаем: 2 · 3 · 2
4. Вычисляем произведение: 2 · 2 · 2 · 2 · 2 · 5 = 160.
Ответ: НОК (32; 20) = 160
Для того, чтобы находить общий знаменатель
при
сложении
и
вычитании дробей с разными
знаменателями необходимо знать и уметь рассчитывать наименьшее общее кратное (НОК).
Кратное числу «a» — это число, которое
само делится на число «a» без остатка.
Числа кратные 8
(то есть, эти числа разделятся на 8 без остатка):
это числа 16, 24, 32 …
Кратные 9: 18, 27, 36, 45 …
Чисел, кратных данному числу a бесконечно много, в отличии от делителей
этого же числа. Делителей —
конечное количество.
Общим кратным двух натуральных чисел называется число, которое делится на оба эти числа нацело.
Запомните!
Наименьшим общим кратным (НОК) двух и более натуральных
чисел называется наименьшее натуральное число, которое само
делится нацело на каждое из этих чисел.
Как найти НОК
НОК можно найти и записать двумя способами.
Первый способ нахождения НОК
Данный способ обычно применяется для небольших чисел.
- Выписываем в строчку кратные для каждого из чисел, пока не найдётся кратное, одинаковое
для обоих чисел. - Кратное числа «a»
обозначаем большой буквой «К».К (a) = {…, …}
Пример. Найти НОК 6 и 8.
К (6) = {12, 18, 24, 30, …}
К (8) = {8, 16, 24, 32, …}
НОК (6, 8) = 24
Второй способ нахождения НОК
Этот способ удобно использовать, чтобы найти НОК для трёх и более чисел.
- Разложить данные числа на простые множители.
Подробнее правила разложения на
простые множители вы можете прочитать в теме
как найти наибольший общий делитель (НОД).
- Выписать в строчку множители, входящие в разложение
самого большого из чисел, а под ним —
разложение остальных чисел.Запомните!
Количество одинаковых множителей в разложениях чисел может быть разное.
60 = 2 · 2 · 3 · 5
24 = 2 · 2 · 2 · 3
- Подчеркнуть в разложении
меньшего числа (меньших чисел) множители,
которые не вошли в разложение бóльшего числа
(в нашем примере это 2) и добавить эти множители в разложение бóльшего числа.
НОК (24, 60) = 2 · 2 · 3 · 5 · 2 - Полученное произведение записать в ответ.
Ответ: НОК (24, 60) = 120
Оформить нахождение наименьшего общего кратного (НОК) можно также следующим образом. Найдём НОК (12, 16, 24).
24 = 2 · 2 · 2 · 3
16 = 2 · 2 · 2 · 2
12 = 2 · 2 · 3
Как видим из разложения чисел, все множители 12 вошли в
разложение 24
(самого бóльшего из чисел), поэтому в НОК добавляем только одну 2 из
разложения числа 16.
НОК (12, 16, 24) = 2 · 2 · 2 · 3 · 2 = 48
Ответ: НОК (12, 16, 24) = 48
Особые случаи нахождения НОК
- Если одно из чисел делится нацело на другие, то наименьшее общее кратное этих чисел равно этому числу.
Например, НОК (60, 15) = 60
- Так как взаимно простые числа не имеют общих простых делителей, то их наименьшее общее
кратное равно произведению этих чисел.Пример.
НОК (8, 9) = 72
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
5 сентября 2020 в 15:37
Елена Елена
Профиль
Благодарили: 0
Сообщений: 1
Елена Елена
Профиль
Благодарили: 0
Сообщений: 1
НОК(360,102)
0
Спасибо
Ответить
6 сентября 2020 в 13:42
Ответ для Елена Елена
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
360 = 23 · 32 · 5; 102 = 2 · 3 · 17.
НОК(360; 102) = 23 · 32 · 5 · 17 = …
0
Спасибо
Ответить
30 мая 2018 в 17:34
Тамара Татарникова
Профиль
Благодарили: 0
Сообщений: 1
Тамара Татарникова
Профиль
Благодарили: 0
Сообщений: 1
Найдите четырёхзначное число, которое кратно 24, а произведение цифр этого числа равно 16, в ответ дайте какое-нибудь одно число.
Я написала 1242, но 1242 при делении на 24 дает в ответе 51,75 будет ли это верным ответом?
0
Спасибо
Ответить
3 июня 2018 в 1:58
Ответ для Тамара Татарникова
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
1128 1224 8112
0
Спасибо
Ответить
29 ноября 2016 в 14:47
Анвар Тынайбеков
Профиль
Благодарили: 0
Сообщений: 1
Анвар Тынайбеков
Профиль
Благодарили: 0
Сообщений: 1
НОК(344и170)=
0
Спасибо
Ответить
2 декабря 2016 в 8:23
Ответ для Анвар Тынайбеков
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
1
Спасибо
Ответить
15 февраля 2016 в 19:02
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
число 123 454 321 делится на 11 111. найдите нок этих чисел
1
Спасибо
Ответить
15 февраля 2016 в 19:08
Ответ для Кирилл Журавлёв
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
12132211
0
Спасибо
Ответить
19 сентября 2016 в 12:55
Ответ для Кирилл Журавлёв
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Здесь подробно описано нахождение НОК.
А в супер-решателе можно себя проверить.
0
Спасибо
Ответить
15 февраля 2016 в 18:51
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
Кирилл Журавлёв
Профиль
Благодарили: 1
Сообщений: 3
ЧИСЛО 123 454 321 ДЕЛИТСЯ 11 111. НАЙДИТЕ НОК ЭТИХ ЧИСЕЛ НЕ ВЫПОЛНЯЯ РАЗЛОЖЕНИЯ ЧИСЕЛ НА ПРОСТЫЕ МНОЖИТЕЛИ
0
Спасибо
Ответить
19 сентября 2016 в 12:56
Ответ для Кирилл Журавлёв
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
0
Спасибо
Ответить
27 января 2016 в 18:15
Lera Kuchinskaya
Профиль
Благодарили: 0
Сообщений: 1
Lera Kuchinskaya
Профиль
Благодарили: 0
Сообщений: 1
НОК 100 150 250
0
Спасибо
Ответить
27 января 2016 в 22:36
Ответ для Lera Kuchinskaya
Виктория Казимирова
Профиль
Благодарили: 0
Сообщений: 1
Виктория Казимирова
Профиль
Благодарили: 0
Сообщений: 1
А что за цифры!!!?
0
Спасибо
Ответить
28 января 2016 в 16:00
Ответ для Lera Kuchinskaya
Anton Wuckert
Профиль
Благодарили: 0
Сообщений: 1
Anton Wuckert
Профиль
Благодарили: 0
Сообщений: 1
НОК = 1500
0
Спасибо
Ответить
19 сентября 2016 в 11:42
Ответ для Lera Kuchinskaya
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Для решения можно воспользоваться решателем на сайте.
0
Спасибо
Ответить
22 января 2016 в 13:46
Андрей Алексеев
Профиль
Благодарили: 0
Сообщений: 1
Андрей Алексеев
Профиль
Благодарили: 0
Сообщений: 1
числа 4,5,6,7,10,12,15,16,20,50, которые являются делителями 24 и кратными 2
0
Спасибо
Ответить
23 января 2016 в 13:33
Ответ для Андрей Алексеев
Александра Сирота
Профиль
Благодарили: 0
Сообщений: 2
Александра Сирота
Профиль
Благодарили: 0
Сообщений: 2
ОТВЕТ: 4 и 12
0
Спасибо
Ответить
24 января 2016 в 13:41
Ответ для Андрей Алексеев
Инна Шабрашина
Профиль
Благодарили: 0
Сообщений: 5
Инна Шабрашина
Профиль
Благодарили: 0
Сообщений: 5
6 ,2, 12
0
Спасибо
Ответить
25 января 2016 в 19:52
Ответ для Андрей Алексеев
Нелия Ахмедова
Профиль
Благодарили: 0
Сообщений: 1
Нелия Ахмедова
Профиль
Благодарили: 0
Сообщений: 1
6,12.
0
Спасибо
Ответить
19 сентября 2016 в 10:59
Ответ для Андрей Алексеев
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Чтобы не запутаться, необходимо каждое из чисел проверить на оба условия:
1) 4 — 24/4=6 — делитель 24. 4/2=2 — кратно 2.
2) 5 — 24/5=не делится без остатка — не делитель. 5/2 — не делится без остатка — не кратно 2.
И так далее.
Ответ: 4,6,12.
0
Спасибо
Ответить
23 декабря 2015 в 17:00
Евгений Мухамедшин
Профиль
Благодарили: 0
Сообщений: 1
Евгений Мухамедшин
Профиль
Благодарили: 0
Сообщений: 1
1) (4/15+5/8)-3/5
2) (1/5+13/16)-9/20
0
Спасибо
Ответить
19 сентября 2016 в 10:01
Ответ для Евгений Мухамедшин
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Для нахождения НОК можно воспользоваться супер-решателем. Раскрываем скобки и приводим к общему знаменателю.
1) ===0
2) ===
0
Спасибо
Ответить
17 ноября 2015 в 6:29
Светлана Каблучко
Профиль
Благодарили: 0
Сообщений: 1
Светлана Каблучко
Профиль
Благодарили: 0
Сообщений: 1
запишите числа удовлетворяющие двойное неравенство 354<х<361 если известно что они кратны 2,5,10
0
Спасибо
Ответить
24 ноября 2015 в 17:56
Ответ для Светлана Каблучко
Тима Клюев
Профиль
Благодарили: 0
Сообщений: 8
Тима Клюев
Профиль
Благодарили: 0
Сообщений: 8
360
0
Спасибо
Ответить
Наименьшее общее кратное: как найти
Содержание:
- Наименьшее общее кратное — что это такое
- Вычисление НОК, правила в математике
- Как найти НОК через НОД
- Как найти НОК через разложение чисел
- Нахождение НОК трех и большего количества чисел
Наименьшее общее кратное — что это такое
Определение
Число, которое можно без остатка разделить на выбранные числа, является их общим кратным. Наименьшее из таких чисел — наименьшее общее кратное или сокращенно «нок».
Действия с дробями, имеющими различный знаменатель, можно значительно облегчить, если найти наименьшее общее кратное (НОК). Это такое число, например, кратное числу а, которое можно разделить на это а целиком, без остатка.
Пример
К числам, кратным 8, относятся 16, 24, 32, 40 и т.п. Кратными 9-ти являются 9, 18, 27, 36 и т.п.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Существует бесчисленное множество чисел, делящихся на а без остатка, т.е. кратных ему. В то же время, этого нельзя сказать о числе делителей. Так, делителями для 9-ти являются 9, 3, 1.
Если для двух или более натуральных чисел существует число, делящееся на оба без остатка, то оно является наименьшим общим кратным. А то из, них, которое самое маленькое, является нок.
Вычисление НОК, правила в математике
Для нахождения нок в математике существует несколько правил или алгоритмов. Самый простой вариант — вычисление НОК для двух чисел-участников. Способ легкий, но приемлем для маленьких натуральных чисел.
Нужно составить ряды чисел, кратных каждому из выбранных значений.
Пример
К (4) — 4, 8, 12, 16, 20, 24;
К (6) — 6, 12, 18, 24, 30.
Из рядов видно, что в обоих рядах встречаются числа 12 и 24. Это общие кратные. Однако 12 из них — меньшее число.
Поэтому НОК (4, 6) — 12.
Как найти НОК через НОД
Определение НОК можно провести с использованием НОД (наибольшего общего делителя).
В этом блоке изложения материала следует уточнить некоторые понятия.
Определение
Простым называется такое натуральное число, которое целиком можно разделить только само на себя либо на единицу.
Наименьшим простым числом является двойка. Она же — единственное четное натуральное простое число. Все остальные — нечетные.
Множество чисел делятся не только на 1 и на себя, но и на другие целые натуральные числа:
8 делится на 1, 2, 4, 8;
36 — на 1, 2, 3, 4, 6, 8 и т.д.
Эти числа — делители восьми и тридцати шести (делимых). Именно они могут разделить 8 и 36 без остатка. В обоих приведенных примерах делимые (8, 36) являются составными числами, поскольку имеют более двух делителей.
В приведенных рядах существуют одинаковые делители. Это 1, 2, 4, 8.
Самое большое число — 8. Оно и является наибольшим общим делителем.
Определение
Наибольший общий делитель (НОД) — число, на которое без остатка делится выбранная пара (либо больше) чисел.
Пример
НОД (9, 45)=9
НОД (12, 48)=12
Бывают пары чисел, которые из общих делителей имеют только единицу. Тогда они называются взаимно простыми: НОД (9, 8)=1, НОД (12, 10)=1.
На следующем примере показаны пары чисел со значениями их НОД и НОК.
Решение задачи по нахождению НОК через НОД сводится к следующей формуле:
НОК чисел a,b равняется частному произведения a и b на наибольший общий делитель чисел a и b (по-другому НОД (a, b).
Исходя из этого заключения получается, что НОК и НОД взаимосвязаны друг с другом. Наименьшее общее кратное можно легко найти через наибольший общий делитель для двух или более натуральных чисел.
Как найти НОК через разложение чисел
Кроме составления рядов значений, кратных каждому из двух выбранных натуральных чисел, для правильного определения НОК пользуются методом разложения на множители.
Найденные простые множители первого разложения сравниваются с аналогичными из второго разложения, после чего они перемножаются.
Пример
После разложения числа 9 на простые множители получается ряд:
1, 3, 9.
После разложения 12-ти получается ряд:
1, 2, 3, 4, 6, 12.
После разложения на множители числа 9 получаем: 3*3. После разложения на множители 12-ти получаем: 2*2*3. Объединяя множители обеих вариантов, получаем произведение: 3*3*2*2=36.
Наименьшее общее кратное чисел 9 и 12 — 36.
В качестве проверки произведем действия:
- 36/12=3
- 9/3=3
На практике записывают: НОК (9, 12)=36.
Такими действиями можно найти НОК более сложных чисел.
Пример
Найти НОК чисел 50 и 180.
Число 50 делится на 1, 2, 5, 10, 25, 50.
Число 180 на: 1, 5, 15, 30, 45, 90, 180.
Разложив на множители 50, получаем: 2, 5, 5.
Разложив 180, получаем: 2, 2, 3, 3, 5.
Из первого разложения выписываем: 2*5*5. Сравнивая со вторым разложением, описываем одну двойку и две тройки. После перемножения полученного ряда получается произведение: 2*5*5*2*3*3=900. Это и есть наименьшее общее кратное чисел 50 и 180.
Следовательно, НОК (50, 180)=900.
Существует еще один быстрый способ находить НОК. Он приемлем для вариантов, когда одно число нацело делится на другое. Например: НОК (15, 30)=30, НОК (20, 80)=80, НОК (16, 48)=48.
Для случаев, когда у двух чисел не имеется общих делителей, их можно просто перемножить и получить НОК. Например, НОК (7, 8)=56, НОК (4, 9)=36, НОК (7, 9)=63.
Нахождение НОК трех и большего количества чисел
Если предстоит найти НОК для большего, чем 2, количества чисел, их нужно разложить на простые множители. Например,
32=2*2*2*2*2;
40=2*2*2*5;
80=2*2*2*2*5
Сравнивая множители в каждом случае разложения натуральных чисел и выстраивая их в один ряд для умножения, получаем, что НОК (32, 40, 80) = 2*2*2*2*2*5 = 160.
В математике принято для нахождения НОК трех и более чисел применять следующую теорему:
Если имеется ряд чисел (а1, а2, а3…аk), можно найти НОК mk этих чисел производя последовательные вычисления: m2=НОК (а1, а2), m3=НОК (а2, а3)… mk=НОК (mk-1, аk)
Пример
Дано задание вычислить НОК для чисел 140 (a1), 9 (a2), 54 (а3), 250 (а4).
Тогда m2=НОК (a1, a2)=НОК (140, 9).
Для нахождения НОК (140, 9) производим действия. 140=15*9+5; 9=5*1+4.
Последующее разложение: 5=4*1+1, 4=4*1.
Следовательно, НОД (140, 9)=1. НОК (140, 9)=140*9/НОД (140, 9)=140*9/1=1260.
Ответ: m2=1260
По аналогии вычисляем m3 (=3780) и m4 (=94500). Это и есть ответ решения задачи по нахождению НОК чисел 140, 9, 54, 250.
Наименьшее общее кратное (сокр. НОК) в математике определяется для нескольких чисел. Это наименьшее натуральное число, делящееся на каждое их данных чисел без остатка. Для того, чтобы найти наименьшее общее кратное нужно: 1) Разложить каждое число на простые множители. 2) Домножить одно из чисел на те множители, которые не входят в его разложение, но входят в разложение других чисел. Пример Требуется найти наименьшее общее кратное для трёх чисел: 6, 10 и 15. 1) Разложим числа на простые множители. 6 = 2 * 3. 10 = 2 * 5. 15 = 3 * 5. 2) Возьмём число 6. Множитель, который не входит в разложение данного числа, но входит в разложение чисел 10 и 15 – это число 5. Домножаем число 6 на число 5 – получаем 30. Следовательно, НОК (6, 10, 15) = 30. Другой способ Если требуется найти наименьшее общее кратное двух чисел, то можно поступить таким образом: 1) Умножить одно число на другое. 2) Разделить полученное произведение на НОД (наибольший общий делитель). Найдём наименьшее общее кратное чисел 8 и 6. 1) 8 * 6 = 48. 2) 8 = 2 * 2 * 2 и 6 = 2 * 3 -> НОД (8, 6) = 2. НОК (8, 6) = 48 / 2 = 24. автор вопроса выбрал этот ответ лучшим дольфаника 8 лет назад Складывать, умножать, делить, приводить к общему знаменателю и другие арифметические действия очень увлекательное занятие, особенно восхищают примеры, занимающие целый лист. Итак найти общее кратное для двух чисел, которое будет являться самым маленьким числом на которое делятся два числа. Хочу заметить, что не обязательно в дальнейшем прибегать к формулам, чтобы найти искомое, если можешь считать в уме (а это можно натренировать), то цифры сами всплывают в голове и потом дроби щелкаются как орешки. Для начала усвоим, что можно умножить два числа друг на друга, а потом эту цифру уменьшать и делить поочередно на данные два числа, так мы найдем наименьшее кратное. Например, два числа 15 и 6. Умножаем и получаем 90. Это явно больше число. Причем 15 делится на 3 и 6 делится на 3, значит 90 тоже делим на 3. Получаем 30. Пробуем 30 разделить 15 равно 2. И 30 делим 6 равно 5. Так как 2 это предел, то получается, что наименьшее кратное для чисел 15 и 6 будет 30. С цифрами побольше будет немного трудней. но если знать, какие цифры дают нулевой остаток при делении или умножении, то трудностей, в принципе, больших нет. НОК, или наименьшее общее кратное, – это наименьшее натуральное число двух и более чисел, которое делится на каждое из данных чисел без остатка. Вот пример того, как найти наименьшее общее кратное 30 и 42.
Для 30 – это 2 х 3 х 5. Для 42 – это 2 х 3 х 7. Так как 2 и 3 имеются в разложении числа 30, то вычеркиваем их.
В итоге получаем, что НОК чисел 30 и 42 равен 210. CooLWarK 9 лет назад Представляю ещё один способ нахождения наименьшего общего кратного. Рассмотрим его на наглядном примере. Необходимо найти НОК сразу трёх чисел: 16, 20 и 28.
16 = 2·2·4 20 = 2·2·5 28 = 2·2·7
16 = 2·2·4 = 2^2·4^1 20 = 2·2·5 = 2^2·5^1 28 = 2·2·7 = 2^2·7^1
НОК = 2^2·4^1·5^1·7^1 = 4·4·5·7 = 560. НОК(16, 20, 28) = 560. Таким образом, в итоге расчета получилось число 560. Оно является наименьшим общим кратным, то есть делится на каждое из трёх чисел без остатка. Матвей628 9 лет назад Чтобы найти наименьшее общее кратное, нужно выполнить последовательно несколько простых действий. Рассмотрим это на примере двух чисел: 8 и 12
Проверяя, убеждаемся, что 24 делится и на 8 и на 12, причем это наименьшее натуральное число, которое делится на каждое из этих чисел. Вот мы и нашли наименьшее общее кратное. иришенька 8 лет назад Попробую объяснить на примере цифр 6 и 8. Наименьшее общее кратное – это число, которое можно разделить на эти числа(в нашем случае 6 и 8) и остатка не будет. Итак, начинаем умножать сначала 6 на 1, 2, 3 и т. д и 8 на 1, 2, 3 и т. д. Получается: Умножаем на 6 – 6-12-18-24-30-36-42-48-54-60 Умножаем не 8 – 8-16-24-32-40-48…. Как видим, и там и там есть 48, следовательно у чисел 6 и 8 наименьшее общее кратное – 48. ЯнаМарина 8 лет назад Наименьшее общее кратное число – это такая цифра, которая разделится на несколько предложенных чисел без остатка. Для того, чтобы такую цифру высчитать, надо взять каждое число и разложить его на простые множители. Те цифры, которые совпадают, убираем. Оставляет всех по одной, перемножаем их между собой по очереди и получаем искомое – наименьшее общее кратное. Например у нас есть числа 3 и 5 и нам надо найти НОК(наименьшее общее кратное). Нам надо умножать и тройку и пятёрку на все числа начиная с 1 2 3 … и т д пока мы не увидим одинаковое число и там и там. Множим тройку и получаем: 3, 6, 9, 12, 15 Множим пятёрку и получаем: 5, 10, 15 НОК = 15 Infiltrator 11 лет назад Нужно найти каждый множитель каждого из двух чисел, у которых находим наименьшее общее кратное, а потом перемножить друг на друга множители, которые совпали у первого и второго числа. Результатом произведения будет искомое кратное. Azamatik 5 лет назад Первым делом нужно разложить числа (для которых ищем наименьшее общее кратное) на множители. После чего остается домножить одно из чисел на тот множитель или на те множители, которые не входят в его разложение, но при этом входят в разложение других чисел (другого числа). Итак, пример: нужно найти наименьшее общее кратное чисел 24 и 36. Разложим на множители оба числа: 24 это 3 х 4 х 2; 36 это 3 х 4 х 3. Сокращаем одинаковые множители и остается одна 3. Умножаем 3 х 4 х 2 х 3 и получаем 72. Ответ: 72 это НОК для чисел 24 и 36. Знаете ответ? |