Ученик
(130),
закрыт
11 лет назад
Serg
Высший разум
(170536)
11 лет назад
Наименьшего значения нет. Луч не имеет конца. Наибольшее значение функции у=-2х на промежутке [0;+беск) =0. Построй график и все станет ясно. Начало луча в точке (0;0). Дальше при х–>к +беск. у–> к -беск.
График расположен в 4 четверти.
И обрати внимание, что 0 больше отриц. числа.
Puarosh
Профи
(873)
11 лет назад
нужно начертить данный график
и на системе координат выделить точку 0 (вколотая) т. е. закрасить точку
и рассматривай ф-цию только от 0 и до бесконечности
в итоге, наибольшего – не существует, т. к. уходит + бесконечность, а наименьшее будет 0
Роберт Вульферт
Ученик
(195)
11 лет назад
У линейной функции нет наименьшего (наибольшего) значения. у луча есть. в твоем случае
(мы проходили это так и если что не пугайтесь) Х минимум=0, У минимум= Минимум функции= 0 (х минимум – точка минимума, то есть значение аргумента в этой точке. У минимум это значение ординаты в этой точке. но это когда ты берешь точку из эпсилон окрестности) то что ты просишь это найти экстремумы (значит не на отдельной части области определения, а на всей области определения)
Общая информация
Исследование функции — распространенная задача, которая показывает ее поведение и свойства. Одним из элементов считается нахождение максимума и минимума функции. Существуют специальные программы для нахождения этих значений (онлайн-калькулятор). Однако каждому следует понимать принцип нахождения, поскольку это может пригодиться в жизни.
Для решения такого типа задач необходим определенный «багаж» знаний, поскольку без него вообще не обойтись. В его состав входят следующие элементы:
- Нахождение области определения функции (ОДФ).
- Понятие дифференциала и основные методы его нахождения.
- Умение решать уравнения.
- Знание графиков простых функций.
- Основные типы функций, полуинтервал и интервал.
Все пять навыков приобрести несложно, кроме второго. В этом нужно подробно разобраться, поскольку очень важно уметь находить производные (дифференциалы) не только табличных элементарных функций, но и сложных. Важно знать основные свойства, которые применяются для нахождения производной.
Область определения
Область определения какой-либо функции вида y = f(x) — область значений аргумента, при которых она существует. У каждой функции существует два типа неизвестных: зависимые и независимые. К первым следует отнести переменную y, которая зависит от независимой переменной «х». Необходимо отметить, что бывают функции, в которых нет аргумента. Примером их считается функция вида y = const, где const — константа (любое число).
Область определения обозначается в теории литерой «D». Однако обозначение можно менять, когда исследуются несколько функций. Чтобы не путаться, специалисты рекомендуют следующую запись D(f(x)). Например, для y = x^2 – 27x и y = 12sinx ОДФ записывается таким образом: D(x^2 – 27x) и D(12sinx) соответственно.
Обозначение интервалов
Результатом решения задач на нахождение ОДЗ является определенный интервал. Важно правильно его обозначать, поскольку это существенно влияет на решение. Нужно руководствоваться следующими правилами:
- Жесткая граница обозначается квадратной скобкой «[» или «]». Она обозначает, что число входит включительно в этот интервал. Можно использовать не только одну скобку, но и две одновременно.
- Для обозначения числового значения, которое не входит в промежуток, пользуются круглыми скобками «(» и «)». Их можно применять одновременно.
- Типы границ можно комбинировать.
- Если нужно объединить интервалы, то следует использовать символ «U».
Очень важно правильно читать интервалы. Например, запись (1;4) читается следующим образом: переменная принимает значения, которые находятся в интервале от 1 не включительно до 4 не включительно. Это числа 2 и 3, поскольку 1 и 4 не входят в промежуток. Запись вида [5;10) читается таким образом: некоторое значение принадлежит интервалу от 5 включительно, до 10 не включительно.
Зависимость от типа
Функции различаются между собой. От этого и зависит нахождение их области определения. Они бывают простыми и сложными. Первые состоят из единичных элементов, а сложные включают в себя несколько типов. Их еще называют составными. Простые классифицируются на три вида:
- Алгебраические: рациональные и иррациональные.
- Тригонометрические: sin, cos, tg и ctg.
- Трансцендентные: степенные, показательные и логарифмические.
Рациональные бывают целыми и дробными. Они не включают в себя выражения, содержащие такие элементы: корень, степень, логарифм и тригонометрические функции. D(f) этих функций — все действительные числа (Z). Если она является дробной, то это означает, что в ее числителе и (или) знаменателе находится аргумент, значение которого не должно обращать ее в пустое множество.
Когда под корнем находится выражение, содержащее независимую переменную, то она называется иррациональной. В этом случае D(f) — множество Z, кроме тех, которые превращают выражение под корнем четной степени в отрицательное значение. Функция, представленная степенными выражениями, имеет D(f) = Z, но только тогда, когда значение аргумента не превращает функцию в пустое множество.
Метод нахождения
Для решения любой задачи нужно применять определенные правила. Они называются алгоритмом. Для каждого типа функций существует конкретный вариант решения. Для дробной он является следующим:
- Найти корни уравнения знаменателя, приравнивая его к 0.
- Определить интервал, значения из которого может принимать аргумент.
В случае, когда выражение является иррациональной функцией, корень которой является четным, следует решать не уравнение, а неравенство. Его значение не должно быть меньше 0. Для логарифмического типа выражение натурального логарифма (ln) должно быть всегда больше 0.
Для sin(x) и cos(x) областью определения является множество значений Z. Однако для tg(x) и ctg(x) следует помнить, что аргумент не должен принимать значение x = (Pi / 2) + Pi * k и x = Pi * k соответственно. Следует отметить, что коэффициент k принадлежит множеству чисел Z.
Для примера нужно разобрать задачу, в которой следует найти D(3x / [(x – 1) * (x + 1) * (10 – x)^(1/2)]). Решать ее необходимо по такому алгоритму:
- Знаменатель является сложным. Он состоит из двух выражений: (x – 1) * (x + 1) и (10 – x)^(1/2).
- Первое выражение (решить уравнение): (x – 1) * (x + 1) = 0. Оно имеет два корня: x1 = -1 и x2 = 1. Числовой промежуток: (-бесконечность;-1) U (1;+бесконечность).
- Второе (неравенство): (10 – x) < 0. Интервал: (-бесконечность;10].
- Результат (объединение всех интервалов): (-бесконечность;-1) U (1;10].
Данный пример показывает особенность решения задачи, которая заключается в объединении двух алгоритмов. Это довольно часто практикуется. Результат — объединение трех множеств, при объединении которых получается два интервала.
Сведения о производных
Производная — скоростное изменение какой-либо функции. Эта характеристика присуща не всем, поскольку некоторые из них являются постоянными. Если она имеет производную в некоторой точке, то является дифференцируемой. Дифференцирование применяется не только для исследования функций, но и во многих отраслях науки и техники.
Для нахождения дифференциалов необходима таблица производных. Кроме того, следует освоить все основные правила, поскольку не во всех случаях функция соответствует одному из табличных значений. Для этого нужно воспользоваться некоторыми свойствами. Математики-специалисты рекомендуют применять на начальных стадиях обучения алгоритм нахождения производной, который позволяет существенно сократить время выполнения задания, а также количество ошибок.
Таблица дифференциалов
В некоторых простых задачах возникает необходимость определить производную некоторой элементарной функции. Для этих целей применяется специальная таблица, в которой записаны основные простые выражения.
Данные значения были получены практическим методом — нахождением отношения приращения функции к приращению аргумента. Необходимо учитывать, что последний стремится к нулевому значению.
Однако иногда приходится упрощать выражение, а потом находить его производную. Для этого существует специальный простой алгоритм:
- Выполнить математические преобразования (упростить выражение).
- Найти производную по таблице.
Данный алгоритм справедлив только для простых выражений. Для сложных функций нужно руководствоваться некоторыми свойствами.
Основные свойства
Когда выражение не совпадает с табличным значением или состоит из нескольких элементов, то нужно применять специальные правила. Ими являются следствия из доказательств различных теорем. К ним можно отнести следующие:
- Если константа A (в некоторых источниках «С»), то при дифференцировании ее можно выносить за знак производной: (A * f(x))’ = A(f(x))’.
- Дифференциал суммы или разности 2 и более функций эквивалентен дифференциалу каждой из них: (w(x) + z(x))’ = w'(x) + z'(x) и (w(x) – z(x))’ = w'(x) – z'(x).
- Производная произведения 2 функций соответствует сумме, которая является произведением каждой из них на дифференциал другой: (w(x) * z(x))’ = (w'(x) * z(x) + w(x) * z'(x).
- Если нужно взять производную дробной функции вида w(x) / z(x), то результат действия является дробью, числитель которой равен разности произведений дифференциала числителя на знаменатель, и дифференциала знаменателя, умноженного на числитель. Знаменатель результирующей дроби соответствует знаменателю исходной функции, возведенного в квадрат: (w(x) / z(x))’ = [(w'(x) * z(x) – w(x) * z'(x)] / (z(x))^2.
В некоторых случаях функция является сложной. Для нахождения ее дифференциала нужно разбить ее на составные функции. Затем взять отдельно производную каждого из элементов. Результат — произведение дифференциалов всех элементов. Например, нужно найти дифференциал z = (1/8 * sin (4x^4 – 3x^3 + 6). Алгоритм решения следующий:
- По правилу нужно вынести константу, равную 1/8.
- Состоит из 2 частей: sin и (4x^4 – 3x^3 + 6).
- Производная последней – дифференциал разности (2 свойство): [4x^4 – 3x^3 + 6]’ = ((4 * x^3) / 4) – ((3 * x^2) / 3) + 0 = x^3 – x^2.
- Для второй: (sinx)’ = cosx.
- Итоговый результат: z’ = (1/8) * (x^3 – x^2) * sin (4x^4 – 3x^3 + 6).
Очень важно уметь разбивать выражение на части, поскольку от этого зависит результат решения. В некоторых случаях выражение можно упростить.
Наибольшее и наименьшее значения
Задачи на нахождения максимума и минимума применяются не только в математике, но и в бизнесе, науке, производстве и т. д. Например, вычисление наименьшего значения функции на отрезке (за последний промежуток времени) позволяет узнать минимизацию издержек производства. Кроме того, можно определить максимальную прибыль, найти оптимальную загрузку техники и т. д. Данные значения следует искать на каких-либо интервалах. Они классифицируются следующим образом:
- Отрезок: [a;b].
- Открытый тип: (a;b), (a;b] и [a;b).
- Промежуток бесконечности (в некоторой литературе обозначается «inf»): (-бесконечность;а], (-inf;а), [a;+inf), (a;+inf) и (-inf;+inf).
Следует отметить, что наибольшее и наименьшее значение производной по графику функции можно также найти, однако расчетный метод намного проще.
Универсальный алгоритм
Для данной операции, как и для других математических действий, существуют определенные правила или последовательность действий, которые называются алгоритмом. Специалисты для решения различных задач в любых сферах рекомендуют использовать их. Они позволяют не только существенно экономить время, минимизируя количество вычислений, но и с их помощью можно избежать некоторых ошибок. Суть алгоритма очень проста. Он состоит из определенной последовательности таких шагов:
- Найти D(f(x)).
- Проверить вхождение заданного интервала.
- Взять производную и выполнить поиск всех точек, в которых она не существует (их может и не быть).
- Приравнять к нулю результат, полученный в пункте 4, и найти корни уравнения. Это и будут стационарные точки, но они могут не существовать.
- Подставить в исходную функцию значения границ и стационарные точки.
- Выбрать из них MAX(f(x)) и MIN(f(x)).
Выполнение шестого шага зависит от вида интервала. В некоторых случаях можно просто подставить значение, а в других — найти предел. Если указана скобка «[» или «]», то x равен значению возле этой скобки. Когда указаны круглые скобки, нужно брать предел x = lim (f(x)), где x стремится к числовому значению или бесконечности, которые находятся возле скобки (x->a). Например, (a;+inf): х = lim [f(x)], где x->a и x->+inf.
Для нахождения минимального и максимального значения функции достаточно материала, изложенного выше. Специалисты рекомендуют разобраться с теорией, а затем переходить к практике.
Примеры решений
Дана квадратичная функция y = x^2 + 6x + 9. Необходимо найти наименьшее значение функции квадратного уравнения на отрезке [1;5]. Для этой цели нужно воспользоваться алгоритмом:
- D(y): все множество Z.
- Отрезок входит в D(y).
- Производная: y’ = [x^2 + 6x + 9]’ = 2x + 6 (существует во всех точках).
- Стационарные точки (y’ = 0): 2x + 6 = 0. Отсюда, x = -3.
- Подставить в исходное выражение: y(-3) = (-3)^2 + 6 * (-3) + 9 = 9 – 18 + 9 = 0, y(1) = (1)^2 + 6 * (1) + 9 = 1 + 6 + 9 = 16 и y(5) = (5)^2 + 6 * (5) + 9 = 25 + 30 + 9 = 64.
- Максимум и минимум (с учетом стационарной точки и интервала): MIN(y) = 0 и MAX(y) = 64.
Одним из простейших типов задач является следующая: найдите наибольшее значение линейной функции z = 5x + 10 на отрезке [-3;3]. Для ее решения можно также воспользоваться алгоритмом:
- D(z) — все значения от бесконечно малого до бесконечно большого чисел.
- Промежуток, на котором нужно найти максимум и минимум, полностью входит в D(f).
- Дифференциал: z’ = 5 (существует во всех точках, а стационарных точек нет вообще).
- Минимум и максимум: MIN(z(-3)) = 5 * (-3) + 10 = -5 и MAX(z(3)) = 5 * (3) + 10 = 25.
Последнюю задачу необязательно решать по алгоритму, поскольку она считается простейшей. Математики рекомендуют тренироваться в нахождении MIN и MAX функции, поскольку только практика позволяет быстро решать задачи.
Таким образом, для нахождения максимального и минимального значений заданной функции необходимо пользоваться специальным универсальным алгоритмом. Кроме того, нужно правильно находить дифференциалы, область определения, а также разбираться в интервалах.
Как найти наибольшее и наименьшее значения функции на отрезке. Задание 12.
Как найти наибольшее и наименьшее значения функции на отрезке?
Для этого мы следуем известному алгоритму:
1 . Находим ОДЗ функции.
2 . Находим производную функции
3 . Приравниваем производную к нулю
4 . Находим промежутки, на которых производная сохраняет знак, и по ним определяем промежутки возрастания и убывания функции:
Если на промежутке I производная функции 0″ title=”f^(x)>0″/>, то функция возрастает на этом промежутке.
Если на промежутке I производная функции , то функция убывает на этом промежутке.
5 . Находим точки максимума и минимума функции.
В точке максимума функции производная меняет знак с “+” на “-“.
В точке минимума функции производная меняет знак с “-” на “+”.
6 . Находим значение функции в концах отрезка,
- затем сравниваем значение функции в концах отрезка и в точках максимума, и выбираем из них наибольшее, если нужно найти наибольшее значение функции
- или сравниваем значение функции в концах отрезка и в точках минимума, и выбираем из них наименьшее, если нужно найти наименьшее значение функции
Однако, в зависимости от того, как себя ведет функция на отрезке, это алгоритм можно значительно сократить.
Рассмотрим функцию . График этой функции выглядит так:
В зависимости от того, на каком промежутке мы будем рассматривать функцию, алгоритм нахождения наибольшего или наименьшего значения будет различным.
1. Рассмотрим функцию на отрезке
Функция возрастает на этом отрезке, поэтому наибольшее значение она будет принимать в правом конце отрезка: , а наименьшее – в левом: .
2. Рассмотрим функцию на отрезке
Очевидно, что наибольшее значение функция принимает в точке максимума , а наименьшее – в одном из концов отрезка, то есть надо найти значения и и выбрать из них наименьшее.
3. Если мы рассмотрим функцию на отрезке , то чтобы найти наибольшее значение, нам нужно будет сравнить значения функции в точке максимума и в правом конце отрезка, то есть и .
Чтобы найти наименьшее значение функции, нам нужно будет сравнить значения функции в точке минимума и в левом конце отрезка, то есть и .
Эти рассуждения очевидны, если перед глазами есть график функции. Но эскиз графика легко нарисовать, проведя исследование функции с помощью производной:
1. ОДЗ функции – множество действительных чисел.
2.
3. , если или
Нанесем корни производной на числовую ось и расставим знаки. Теперь поведение функции легко определить, и, следуя за стрелками, символизирующими возрастание – убывание, можно схематично изобразить ее график:
Рассмотрим несколько примеров решения задач из Открытого банка заданий для подготовки к ЕГЭ по математике
1 . Задание B15 (№ 26695)
Найдите наибольшее значение функции на отрезке .
1. Функция определена при всех действительных значениях х
2.
3.
Очевидно, что это уравнений не имеет решений, и производная при всех значениях х положительна. Следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, то есть при х=0.
Ответ: 5.
2 . Задание B15 (№ 26702)
Найдите наибольшее значение функции на отрезке [].
1. ОДЗ функции /2+k, k” title=”x<>/2+k, k”/>
2.
Производная равна нулю при , однако, в этих точках она не меняет знак:
, следовательно, =3″ title=”3/>>=3″/>, значит, =0″ title=”3/>-3>=0″/>, то есть производная при всех допустимых значених х неотрицательна, следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, при .
Чтобы стало очевидно, почему производная не меняет знак, преобразуем выражение для производной следующим образом:
=0″ title=”y^=3/>-3=<3-3cos^2>/>=<3sin^2>/>=3tg^2>=0″/>
Ответ: 5.
3 . Задание B15 (№ 26708)
Найдите наименьшее значение функции на отрезке [].
1. ОДЗ функции : /2+k, k” title=”x<>/2+k, k”/>
2.
3.
,
Расположим корни этого уравнения на тригонометрической окружности.
Промежутку принадлежат два числа: и
Расставим знаки. Для этого определим знак производной в точке х=0: . При переходе через точки и производная меняет знак.
Изобразим смену знаков производной функции на координатной прямой:
Очевидно, что точка является точкой минимума ( в ней производная меняет знак с “-” на “+”), и чтобы найти наименьшее значение функции на отрезке , нужно сравнить значения функции в точке минимума и в левом конце отрезка, .
Схитрим: так как результат должен быть целым числом, или конечной десятичной дробью, а таковым на является, следовательно подставим в уравнение функции
Ответ: -1
И.В. Фельдман, репетитор по математике.
Как решать задачи B15 без производных
Иногда в задачах B15 попадаются «плохие» функции, для которых сложно найти производную. Раньше такое было лишь на пробниках, но сейчас эти задачи настолько распространены, что уже не могут быть игнорированы при подготовке к настоящему ЕГЭ.
В этом случае работают другие приемы, один из которых — монотонность.
Функция f ( x ) называется на отрезке если для любых точек этого отрезка выполняется следующее:
Функция f ( x ) называется на отрезке если для любых точек этого отрезка выполняется следующее:
Другими словами, для возрастающей функции Для убывающей функции все наоборот:
Например, логарифм монотонно возрастает, если основание и монотонно убывает, если Не забывайте про область допустимых значений логарифма:
f ( x ) = log a x ( a > 0; a ≠ 1; x > 0)
Арифметический квадратный (и не только квадратный) корень монотонно возрастает на всей области определения:
Показательная функция ведет себя аналогично логарифму: растет и убывает Но в отличие от логарифма, показательная функция определена для всех чисел, а не только
f ( x ) = a x (a > 0)
Наконец, степени с отрицательным показателем. Можно записывать их как дробь. Имеют точку разрыва, в которой монотонность нарушается.
Все эти функции никогда не встречаются в чистом виде. В них добавляют многочлены, дроби и прочий бред, становится тяжело считать производную. Что при этом происходит — сейчас разберем.
Координаты вершины параболы
Чаще всего аргумент функции заменяется на квадратный трехчлен вида Его график — стандартная парабола, в которой нас интересуют:
- Ветви параболы — могут уходить вверх или вниз Задают направление, в котором функция может принимать бесконечные значения;
- Вершина параболы — точка экстремума квадратичной функции, в которой эта функция принимает свое наименьшее или наибольшее значение.
Наибольший интерес представляет именно вершина параболы, абсцисса которой рассчитывается по формуле:
Итак, мы нашли точку экстремума квадратичной функции. Но если исходная функция монотонна, для нее тоже будет точкой экстремума. Таким образом, сформулируем ключевое правило:
Точки экстремума квадратного трехчлена и сложной функции, в которую он входит, совпадают. Поэтому можно для квадратного трехчлена, а на функцию — забить.
Из приведенных рассуждений остается непонятным, какую именно точку мы получаем: максимума или минимума. Однако задачи специально составляются так, что это не имеет значения. Судите сами:
- Отрезок [ a ; b ] в условии задачи отсутствует. Следовательно, вычислять не требуется. Остается рассмотреть лишь точки экстремума;
- Но таких точек всего одна — это вершина параболы координаты которой вычисляются буквально устно и без всяких производных.
Таким образом, решение задачи резко упрощается и сводится всего к двум шагам:
- Выписать уравнение параболы и найти ее вершину по формуле:
- Найти значение исходной функции в этой точке: Если никаких дополнительных условий нет, это и будет ответом.
На первый взгляд, этот алгоритм и его обоснование могут показаться сложными. Я намеренно не выкладываю «голую» схему решения, поскольку бездумное применение таких правил чревато ошибками.
Рассмотрим настоящие задачи из пробного ЕГЭ по математике — именно там данный прием встречается чаще всего. Заодно убедимся, что таким образом многие задачи B15 становятся почти устными.
Задача. Найдите наименьшее значение функции:
Под корнем стоит квадратичная функция График этой функции − парабола ветвями вверх, поскольку коэффициент
x 0 = − b /(2 a ) = −6/(2 · 1) = −6/2 = −3
Поскольку ветви параболы направлены вверх, в точке функция принимает наименьшее значение.
Корень монотонно возрастает, значит точка минимума всей функции. Имеем:
Задача. Найдите наименьшее значение функции:
Под логарифмом снова квадратичная функция: График — парабола ветвями вверх,
x 0 = − b /(2 a ) = −2/(2 · 1) = −2/2 = −1
Итак, в точке квадратичная функция принимает наименьшее значение. Но функция монотонная, поэтому:
y min = y (−1) = log 2 ((−1) 2 + 2 · (−1) + 9) = . = log 2 8 = 3
Задача. Найдите наибольшее значение функции:
В показателе стоит квадратичная функция Перепишем ее в нормальном виде:
Очевидно, что график этой функции — парабола, ветви вниз Поэтому вершина будет точкой максимума:
Исходная функция — показательная, она монотонна, поэтому наибольшее значение будет в найденной точке
Внимательный читатель наверняка заметит, что мы не выписывали область допустимых значений корня и логарифма. Но этого и не требовалось: внутри стоят функции, значения которых всегда положительны.
Следствия из области определения функции
Иногда для решения задачи B15 недостаточно просто найти вершину параболы. Искомое значение может лежать на конце отрезка, а вовсе не в точке экстремума. Если в задаче вообще не указан отрезок, смотрим на область допустимых значений исходной функции. А именно:
Аргумент логарифма должен быть положительным:
y = log a f ( x ) ⇒ f ( x ) > 0
Арифметический квадратный корень существует только из неотрицательных чисел:
Знаменатель дроби не должен равняться нулю:
Обратите внимание еще раз: ноль вполне может быть под корнем, но в логарифме или знаменателе дроби — никогда. Посмотрим, как это работает на конкретных примерах:
Задача. Найдите наибольшее значение функции:
Под корнем снова квадратичная функция: Ее график — парабола, но ветви вниз, поскольку Значит, парабола уходит на минус бесконечность, что недопустимо, поскольку арифметический квадратный корень из отрицательного числа не существует.
Выписываем область допустимых значений (ОДЗ):
3 − 2 x − x 2 ≥ 0 ⇒ x 2 + 2 x − 3 ≤ 0 ⇒
Теперь найдем вершину параболы:
Точка принадлежит отрезку ОДЗ — и это хорошо. Теперь считаем значение функции а также на концах ОДЗ:
Итак, получили числа 2 и 0. Нас просят найти наибольшее — это число 2.
Задача. Найдите наименьшее значение функции:
Внутри логарифма стоит квадратичная функция Это парабола ветвями вниз, но в логарифме не может быть отрицательных чисел, поэтому выписываем ОДЗ:
6 x − x 2 − 5 > 0 ⇒ x 2 − 6 x + 5 x 0 = − b /(2 a ) = −6/(2 · (−1)) = −6/(−2) = 3
Вершина параболы подходит по ОДЗ: Но поскольку концы отрезка нас не интересуют, считаем значение функции только
y min = y (3) = log 0,5 (6 · 3 − 3 2 − 5) =
Наибольшее и наименьшее значение функции
На практике довольно часто приходится использовать производную для того, чтобы вычислить самое большое и самое маленькое значение функции. Мы выполняем это действие тогда, когда выясняем, как минимизировать издержки, увеличить прибыль, рассчитать оптимальную нагрузку на производство и др., то есть в тех случаях, когда нужно определить оптимальное значение какого-либо параметра. Чтобы решить такие задачи верно, надо хорошо понимать, что такое наибольшее и наименьшее значение функции.
Обычно мы определяем эти значения в рамках некоторого интервала x , который может в свою очередь соответствовать всей области определения функции или ее части. Это может быть как отрезок [ a ; b ] , так и открытый интервал ( a ; b ) , ( a ; b ] , [ a ; b ) , бесконечный интервал ( a ; b ) , ( a ; b ] , [ a ; b ) либо бесконечный промежуток – ∞ ; a , ( – ∞ ; a ] , [ a ; + ∞ ) , ( – ∞ ; + ∞ ) .
В этом материале мы расскажем, как вычисляется наибольшее и наименьшее значение явно заданной функции с одной переменной y=f(x) y = f ( x ) .
Основные определения
Начнем, как всегда, с формулировки основных определений.
Наибольшее значение функции y = f ( x ) на некотором промежутке x – это значение m a x y = f ( x 0 ) x ∈ X , которое при любом значении x x ∈ X , x ≠ x 0 делает справедливым неравенство f ( x ) ≤ f ( x 0 ) .
Наименьшее значение функции y = f ( x ) на некотором промежутке x – это значение m i n x ∈ X y = f ( x 0 ) , которое при любом значении x ∈ X , x ≠ x 0 делает справедливым неравенство f(X f ( x ) ≥ f ( x 0 ) .
Данные определения являются достаточно очевидными. Еще проще можно сказать так: наибольшее значение функции – это ее самое большое значение на известном интервале при абсциссе x 0 , а наименьшее – это самое маленькое принимаемое значение на том же интервале при x 0 .
Стационарными точками называются такие значения аргумента функции, при которых ее производная обращается в 0 .
Зачем нам нужно знать, что такое стационарные точки? Для ответа на этот вопрос надо вспомнить теорему Ферма. Из нее следует, что стационарная точка – это такая точка, в которой находится экстремум дифференцируемой функции (т.е. ее локальный минимум или максимум). Следовательно, функция будет принимать наименьшее или наибольшее значение на некотором промежутке именно в одной из стационарных точек.
Еще функция может принимать наибольшее или наименьшее значение в тех точках, в которых сама функция является определенной, а ее первой производной не существует.
Первый вопрос, который возникает при изучении этой темы: во всех ли случаях мы может определить наибольшее или наименьшее значение функции на заданном отрезке? Нет, мы не можем этого сделать тогда, когда границы заданного промежутка будут совпадать с границами области определения, или если мы имеем дело с бесконечным интервалом. Бывает и так, что функция в заданном отрезке или на бесконечности будет принимать бесконечно малые или бесконечно большие значения. В этих случаях определить наибольшее и/или наименьшее значение не представляется возможным.
Более понятными эти моменты станут после изображения на графиках:
Наибольшее и наименьшее значение функции на отрезке
Первый рисунок показывает нам функцию, которая принимает наибольшее и наименьшее значения ( m a x y и m i n y ) в стационарных точках, расположенных на отрезке [ – 6 ; 6 ] .
Разберем подробно случай, указанный на втором графике. Изменим значение отрезка на [ 1 ; 6 ] и получим, что наибольшее значение функции будет достигаться в точке с абсциссой в правой границе интервала, а наименьшее – в стационарной точке.
На третьем рисунке абсциссы точек представляют собой граничные точки отрезка [ – 3 ; 2 ] . Они соответствуют наибольшему и наименьшему значению заданной функции.
Наибольшее и наименьшее значение функции на открытом интервале
Теперь посмотрим на четвертый рисунок. В нем функция принимает m a x y (наибольшее значение) и m i n y (наименьшее значение) в стационарных точках на открытом интервале ( – 6 ; 6 ) .
Если мы возьмем интервал [ 1 ; 6 ) , то можно сказать, что наименьшее значение функции на нем будет достигнуто в стационарной точке. Наибольшее значение нам будет неизвестно. Функция могла бы принять наибольшее значение при x , равном 6 , если бы x = 6 принадлежала интервалу. Именно этот случай нарисован на графике 5 .
На графике 6 наименьшее значение данная функция приобретает в правой границе интервала ( – 3 ; 2 ] , а о наибольшем значении мы не можем сделать определенных выводов.
Наибольшее и наименьшее значение функции на бесконечности
На рисунке 7 мы видим, что функция будет иметь m a x y в стационарной точке, имеющей абсциссу, равную 1 . Наименьшего значения функция достигнет на границе интервала с правой стороны. На минус бесконечности значения функции будут асимптотически приближаться к y = 3 .
Если мы возьмем интервал x ∈ 2 ; + ∞ , то увидим, что заданная функция не будет принимать на нем ни наименьшего, ни наибольшего значения. Если x стремится к 2 , то значения функции будут стремиться к минус бесконечности, поскольку прямая x = 2 – это вертикальная асимптота. Если же абсцисса стремится к плюс бесконечности, то значения функции будут асимптотически приближаться к y = 3 . Именно этот случай изображен на рисунке 8 .
Как найти наибольшее и наименьшее значение непрерывной функции на заданном отрезке
В этом пункте мы приведем последовательность действий, которую нужно выполнить для нахождения наибольшего или наименьшего значения функции на некотором отрезке.
- Для начала найдем область определения функции. Проверим, входит ли в нее заданный в условии отрезок.
- Теперь вычислим точки, содержащиеся в данном отрезке, в которых не существует первой производной. Чаще всего их можно встретить у функций, аргумент которых записан под знаком модуля, или у степенных функций, показатель которых является дробно рациональным числом.
- Далее выясним, какие стационарные точки попадут в заданный отрезок. Для этого надо вычислить производную функции, потом приравнять ее к 0 и решить получившееся в итоге уравнение, после чего выбрать подходящие корни. Если у нас не получится ни одной стационарной точки или они не будут попадать в заданный отрезок, то мы переходим к следующему шагу.
- Определим, какие значения будет принимать функция в заданных стационарных точках (если они есть), или в тех точках, в которых не существует первой производной (если они есть), либо же вычисляем значения для x = a и x = b .
- 5. У нас получился ряд значений функции, из которых теперь нужно выбрать самое больше и самое маленькое. Это и будут наибольшее и наименьшее значения функции, которые нам нужно найти.
Посмотрим, как правильно применить этот алгоритм при решении задач.
Условие: задана функция y = x 3 + 4 x 2 . Определите ее наибольшее и наименьшее значение на отрезках [ 1 ; 4 ] и [ – 4 ; – 1 ] .
Решение:
Начнем с нахождения области определения данной функции. В этом случае ей будет множество всех действительных чисел, кроме 0 . Иными словами, D ( y ) : x ∈ ( – ∞ ; 0 ) ∪ 0 ; + ∞ . Оба отрезка, заданных в условии, будут находиться внутри области определения.
Теперь вычисляем производную функции согласно правилу дифференцирования дроби:
y ‘ = x 3 + 4 x 2 ‘ = x 3 + 4 ‘ · x 2 – x 3 + 4 · x 2 ‘ x 4 = = 3 x 2 · x 2 – ( x 3 – 4 ) · 2 x x 4 = x 3 – 8 x 3
Мы узнали, что производная функции будет существовать во всех точках отрезков [ 1 ; 4 ] и [ – 4 ; – 1 ] .
Теперь нам надо определить стационарные точки функции. Сделаем это с помощью уравнения x 3 – 8 x 3 = 0 . У него есть только один действительный корень, равный 2 . Он будет стационарной точкой функции и попадет в первый отрезок [ 1 ; 4 ] .
Вычислим значения функции на концах первого отрезка и в данной точке, т.е. для x = 1 , x = 2 и x = 4 :
y ( 1 ) = 1 3 + 4 1 2 = 5 y ( 2 ) = 2 3 + 4 2 2 = 3 y ( 4 ) = 4 3 + 4 4 2 = 4 1 4
Мы получили, что наибольшее значение функции m a x y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 будет достигнуто при x = 1 , а наименьшее m i n y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 – при x = 2 .
Второй отрезок не включает в себя ни одной стационарной точки, поэтому нам надо вычислить значения функции только на концах заданного отрезка:
y ( – 1 ) = ( – 1 ) 3 + 4 ( – 1 ) 2 = 3
Значит, m a x y x ∈ [ – 4 ; – 1 ] = y ( – 1 ) = 3 , m i n y x ∈ [ – 4 ; – 1 ] = y ( – 4 ) = – 3 3 4 .
Ответ: Для отрезка [ 1 ; 4 ] – m a x y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 , m i n y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 , для отрезка [ – 4 ; – 1 ] – m a x y x ∈ [ – 4 ; – 1 ] = y ( – 1 ) = 3 , m i n y x ∈ [ – 4 ; – 1 ] = y ( – 4 ) = – 3 3 4 .
Как найти наибольшее и наименьшее значение непрерывной функции на открытом или бесконечном интервале
Перед тем как изучить данный способ, советуем вам повторить, как правильно вычислять односторонний предел и предел на бесконечности, а также узнать основные методы их нахождения. Чтобы найти наибольшее и/или наименьшее значение функции на открытом или бесконечном интервале, выполняем последовательно следующие действия.
- Для начала нужно проверить, будет ли заданный интервал являться подмножеством области определения данной функции.
- Определим все точки, которые содержатся в нужном интервале и в которых не существует первой производной. Обычно они бывают у функций, где аргумент заключен в знаке модуля, и у степенных функций с дробно рациональным показателем. Если же эти точки отсутствуют, то можно переходить к следующему шагу.
- Теперь определим, какие стационарные точки попадут в заданный промежуток. Сначала приравняем производную к 0 , решим уравнение и подберем подходящие корни. Если у нас нет ни одной стационарной точки или они не попадают в заданный интервал, то сразу переходим к дальнейшим действиям. Их определяет вид интервала.
- Если интервал имеет вид [ a ; b ) , то нам надо вычислить значение функции в точке x = a и односторонний предел lim x → b – 0 f ( x ) .
- Если интервал имеет вид ( a ; b ] , то нам надо вычислить значение функции в точке x = b и односторонний предел lim x → a + 0 f ( x ) .
- Если интервал имеет вид ( a ; b ) , то нам надо вычислить односторонние пределы lim x → b – 0 f ( x ) , lim x → a + 0 f ( x ) .
- Если интервал имеет вид [ a ; + ∞ ) , то надо вычислить значение в точке x = a и предел на плюс бесконечности lim x → + ∞ f ( x ) .
- Если интервал выглядит как ( – ∞ ; b ] , вычисляем значение в точке x = b и предел на минус бесконечности lim x → – ∞ f ( x ) .
- Если – ∞ ; b , то считаем односторонний предел lim x → b – 0 f ( x ) и предел на минус бесконечности lim x → – ∞ f ( x )
- Если же – ∞ ; + ∞ , то считаем пределы на минус и плюс бесконечности lim x → + ∞ f ( x ) , lim x → – ∞ f ( x ) .
- В конце нужно сделать вывод на основе полученных значений функции и пределов. Здесь возможно множество вариантов. Так, если односторонний предел равен минус бесконечности или плюс бесконечности, то сразу понятно, что о наименьшем и наибольшем значении функции сказать ничего нельзя. Ниже мы разберем один типичный пример. Подробные описания помогут вам понять, что к чему. При необходимости можно вернуться к рисункам 4 – 8 в первой части материала.
Пример 2
Условие: дана функция y = 3 e 1 x 2 + x – 6 – 4 . Вычислите ее наибольшее и наименьшее значение в интервалах – ∞ ; – 4 , – ∞ ; – 3 , ( – 3 ; 1 ] , ( – 3 ; 2 ) , [ 1 ; 2 ) , 2 ; + ∞ , [ 4 ; + ∞ ) .
Решение
Первым делом находим область определения функции. В знаменателе дроби стоит квадратный трехчлен, который не должен обращаться в 0 :
x 2 + x – 6 = 0 D = 1 2 – 4 · 1 · ( – 6 ) = 25 x 1 = – 1 – 5 2 = – 3 x 2 = – 1 + 5 2 = 2 ⇒ D ( y ) : x ∈ ( – ∞ ; – 3 ) ∪ ( – 3 ; 2 ) ∪ ( 2 ; + ∞ )
Мы получили область определения функции, к которой принадлежат все указанные в условии интервалы.
Теперь выполним дифференцирование функции и получим:
y ‘ = 3 e 1 x 2 + x – 6 – 4 ‘ = 3 · e 1 x 2 + x – 6 ‘ = 3 · e 1 x 2 + x – 6 · 1 x 2 + x – 6 ‘ = = 3 · e 1 x 2 + x – 6 · 1 ‘ · x 2 + x – 6 – 1 · x 2 + x – 6 ‘ ( x 2 + x – 6 ) 2 = – 3 · ( 2 x + 1 ) · e 1 x 2 + x – 6 x 2 + x – 6 2
Следовательно, производные функции существуют на всей области ее определения.
Перейдем к нахождению стационарных точек. Производная функции обращается в 0 при x = – 1 2 . Это стационарная точка, которая находится в интервалах ( – 3 ; 1 ] и ( – 3 ; 2 ) .
Вычислим значение функции при x = – 4 для промежутка ( – ∞ ; – 4 ] , а также предел на минус бесконечности:
y ( – 4 ) = 3 e 1 ( – 4 ) 2 + ( – 4 ) – 6 – 4 = 3 e 1 6 – 4 ≈ – 0 . 456 lim x → – ∞ 3 e 1 x 2 + x – 6 = 3 e 0 – 4 = – 1
Поскольку 3 e 1 6 – 4 > – 1 , значит, m a x y x ∈ ( – ∞ ; – 4 ] = y ( – 4 ) = 3 e 1 6 – 4 . Это не дает нам возможности однозначно определить наименьшее значение функции. Мы можем только сделать вывод, что внизу есть ограничение – 1 , поскольку именно к этому значению функция приближается асимптотически на минус бесконечности.
Особенностью второго интервала является то, что в нем нет ни одной стационарной точки и ни одной строгой границы. Следовательно, ни наибольшего, ни наименьшего значения функции мы вычислить не сможем. Определив предел на минус бесконечности и при стремлении аргумента к – 3 с левой стороны, мы получим только интервал значений:
lim x → – 3 – 0 3 e 1 x 2 + x – 6 – 4 = lim x → – 3 – 0 3 e 1 ( x + 3 ) ( x – 3 ) – 4 = 3 e 1 ( – 3 – 0 + 3 ) ( – 3 – 0 – 2 ) – 4 = = 3 e 1 ( + 0 ) – 4 = 3 e + ∞ – 4 = + ∞ lim x → – ∞ 3 e 1 x 2 + x – 6 – 4 = 3 e 0 – 4 = – 1
Значит, значения функции будут расположены в интервале – 1 ; + ∞
Чтобы найти наибольшее значение функции в третьем промежутке, определим ее значение в стационарной точке x = – 1 2 , если x = 1 . Также нам надо будет знать односторонний предел для того случая, когда аргумент стремится к – 3 с правой стороны:
y – 1 2 = 3 e 1 – 1 2 2 + – 1 2 – 6 – 4 = 3 e 4 25 – 4 ≈ – 1 . 444 y ( 1 ) = 3 e 1 1 2 + 1 – 6 – 4 ≈ – 1 . 644 lim x → – 3 + 0 3 e 1 x 2 + x – 6 – 4 = lim x → – 3 + 0 3 e 1 ( x + 3 ) ( x – 2 ) – 4 = 3 e 1 – 3 + 0 + 3 ( – 3 + 0 – 2 ) – 4 = = 3 e 1 ( – 0 ) – 4 = 3 e – ∞ – 4 = 3 · 0 – 4 = – 4
У нас получилось, что наибольшее значение функция примет в стационарной точке m a x y x ∈ ( 3 ; 1 ] = y – 1 2 = 3 e – 4 25 – 4 . Что касается наименьшего значения, то его мы не можем определить. Все, что нам известно, – это наличие ограничения снизу до – 4 .
Для интервала ( – 3 ; 2 ) возьмем результаты предыдущего вычисления и еще раз подсчитаем, чему равен односторонний предел при стремлении к 2 с левой стороны:
y – 1 2 = 3 e 1 – 1 2 2 + – 1 2 – 6 – 4 = 3 e – 4 25 – 4 ≈ – 1 . 444 lim x → – 3 + 0 3 e 1 x 2 + x – 6 – 4 = – 4 lim x → 2 – 0 3 e 1 x 2 + x – 6 – 4 = lim x → – 3 + 0 3 e 1 ( x + 3 ) ( x – 2 ) – 4 = 3 e 1 ( 2 – 0 + 3 ) ( 2 – 0 – 2 ) – 4 = = 3 e 1 – 0 – 4 = 3 e – ∞ – 4 = 3 · 0 – 4 = – 4
Значит, m a x y x ∈ ( – 3 ; 2 ) = y – 1 2 = 3 e – 4 25 – 4 , а наименьшее значение определить невозможно, и значения функции ограничены снизу числом – 4 .
Исходя из того, что у нас получилось в двух предыдущих вычислениях, мы можем утверждать, что на интервале [ 1 ; 2 ) наибольшее значение функция примет при x = 1 , а найти наименьшее невозможно.
На промежутке ( 2 ; + ∞ ) функция не достигнет ни наибольшего, ни наименьшего значения, т.е. она будет принимать значения из промежутка – 1 ; + ∞ .
lim x → 2 + 0 3 e 1 x 2 + x – 6 – 4 = lim x → – 3 + 0 3 e 1 ( x + 3 ) ( x – 2 ) – 4 = 3 e 1 ( 2 + 0 + 3 ) ( 2 + 0 – 2 ) – 4 = = 3 e 1 ( + 0 ) – 4 = 3 e + ∞ – 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x – 6 – 4 = 3 e 0 – 4 = – 1
Вычислив, чему будет равно значение функции при x = 4 , выясним, что m a x y x ∈ [ 4 ; + ∞ ) = y ( 4 ) = 3 e 1 14 – 4 , и заданная функция на плюс бесконечности будет асимптотически приближаться к прямой y = – 1 .
Сопоставим то, что у нас получилось в каждом вычислении, с графиком заданной функции. На рисунке асимптоты показаны пунктиром.
Это все, что мы хотели рассказать о нахождении наибольшего и наименьшего значения функции. Те последовательности действий, которые мы привели, помогут сделать необходимые вычисления максимально быстро и просто. Но помните, что зачастую бывает полезно сначала выяснить, на каких промежутках функция будет убывать, а на каких возрастать, после чего можно делать дальнейшие выводы. Так можно более точно определить наибольшее и наименьшее значение функции и обосновать полученные результаты.
[spoiler title=”источники:”]
http://www.berdov.com/ege/extremum/other_way/
http://zaochnik.com/spravochnik/matematika/funktsii/naibolshee-i-naimenshee-znachenie-funktsii/
[/spoiler]
Вопросы
занятия:
·
рассмотреть
применение производных для отыскания наибольшего и наименьшего значений функции
на промежутке.
Материал
урока.
Пусть
у нас есть график некоторой функции f(x) на промежутке [a;
b]. По графику легко найти наибольшее
и наименьшее значения функции на промежутке. Иногда наибольшее и наименьшее
значения можно отыскать и без построения графика.
Например,
А
как же быть в других случаях, когда наличие наибольшего и наименьшего значения
функции на промежутке не так очевидно? Можно, конечно, каждый раз строить
график функции и с помощью него находить игрек наибольшее и наименьшее. Но это
не очень удобно и долго.
Для
того, чтобы избежать построения графика функции воспользуемся следующими утверждениями.
1.
Если функция непрерывна на отрезке, то она достигает на нем и своего
наибольшего, и своего наименьшего значений.
Справедливость
данного утверждения мы не будем доказывать.
2.
Наибольшего и наименьшего значений непрерывная функция может достигать как на
концах отрезка, так и внутри него.
Это
утверждение можно проиллюстрировать графиками функций.
Видно,
что на первом графике наибольшее и наименьшее значения достигаются во
внутренних точках. На втором графике наибольшее значение достигается в конце
промежутка, а наименьшее значение достигается во внутренней точке.
3.
Если наибольшее или наименьшее значение достигается внутри отрезка, то только в
стационарной или критической точке.
Для
доказательства данного утверждения достаточно вспомнить, что в данном случае
идёт речь об экстремумах функции, а экстремум достигается только в стационарной
или критической точке.
Давайте
сформулируем алгоритм нахождения наименьшего и наибольшего значений непрерывной
функции игрек равно f(x) на отрезке [a;
b].
Рассмотрим несколько примеров.
Пример.
Рассмотрим ещё
один пример.
Пример.
Как находить наибольшее и наименьшее
значение функции на отрезке мы разобрались. А что же делать, если надо найти
эти значения на незамкнутом интервале? Там же невозможно найти значения на
концах промежутка. Можно конечно построить график функции, но тогда мы получим
приближенные значения и опять же это долго.
Для решения таких задач удобно пользоваться
следующей теоремой.
Теорема.
Пусть функция y = f(x)
непрерывна на промежутке X
и имеет внутри него единственную стационарную или критическую точку x
= x0.
Тогда:
а) если x
= x0
− точка максимума, то yнаиб
= f(x0);
б) если x
= x0
− точка минимума, то yнаим
= f(x0).
Давайте геометрически проиллюстрируем эту
теорему.
Рассмотрим несколько примеров.
Пример.
Рассмотрим ещё один пример.
Пример.
ГДЗ и решебники
вип уровня
- ГДЗ
- 7 класс
- Алгебра
- Мордкович
- Номер 37.24
Условие
Найдите наименьшее значение функции у = x^2 на заданном луче:
а) [-3; +оо);
б) (-оо; -2];
в) (-оо; 1];
г) [1; + оо).