28 апреля 2012
По определению, показательная функция — это выражение вида y = ax, где a > 0. Но в задаче B15 встречаются только функции вида y = ex. В крайнем случае, y = ekx + b. Причина в том, что производные этих функций считаются очень легко:
(ex)’ = ex;
(ekx + b)’ = k · ekx + b.
Как видите, если в показателе стоит просто переменная x, ничего не меняется. А если там будет линейное выражение вида kx + b, то спереди добавляется множитель k. Эта формула — частный случай производной сложной функции.
Задачи на вычисление наибольшего/наименьшего значения
Все задачи B15 с показательной функцией решаются по стандартной схеме — см. «Общая схема решения задач B15». Но если требуется найти наименьше/наибольшее значение функции, есть одна фишка:
Показатель должен быть равен нулю. Потому что e0 = 1 — нормальное число, его можно записать в ответ. В отличие от чисел e1, e2, которые вообще не представимы в виде десятичной дроби.
Данное замечание реально сокращает объем вычислений. Аналогичное правило есть у логарифмов — см. «Как считать логарифмы еще быстрее». И это вполне логично, поскольку логарифмы и показательные функции — родственные объекты.
А теперь разберем конкретные задачи.
Задача. Найдите наименьшее значение функции на отрезке [−1; 5]:
y = (x2 − 5x + 5)ex − 3
Сначала находим производную и раскладываем ее на множители:
y’ = ((x2 − 5x + 5)ex − 3)’ = … = (x2 − 3x)ex − 3 = x(x − 3)ex − 3
Затем приравниваем полученное выражение к нулю и находим корни:
x(x − 3)ex − 3 = 0;
x1 = 0; x2 = 3.
Оба корня принадлежат отрезку [−1; 5]. Итого получаем четыре точки: два корня и два конца отрезка. Осталось вычислить значение функции в этих точках:
y(−1) = ((−1)2 − 5 · (−1) + 5)e−1 − 3 = … = 11e−4;
y(0) = (02 − 5 · 0 + 5)e0 − 3 = … = 5e−3;
y(3) = (32 − 5 · 3 + 5)e3 − 3 = … = −1;
y(5) = (52 − 5 · 5 + 5)e5 − 3 = … = 5e2.
Заметим, что из этих четырех чисел в бланк можно записать только y = −1. Кроме того, это единственное отрицательное число. Следовательно, это число и будет наименьшим.
Задача. Найдите наибольшее значение функции на отрезке [0; 6]:
y = (2x − 7)e8 − 2 · x
Как и в прошлый раз, вычисляем производную функции и раскладываем ее на множители:
y’ = (y = (2x − 7)e8 − 2 · x)’ = … = (16 − 4x)e8 − 2 · x = 4(4 − x)e8 − 2 · x
Приравниваем производную к нулю и находим корни:
y’ = 0;
4(4 − x)e8 − 2 · x = 0;
x = 4.
Корень x = 4 принадлежит отрезку [0; 6]. Мы ищем наибольшее значение, поэтому подставляем этот корень, а также концы отрезка в исходную функцию. Имеем:
y(0) = (2 · 0 − 7)e8 − 2 · 0 = … = −7e8;
y(4) = (2 · 4 − 7)e8 − 2 · 4 = … = 1;
y(6) = (2 · 6 − 7)e8 − 2 · 6 = … = 5e−4.
Итак, ответом может быть только число y = 1.
Задачи на вычисление точек максимума/минимума
В задачах на точки максимума/минимума нельзя применять приведенное выше правило, поэтому считаем все по стандартной схеме.
Задача. Найдите точку минимума функции:
y = (x − 12)ex − 11
В первую очередь считаем производную:
y’ = (y = (x − 12)ex − 11)’ =
= (x − 12)’ · ex − 11 + (x − 12) · (ex − 11)’ =
= 1 · ex − 11 + (x − 12)ex − 11 =
= (1 + x − 12)ex − 11 =
= (x − 11)ex − 11
Приравниваем производную к нулю:
y’ = 0;
(x − 11)ex − 11 = 0;
x − 11 = 0;
x = 11.
Множитель ex − 11 никогда не равен нулю, поэтому мы избавились от него. Осталось начертить координатную ось и расставить знаки производной:
Итак, в точке x = 11 знак производной меняется с минуса на плюс. Считаем всегда в направлении оси — слева направо. Значит, x = 11 — это точка минимума.
Задача. Найдите точку максимума функции:
y = (2x2 − 34x + 34)e6 − x
Снова считаем производную:
y’ = ((2x2 − 34x + 34)e6 − x)’ =
= (2x2 − 34x + 34)’ · e6 − x + (2x2 − 34x + 34) · (e6 − x)’ =
= (4x − 34)e6 − x + (2x2 − 34x + 34) · (−1) · e6 − x
Напомню, что производная сложной показательной функции считается по формуле:
(ekx + b)’ = k · ekx + b;
(e6 − x)’ = (−1) · e6 − x.
Производная получилась довольно навороченная. Разложим ее на множители, для этого вынесем e6 − x за скобку. Имеем:
(4x − 34)e6 − x + (2x2 − 34x + 34) · (−1) · e6 − x =
= e6 − x · (4x − 34 − 2x2 + 34x − 34) =
= e6 − x · (−2x2 + 38x − 68)
Приравниваем полученное выражение к нулю:
e6 − x · (−2x2 + 38x − 68) = 0;
−2x2 + 38x − 68 = 0;
x2 − 19x + 34 = 0;
…
x1 = 17; x2 = 2.
Множитель e6 − x снова можно безболезненно убрать, поскольку он никогда не равен нулю. Осталось отметить полученные точки и знаки производной на координатной прямой:
Обратите внимание: на рисунке отмечены знаки производной функции: y = e6 − x · (−2x2 + 38x − 68) — а вовсе не многочлена x2 − 19x + 34, как думают некоторые ученики. В скобках стоит квадратичная функция, ее график — парабола ветвями вниз, поскольку a = −2 < 0.
В точке x = 17 знак производной меняется с плюса на минус. Значит, это точка максимума, что и требовалось найти.
Смотрите также:
- Задача B15: частный случай при работе с квадратичной функцией
- Специфика работы с логарифмами в задаче B15
- Тест к уроку «Что такое числовая дробь» (легкий)
- Типичные задачи B12 с функциями
- Однородные тригонометрические уравнения: общая схема решения
- ЕГЭ 2022, задание 6. Касательная и уравнение с параметром
СДАМ ГИА:
РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
≡ Математика
Базовый уровень
Профильный уровень
Информатика
Русский язык
Английский язык
Немецкий язык
Французский язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
Сайты, меню, вход, новости
СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ
Об экзамене
Каталог заданий
Варианты
Ученику
Учителю
Школа
Эксперту
Справочник
Карточки
Теория
Сказать спасибо
Вопрос — ответ
Чужой компьютер
Зарегистрироваться
Восстановить пароль
Войти через ВКонтакте
Играть в ЕГЭ-игрушку
Новости
1 мая
Новый сервис: можно исправить ошибки!
29 апреля
Разместили актуальные шкалы ЕГЭ — 2023
24 апреля
Учителю: обновленный классный журнал
7 апреля
Новый сервис: ссылка, чтобы записаться к учителю
30 марта
Решения досрочных ЕГЭ по математике
31 октября
Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР
НАШИ БОТЫ
Все новости
ЧУЖОЕ НЕ БРАТЬ!
Экзамер из Таганрога
10 апреля
Предприниматель Щеголихин скопировал сайт Решу ЕГЭ
Наша группа
Каталог заданий.
Исследование показательных и логарифмических функций
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 11 № 26714
i
Найдите наименьшее значение функции на отрезке [−2,5; 0].
Аналоги к заданию № 26714: 3847 71037 3849 … Все
Решение
·
1 комментарий
·
Видеокурс
·
Помощь
2
Тип 11 № 26715
i
Найдите наибольшее значение функции на отрезке [−4,5; 0].
Аналоги к заданию № 26715: 3865 71087 3867 … Все
Источник: Пробный ЕГЭ по математике, Санкт-Петербург, 19.03.2019. Вариант 2
Решение
·
Видеокурс
·
Помощь
3
Тип 11 № 26716
i
Найдите наименьшее значение функции на отрезке
Аналоги к заданию № 26716: 3885 71117 71137 … Все
Решение
·
1 комментарий
·
Видеокурс
·
Помощь
4
Тип 11 № 26717
i
Найдите наибольшее значение функции на отрезке
Аналоги к заданию № 26717: 3905 71187 3907 … Все
Решение
·
Видеокурс
·
Помощь
5
Тип 11 № 26718
i
Найдите наименьшее значение функции на отрезке
Аналоги к заданию № 26718: 3925 71217 513682 … Все
Решение
·
1 комментарий
·
Видеокурс
·
Помощь
Пройти тестирование по этим заданиям
О проекте · Редакция · Правовая информация · О рекламе
© Гущин Д. Д., 2011—2023
Содержание:
Рассмотрим выражение
Определение:
Показательной функцией называется функция вида где а — постоянная,
Область определения показательной функции — это естественная область определения выражения т. е. множество всех действительных чисел.
Графики некоторых показательных функций при а > 1 изображены на рисунке 23, при 0< а< 1 — на рисунке 24. Как получаются изображения таких графиков?
Например, чтобы изобразить график функции придадим несколько значений аргументу, вычислим соответствующие значения функции и внесем их в таблицу:
Вычислив приближенные значения у с точностью до 0,1, получим следующую таблицу:
Отметим точки с указанными координатами на координатной плоскости Оху (рис. 25) и соединим эти точки плавной непрерывной линией.
Полученную кривую можно рассматривать как изображение графика функции (рис. 26).
График функции расположен над осью Ох и пересекает ось Оу в точке Заметим еще, что когда значения аргумента х уменьшаются, то график этой функции «прижимается» к оси Ох, а когда значения аргумента х увеличиваются, то график «круто поднимается» вверх.
Аналогично для любой функции (рис. 27).
Изобразим теперь график функции Для этого придадим несколько значений аргументу, вычислим соответствующие значения функции и внесем их в таблицу:
Вычислив приближенные значения у с точностью до 0,1. получим следующую таблицу:
Отметим точки с указанными координатами на координатной плоскости Оху (рис. 28) и соединим эти точки плавной непрерывной линией.
Полученную кривую можно рассматривать как изображение графика функции (рис. 29).
График функции расположен над осью Ох и пересекает ось Оу в точке Заметим еще, что когда значения аргумента х увеличиваются, то график этой функции «прижимается» к оси Ох, а когда значения аргумента х уменьшаются, то график «круто поднимается» вверх.
Аналогично для любой функции (рис. 30).
Теорема (о свойствах показательной функции)
- Областью определения показательной функции является множество R всех действительных чисел.
- Множеством (областью) значений показательной функции является интервал
- Показательная функция наименьшего и наибольшего значений не имеет.
- График показательной функции пересекается с осью ординат в точке (0; 1) и не пересекается с осью абсцисс.
- Показательная функция не имеет нулей.
- Показательная функция принимает положительные значения на всей области определения; все точки ее графика лежат выше оси Ох в I и II координатных углах.
- Показательная функция не является ни четной, ни нечетной.
- При а > 1 показательная функция возрастает на всей области определения. При показательная функция убывает на всей области определения.
- Показательная функция не является периодической.
Свойства, указанные в этой теореме, мы примем без доказательства.
Изображение графика показательной функции позволяет наглядно представить эти свойства.
Множество (область) значений показательной функции — это проекция ее графика на ось Оу, а на рисунках 27 и 30 видно, что эта проекция есть интервал на оси Оу. Это значит, что для любой точки принадлежащей этому интервалу, найдется такая точка на оси Ох, что (свойство 2).
Множество (область) значений показательной функции — это интервал а в этом интервале нет ни наименьшего числа, ни наибольшего (свойство 3).
График показательной функции проходит через точку и лежит в верхней полуплоскости (свойства 4, 5, 6).
График показательной функции не симметричен относительно оси ординат, поэтому она не является четной; график показательной функции не симметричен относительно начала координат, поэтому она не является нечетной (свойство 7).
На рисунке 27 видно, что при а > 1 показательная функция возрастает, а на рисунке 30 видно, что при 0 < а < 1 показательная функция убывает (свойство 8).
На графике показательной функции нет точек с одинаковыми ординатами, поэтому она не является периодической (свойство 9).
К графику показательной функции можно провести невертикальную касательную в любой его точке, в том числе и в точке (напомним, что это означает наличие производной функции в этой точке).
Если то угол который образует такая касательная с осью Ох, острый. Например, если а = 2, то (рис. 31, а), а если а = 3, то (рис. 31, б).
Существует основание 2 < а < 3 такой единственной показательной функции, что касательная, проведенная к ее графику в точке (0; 1), образует с осью Ох угол (рис. 31, в).
Основанием показательной функции с таким свойством является число, которое было открыто еще в XVII в. Джоном Непером (его портрет — на обложке) и названо неперовым числом; оно приближенно равно 2,7182818284. С XVIII в. неперово число стали обозначать буквой е в честь великого Леонарда Эйлера. В 1766 г. Ламбертом (с помощью приема Эйлера) было доказано, что число е, как и число иррационально. Числа очень важны для математики, они входят в большое число формул. В российских гимназиях для запоминания приближенного значения числа е использовали такое двустишие:
«Помнить е — закон простой: Два, семь, дважды Лев Толстой», Поскольку 1828 — год рождения великого русского писателя Л. Н. Толстого.
Пример:
Указать наибольшее и наименьшее значения функции (если они существуют):
Решение:
а) Поскольку 3 — положительное число больше 1, то большему значению показателя соответствует и большее значение степени Но выражение при х = 0 имеет наименьшее значение, а наибольшего значения не имеет. Значит, при любых значениях х верно неравенство
б) Поскольку 0,7 — положительное число меньше 1, то большему значению показателя sin х соответствует меньшее значение степени Значения выражения sin х при любых значениях х удовлетворяют неравенству
Таким образом, при любых значениях х верно неравенство
Значит, верно и неравенство
Ответ: а) 1 — наименьшее значение функции наибольшего значения нет;
б) наименьшее значение, а наибольшее значение функции
Понятие показательной функции
Показательной функцией называется функция, заданная формулой
где — некоторое действительное число, и .
Теорема 1.
Областью определения показательной функции является множество всех действительных чисел, а областью значений — множество всех положительных действительных чисел.
Доказательство:
Пусть . Тогда, по свойству (10) степени с действительным показателем из параграфа 6, выражение-степень имеет значение при любом значении переменной , а это означает, что областью определения показательной функции является множество всех действительных чисел.
Поскольку , то, по свойству (11) степени с действительным показателем из параграфа 6, значение выражения положительно при всех значениях переменной . В курсе математического анализа доказывается, что при уравнение имеет единственный корень. Это означает, что каждое положительное число можно получить как значение выражения , иными словами, областью значений показательной функции является множество всех положительных действительных чисел.
Теорема 2.
Показательная функция на множестве всех действительных чисел при является возрастающей, а при — убывающей.
Доказательство:
Сравним значения выражений и :
Пусть , т. е. . Если , то, по свойству (12) степени с действительным показателем из параграфа 9, из условия следует, что , а потому и, значит, , так как по свойству (11) из параграфа 6. Получили, что , или . Это неравенство вместе с определением возрастающей функции позволяет утверждать, что функция является возрастающей при .
Если , то и по уже доказанному , или и потому . Это неравенство с учетом определения убывающей функции позволяет утверждать, что при функция является убывающей.
Следствие 1.
Равные степени с одним и тем же положительным и не равным единице основанием имеют равные показатели:
Действительно, если допустить, что , то при по теореме 2 получим, что , а при — что . Но оба эти неравенства противоречат условию.
Так же приводит к противоречию с условием и допущение .
Теорема 3.
Графики всех показательных функций проходят через точку (0; 1).
Для доказательства теоремы достаточно заметить, что при любом положительном истинно равенство .
Построим график функции . Для этого нанесем на координатную плоскость некоторые точки этого графика, составив предварительно таблицу значений функции.
Используя построенные точки и установленные свойства показательной функции, получим график функции , который представлен на рисунке 153. Обратим внимание на то, что график функции при уменьшении отрицательных значений переменной быстро приближается к оси абсцисс, но остается выше нее.
Для построения графика функции учтем, что , и используем утверждение о том, что график функции получается из графика функции симметричным отражением относительно оси ординат. Указанное преобразование приведено на рисунке 154. Обращаем внимание на то, что график функции при увеличении положительных значений переменной быстро приближается к оси абсцисс, но не пересекает ее.
Теорема 4.
Если , то при и при .
Доказательство:
Пусть , тогда . Сравним значения выражений и :
Пусть , тогда , так как . Значит, , а потому , так как . Значит, , или .
Пусть , тогда и, значит, . Поскольку , то . Значит, , или .
В соответствии с теоремой 4 при увеличении основания график функции на промежутке будет располагаться более близко к оси абсцисс, а на промежутке — более далеко.
График любой показательной функции с основанием , большим единицы, похож на график функции . На рисунке 155 представлены графики функций и .
График любой показательной функции с положительным основанием , меньшим единицы, похож на график функции.
На рисунке 156 приведены графики функций и .
Обратим внимание на ограничения на основание степени показательной функции . Первое ограничение вызвано тем, что значение выражения определено при всех значениях показателя только при положительном основании. Второе ограничение объясняется тем, что при функция принимает вид , т. е. все значения такой функции равны единице (рис. 157), и такая функция не вызывает особого интереса.
Показательная функция описывает ряд физических процессов. Например, радиоактивный распад определяется формулой , где и — массы радиоактивного вещества в начальный момент времени 0 и в момент времени , — период полураспада, т. е. промежуток времени, за который количество радиоактивного вещества уменьшается в два раза. С помощью показательной функции описывается зависимость от высоты , где — давление на уровне моря, — определенная константа; ток самоиндукции в катушке после подачи постоянного напряжения.
Понятие показательной функции и ее график:
Определение: показательной функцией называется функция вида:
График показательной функции (экспонента):
Свойства показательной функции:
1. Область определения: 2. Область значений: 3. Функция ни четная, ни нечетная 4. Точки пересечения с осями координат: с осью , с осью 5. Промежутки возрастания и убывания:
функция возрастает на всей области определения
функция убывает на всей области определения
6. Промежутки знакопостоянства: 7. Наибольшего и наименьшего значений функция не имеет. 8. Для любых действительных значений выполняются равенства:
Объяснение и обоснование:
Показательной функцией. называется функция вида Например, — показательные функции. Отметим, что функция вида существует и при
Тогда то есть при всех значениях Но в этом случае функция не называется показательной. (График функции — прямая, изображенная на рис. 13.1.) Поскольку при выражение определено при всех действительных значениях то областью определения показательной функции являю тся все действительные числа. Попытаемся сначала построить графики некоторых показательных функций, например и «по точкам», а затем перейдем к характеристике общих свойств показательной функции.
Составим таблицу нескольких значений функции
Построим на координатной плоскости соответствующие точки (рис. 13.2, а) и соединим их плавной линией, которую естественно считать графиком функции у = 2′ (рис. 13.2, б).
Как видно из графика, — возрастающая функция, которая принимает все значения на промежутке Аналогично составим таблицу некоторых значений функции
Построим на координатной плоскости соответствующие точки (рис. 13.3, а) и соединим их плавной линией, которую естественно считать графиком функции (рис. 13.3, б). Как видно из графика, – убывающая функция, которая принимает все значения на промежутке
Заметим, что график функции можно получить из графика функции с помощью геометрических преобразований. Действительно Таким образом, график функции симметричен графику функции относительно оси , и поэтому, если функция является возрастающей, функция обязательно будет убывающей.
Оказывается, что всегда при график функции похож на график функции а при — на график функции (рис. 13.4). График показательной функции называется экспонентой.
Свойства показательной функции
Как отмечалось выше, областью определения показательной функции являются все действительные числа: В курсе математического анализа доказывается, что областью значений функции является множество всех положительных чисел, иначе говоря, функция принимает только положительные значения, причем любое положительное число является значением функции, то есть
Это означает, что график показательной функции всегда расположен выше оси и любая прямая, которая параллельна оси и находится выше нее, пересекает этот график.
При функция возрастает на всей области определения, а при функция убывает на всей области определения. Обоснование области значений и промежутков возрастания и убывания показательной функции проводится так: эти свойства проверяют последовательно для натуральных, целых, рациональных показателей, а затем уже переносятся на любые действительные показатели.
Следует учесть, что при введении понятия степени с иррациональным показателем мы уже пользовались возрастанием функции, когда проводили такие рассуждения: поскольку Таким образом, в нашей системе изложения материала мы можем обосновать эти свойства только для рациональных показателей, но, учитывая громоздкость таких обоснований, примем их без доказательства. Остальные свойства показательной функции легко обосновать с помощью этих свойств.
Функция не является ни четной, ни нечетной, поскольку (по определению ). Также поскольку (по свойству 1),
График и точки пересечения с осями координат
График функции пересекает ось в точке Действительно, на оси значение тогда График показательной функции не пересекает ось так как на оси но значение не принадлежит области значений функции ( только при хотя по определению ). Промежутки знакопостоянства. при всех действительных значениях поскольку при Отметим еще одно свойство показательной функции. График функции пересекает ось в точке Учитывая возрастание функции при и убывание при получаем следующие соотношения между значениями функции и соответствующими значениями аргумента:
Значение функции
Значение аргумента при
Значение аргумента при
Значение функции
Значение аргумента при
Значение аргумента при
Функция не имеет ни наибольшего, ни наименьшего значений, поскольку ее область значений — промежуток не содержащий ни наименьшего, ни наибольшего числа.
Свойства показательной функции:
Рассмотрим одно из характерных свойств показательной функции, выделяющее ее из ряда других функций: если то
при любых действительных значениях аргументов и выполняется равенство
Действительно, В курсах высшей математики это свойство (вместе со строгой монотонностью) является основой аксиоматического определения показательной функции. В этом случае дается определение, что показательная функция — это строго монотонная функция, определенная на всей числовой оси, которая удовлетворяет функциональному уравнению а затем обосновывается, что функция совпадает с функцией
Кроме общих свойств показательной функции при и при отметим некоторые особенности поведения графиков показательных функций при конкретных значениях Так, на рис. 13.5 приведены графики показательных функций при значениях основания
Сравнивая эти графики, можно сделать вывод: чем больше основание тем круче поднимается график функции при движении точки вправо и тем. быстрее график приближается к оси при движении точки влево. Аналогично, чем меньше основание тем круче поднимается график функции при движении точки влево и тем быстрее график приближается к оси при движении точки вправо.
Заканчивая разговор о показательной функции, укажем причины, по которым не рассматриваются показательные функции с отрицательным или нулевым основанием.
Отметим, что выражение можно рассматривать и при и при Но в этих случаях оно уже будет определено не при всех действительных значениях как показательная функция В частности, выражение определено при всех (и тогда ), а выражение — при всех целых значениях (например,
По этой причине не берут основание показательной функции (получаем постоянную функцию при) и (получаем функцию, определенную только при ). Приведенные рассуждения относительно целесообразности выбора основания показательной функции не влияют на область допустимых значений выражения (например, как мы видели выше, пара значений принадлежит его ОДЗ, и это приходится учитывать при решении некоторых задач).
Примеры решения задач:
Пример №1
Сравните значения выражений:
Решение:
1) Функция убывающая поэтому из неравенства получаем 2) Функция возрастающая поэтому из неравенства получаем
Комментарий:
Учтем, что функция при является возрастающей, а при — убывающей. Поэтому сначала сравним данное основание с единицей, а затем, сравнивая аргументы, сделаем вывод о соотношении между данными значениями функции.
Пример №2
Сравните с единицей положительное основание , если известно, что выполняется неравенство:
Решение:
1) Поскольку и по условию то функция — убывающая, следовательно, 2) Так как и по условию то функция — возрастающая, поэтому
Комментарий:
В каждом задании данные выражения — это два значения функции . Проанализируем, какое значение функции соответствует большему значению аргумента (для этого сначала сравним аргументы). Если большему значению аргумента соответствует большее значение функции, то функция является возрастающей и Если большему значению аргумента соответствует меньшее значение функции, то функция — убывающая, тогда
Пример №3
Постройте график функции:
Комментарий:
При значение следовательно, график функции всегда расположен выше оси Он пересекает ось в точке При показательная функция возрастает, а значит, ее графиком будет кривая (экспонента), точки которой при увеличении аргумента поднимаются.
При показательная функция убывает, поэтому, графиком функции будет кривая, точки которой при увеличении аргумента опускаются. (Напомним, что, опускаясь, график приближается к оси но никогда ее не пересекает.) Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №4
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Комментарий:
оставим план построения графика данной функции с помощью последовательных геометрических преобразований.
Решение показательных уравнений и неравенств
Простейшие показательные уравнения
1. Основные формулы и соотношения
График функции
возрастает;
убывает;
постоянная.
2. Схема равносильных преобразований простейших показательных уравнений
Ориентир:
Пример:
Ответ: -1.
Корней нет (поскольку для всех )
Ответ: корней нет.
3. Приведение некоторых показательных уравнений к простейшим
Ориентир:
Примеры:
1)
Ответ:
2)
Ответ: 2.
Объяснение и обоснование:
Показательными уравнениями обычно называют уравнения, в которых переменная входит в показатель степени (а основание этой степени не содержит переменной).
Рассмотрим простейшее показательное уравнение вида
Чтобы его найти, достаточно представить в виде Очевидно, что является корнем уравнения
Графически это проиллюстрировано на рис. 14.1.
Чтобы решить, например, уравнение достаточно представить его в виде и записать единственный корень —
Если то уравнение (при ) корней не имеет, так как всегда больше нуля. (На графиках, приведенных на рис. 14.2, прямая не пересекает график функции при ) Например, уравнение не имеет корней.
Обобщая приведенные выше рассуждения относительно решения простейших показательных уравнений, отметим, что при и уравнение вида равносильно уравнению
Коротко это утверждение можно записать так: при
Чтобы обосновать равносильность этих уравнений, достаточно заметить, что равенства (2) и (3) могут быть верными только одновременно, поскольку функция является строго монотонной и каждое свое значение принимает только при одном значении аргумента (то есть из равенства степеней (2) обязательно вытекает равенство показателей (3)). Таким образом, все корни уравнения (2) (которые обращают это уравнение в верное равенство) будут корнями и уравнения (3), и наоборот, все корни уравнения (3) будут корнями уравнения (2).
А это и означает, что уравнения (2) и (3) равносильны.
В простейших случаях при решении показательных уравнений пытаются с помощью основных формул действий над степенями привести (если это возможно) данное уравнение к виду
Для решения более сложных показательных уравнений чаще всего используют замену переменных или свойства соответствующих функций.
Заметим, что все равносильные преобразования уравнения всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого уравнения). Областью допустимых значений (ОДЗ) показательных уравнениях чаще всего является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решении уравнения (см. далее решение задач 1-3). Но если в ходе решения показательных уравнений равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится вспоминать об ОДЗ.
Примеры решения задач:
Пример №5
Решите уравнение:
Решение:
1) 2) — корней нет, поскольку 5′ > 0 всегда. 3)
Комментарий:
При всегда поэтому уравнение не имеет корней. Другие уравнения приведем к виду и перейдем к равносильному уравнению
Пример №6
Решите уравнение:
Решение:
1) Данное уравнение равносильно уравнениям:
Ответ: 5.
2) Данное уравнение равносильно уравнениям:
Ответ: 1.
Комментарий:
В левой и правой частях данных уравнений стоят только произведения, частные, корни или степени.
В этом случае для приведения уравнения к виду попробуем применить основные формулы действий над степенями, чтобы записать обе части уравнения как степени с одинаковыми основаниями.
В уравнении 1 следует обратить внимание на то, что а и таким образом, левую и правую части этого уравнения можно записать как степени числа 5.
Для преобразования уравнения 2 напомним, что все формулы можно применять как слева направо, так и справа налево. Например, для левой части этого уравнения воспользуемся формулой и запишем
Пример №7
Решите уравнение
Решение:
Данное уравнение равносильно уравнениям:
Ответ: 1
Комментарий:
В левой части уравнения все члены содержат выражения вида (показатели степеней отличаются только свободными членами). В этом случае в левой части уравнения удобно вынести за скобки наименьшую степень числа 3, то есть
Пример №8
Решите уравнение
Решение:
ОДЗ: любое Рассмотрим два случая. 1) При получаем уравнение корни которого — все действительные числа из ОДЗ, то есть 2) При значение поэтому данное уравнение равносильно уравнению Отсюда тогда
Ответ: 1) при 2) при
Комментарий:
Это уравнение относительно переменной содержит параметр Анализируя основания степеней в уравнении, делаем вывод, что при любых значениях основание Функция при — возрастающая, а при — постоянная (см. графики функции ). Основание при а при всех других значениях основание Рассмотрим каждый из этих случаев отдельно:
Решение более сложных показательных уравнений и их систем
Схема поиска плана решения показательных уравнений
Ориентир:
1. Избавляемся от числовых слагаемых в показателях степеней (используя справа налево основные формулы действий над степенями» приведенные в табл. 53).
Пример:
Учитывая, что приводим все степени к одному основанию 2:
Ориентир:
2. Если возможно, приводим все степени (с переменной в показателе) к одному основанию и выполняем замену переменной.
Пример:
Замена дает уравнение Обратная замена дает тогда или — корней нет. Ответ: 1.
Ориентир:
3. Если нельзя привести к одному основанию, то пытаемся привести все степени к двум основаниям так, чтобы получить однородное уравнение (которое решается делением обеих частей уравнения на наибольшую степень одного из видов переменных).
Пример:
Приведем все степени к основаниям 2 и 3: Имеем однородное уравнение (у всех членов одинаковая суммарная степень — ). Для его решения разделим обе части на Замена дает уравнение Обратная замена дает уравнения: — корней нет или тогда
Ответ: 0.
Ориентир:
4. В других случаях переносим все члены уравнения в одну сторону и пробуем разложить полученное выражение на множители или применяем специальные приемы решения, в которых используются свойства соответствующих функций
Пример:
Если попарно сгруппировать члены в левой части уравнения и в каждой паре вынести за скобки общий множитель, то получаем Теперь можно вынести за скобки общий множитель Отсюда или Получаем два уравнения: 1) тогда 2) тогда Ответ: 2; 1.
Объяснение и обоснование:
Для решения более сложных показательных уравнений (в сравнении с теми, которые были рассмотрены в п. 14.1) чаще всего используют замену переменных. Чтобы сориентироваться, можно ли ввести замену переменных в данном показательном уравнении, часто бывает полезно в начале решения избавиться от числовых слагаемых в показателях степеней. используя формулы:
Например, в уравнении
вместо записываем произведение и получаем уравнение
равносильное данному.
Затем пробуем все степени (с переменной в показателе) привести к одному основанию и выполнить замену переменной. Например, в уравнении (2) степень с основанием 4 можно записать как степень с основанием 2: получить уравнение
Напомним общий ориентир: если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной). Обращаем внимание на то, что Таким образом, в уравнение (3) переменная входит фактически в одном виде — поэтому удобно ввести замену Получаем квадратное уравнение
для которого находим корни, а затем выполняем обратную замену. Отметим, что как использование основных формул действий над степенями, так и использование замены и обратной замены всегда приводит к уравнению, равносильному данному на его ОДЗ (в уравнении (1) — на множестве всех действительных чисел). Это обусловлено тем, что все указанные преобразования мы можем выполнить и в прямом, и в обратном направлениях. (Таким образом, мы всегда сможем доказать, что каждый корень первого уравнения является корнем второго, и наоборот, аналогично тому, как был обоснован равносильный переход для простейших показательных уравнений).
В тех случаях, когда все степени (с переменной в показателе) в показательном уравнении, которое не приводится непосредственно к простейшему, не удается привести к одному основанию, следует попытаться привести все степени к двум основаниям так, чтобы получить однородное уравнение. Например, рассмотрим уравнение
Все степени в этом уравнении можно записать через основания 2 и 3, поскольку
Получаем уравнение
Все одночлены, стоящие в левой части этого уравнения, имеют степень (степень одночлена также равна ). Напомним ориентир:
Если все члены, уравнения, в левой и правой частях которого стоят многочлены от двух переменных (и ли от двух функций одной переменной), имеют одинаковую суммарную степень*, то уравнение называется однородным.
Решается однородное уравнение делением обеих его частей на наибольшую степень одной из переменных.
Следовательно, уравнение (6) является однородным и его можно решить делением обеих частей или на или на Отметим, что при всех значениях выражения и не равны нулю. Таким образом, при делении на эти выражения не может произойти потери корней (как это могло быть, например, для однородных тригонометрических уравнений). В результате деления обеих частей уравнения на любое из этих выражений всегда получается уравнение, равносильное данному. Например, если разделить обе части уравнения (6) на получаем или после сокращения В последнем уравнении все члены можно представить как степени с одним основанием и выполнить замену
Далее решение полученного уравнения полностью аналогично решению уравнения (2). Полное решение этого уравнения приведено в табл. 19.
Составляя план решения показательного уравнения, необходимо учитывать, что при решении некоторых из них целесообразно перенести все члены уравнения в одну сторону и попытаться разложить полученное выражение на множители, например, с использованием группировки членов, как это сделано в табл. 19 для уравнения
Для решения некоторых показательных уравнений можно применить свойства соответствующих функций.
Примеры решения задач:
Пример №9
Решите уравнение
Решение:
Замена Получаем Тогда Отсюда
Обратная замена дает уравнения: — корней нет или тогда Ответ: 1.
Комментарий:
В данное уравнение переменная входит только в одном виде поэтому удобно ввести замену и, получив дробное уравнение, найти его корни, а затем выполнить обратную замену.
Как уже отмечалось, замена и обратная замена — это равносильные преобразования данного уравнения, но при решении полученного дробного уравнения следует позаботиться о том, чтобы не получить посторонних корней (для этого, например, достаточно учесть, что и поэтому ОДЗ полученного уравнения: будет учтена автоматически).
*Конечно, если уравнение имеет вид (где — многочлен), то речь идет только о степени членов многочлена , поскольку нуль-многочлен степени не имеет.
Пример №10
Решите уравнение
Решение:
Замена дает уравнение Обратная замена дает тогда или — корней нет. 5 Ответ: 0.
Комментарий:
- 1. Избавляемся от числовых слагаемых в показателях степеней.
- 2. Приводим все степени (с переменной в показателе) к одному основанию 5.
- 3. Выполняем замену решаем полученное уравнение, производим обратную замену и решаем полученные простейшие показательные уравнения (а также учитываем, что все преобразования были равносильными).
Пример №11
Решите уравнение
Решение:
Ответ: 2.
Комментарий:
При решении систем уравнений, содержащих показательные функции, чаще всего используются традиционные методы решения систем уравнений: метод подстановки и метод замены переменных.
Пример №12
Решите систему уравнений
Решение:
Из первого уравнения системы Тогда из второго уравнения получаем то есть Замена дает уравнение из которого получаем уравнение имеющее корни: Обратная замена дает тогда или откуда Находим соответствующие значения если если Ответ:
Комментарий:
Если из первого уравнения выразить через и подставить во второе уравнение, то получим показательное уравнение, которое мы умеем решать (аналогично решению задачи 2). Выполняя замену, учитываем, что Тогда в полученном дробном уравнении знаменатель Таким образом, это дробное уравнение равносильно уравнению
Пример №13
Решите систему уравнений
Решение:
Замена и дает систему уравнений и Из второго уравнения этой системы имеем Далее из первого уравнения получаем Отсюда тогда Обратная замена дает уравнения: тогда отсюда тогда отсюда Ответ: (2; 2).
Комментарий:
Если обозначить и то Тогда данная система будет равносильна алгебраической системе, которую легко решить.
Решение показательных неравенств
1. График показательной функции
2. Схема равносильных преобразований простейших показательных неравенств
– знак неравенства сохраняется
– знак неравенства меняется на противоположный
Примеры:
Функция является возрастающей, следовательно:
Ответ:
Функция убывающая, следовательно:
Ответ:
3. Решение более сложных показательных неравенств
Ориентир:
I. С помощью равносильных преобразований (по схеме решения показательны х уравнений) данное неравенство приводится к неравенству известного вида (квадратному, дробному и др.).
После решения полученного неравенства приходим к простейшим показательным неравенствам.
Пример:
Замена дает неравенство решения которого или (см. рисунок).
Обратная замена дает (ре шений нет) или откуда то есть Ответ:
II. Применяем метод интервалов, приводя данное неравенство к виду и используя схему:
- Найти ОДЗ.
- Найти нули
- Отметить пули функции на ОДЗ и найти знак в каждом из промежутков, на которые разбивается ОДЗ. 4. Записать ответ, учитывая знак неравенства.
Пример:
Решим неравенство методом интервалов. Данное неравенство равносильно неравенству
Обозначим
- ОДЗ:
- Нули функции:
- Поскольку функция является возрастающей (как сумма двух возрастающих функций), то значение, равное нулю, она принимает только в одной точке области определения:
- Отмечаем нули функции на ОДЗ, находим знак в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства
Ответ:
Объяснение и обоснование:
Решение простейших показательных неравенств вида (или где и ) основывается на свойствах функции которая возрастает при и убывает при Например, чтобы найти решение неравенства при достаточно представить в виде Получаем неравенство
(1)
При функция возрастает, следовательно, большему значению функции соответствует большее значение аргумента, поэтому из неравенства (1) получаем (знак этого неравенства совпадает со знаком неравенства(1)). При функция убывает, следовательно, большему значению функции соответствует меньшее значение аргумента, поэтому из неравенства (1) получаем (знак этого неравенства противоположен знаку неравенства (1)).
Графически это проиллюстрировано на рис. 14.3.
Например, чтобы решить неравенство достаточно представить это неравенство в виде учесть, что (функция возрастающая, следовательно, при переходе к аргументам знак неравенства не меняется), и записать решение:
Решение данного неравенства можно записывать в виде или в виде промежутка
Аналогично, чтобы решить неравенство достаточно представить это неравенство в виде учесть, что (функция убывающая, таким образом, при переходе к аргументам знак неравенства меняется на противоположный), и записать решение:
Учитывая, что при любых положительных значениях значение всегда больше нуля, получаем, что при неравенство решений не имеет, а неравенство выполняется при всех действительных значениях
Например, неравенство не имеет решений, а решениями неравенства являются все действительные числа.
Обобщая приведенные выше рассуждения относительно решения простейших показательных неравенств, отметим, что при неравенство равносильно неравенству а при О < а < 1 — неравенству Коротко это утверждение можно записать так.
Чтобы обосновать равносильность соответствующих неравенств, достаточно заметить, что при неравенства
могут быть верными только одновременно, поскольку функция при возрастающая и большему значению функции соответствует большее значение аргумента (и наоборот: большему значению аргумента соответствует большее значение функции). Таким образом, все решения неравенства (2) (которые обращают его в верное числовое неравенство) будут и решениями неравенства (3), и наоборот: все решения неравенства (3) будут решениями неравенства (2). А это и означает, что неравенства (2) и (3) равносильны. Аналогично обосновывается равносильность неравенств и при
В простейших случаях при решении показательных неравенств, как и при решении показательных уравнений, пытаются с помощью основных формул действий над степенями привести (если это возможно) данное неравенство к виду
Для решения более сложных показательных неравенств чаще всего используют замену переменных или свойства соответствующих функций.
Заметим, что аналогично решению показательных уравнений все равносильные преобразования неравенства всегда выполняются на его области допустимых значений (общей области определения для всех функций, входящих в запись этого неравенства). Для показательных неравенств достаточно часто областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решение неравенства (см. далее задачу 1). Но если в процессе решения показательного неравенства равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится учитывать ОДЗ (см. далее задачу 2).
- Заказать решение задач по высшей математике
Примеры решения задач:
Пример №14
Решите неравенство
Решение:
Поскольку функция у убывающая, то Отсюда (см. рисунок).
Ответ:
Комментарий:
Запишем правую часть неравенства как степень числа Поскольку то при переходе от степеней к показателям знак неравенства меняется на противоположный (получаем неравенство, равносильное данному). Для решения полученного квадратного неравенства используем графическую иллюстрацию.
Пример №15
Решите неравенство
Решение:
ОДЗ: Замена дает неравенство равносильное неравенству Поскольку получаем Отсюда Учитывая, что имеем Выполняя обратную замену, получаем Тогда Функция возрастающая, таким образом, Учитывая ОДЗ, получаем Ответ:
Комментарий:
Поскольку равносильные преобразования неравенств выполняются на ОДЗ исходного неравенства, то зафиксируем эту ОДЗ. Используя и формулу избавляемся от а числового слагаемого в показателе степени и получаем степени с одним основанием 3, что позволяет ввести замену В полученном неравенстве знаменатель положителен, поэтому это дробное неравенство можно привести к равносильному ему квадратному. После выполнения обратной замены следует учесть не только возрастание функции но и ОДЗ исходного неравенства.
Пример №16
Решите неравенство
Решение:
Решим неравенство методом интервалов. Обозначим 1. ОДЗ: 2. Нули функции:
Замена Получаем Обратная замена дает: или
Отсюда 3. Отметим нули функции на ОДЗ, находим знак в каждом из полученных промежутков и записываем решения неравенства
Ответ:
Комментарий:
Данное неравенство можно решать или приведением к алгебраическому неравенству, или методом интервалов. Для решения его методом интервалов используем схему, приведенную в табл. 20. При нахождении нулей функции приведем все степени к двум основаниям (2 и 3), чтобы получить однородное уравнение. Это уравнение решается делением обеих частей на наивысшую степень одного из видов переменных — на Учитывая, что при всех значениях в результате деления на получаем уравнение, равносильное предыдущему. Разумеется, для решения данного неравенства можно было учесть, что всегда, и после деления данного неравенства на и замены получить алгебраическое неравенство.
Пример №17
Решите неравенство
Комментарий:
Данное нестрогое неравенство также удобно решать методом интервалов. При этом следует учитывать, что в случае, когда мы решаем нестрогое неравенство все нули функции должны войти в ответ.
Решение:
Обозначим 1. ОДЗ: Тогда или (см. рисунок).
2. Нули функции: Тогда или Из первого уравнения: — не принадлежит ОДЗ, а из второго: 3. Отмечаем нули на ОДЗ, находим знак в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства Ответ:
Определение и вычисление показательной функции
Если величины и связаны уравнением (где ), то величина у называется показательной функцией от . Возьмем для примера , тогда . Будем давать значения, равные нулю и целым положительным числам, тогда будет принимать значения, указанные в таблице:
Мы видим, что если придавать независимому переменному значения, увеличивающиеся в арифметической прогрессии, то у будет расти в геометрической прогрессии со знаменателем, равным 2.
Вообще, если в уравнении независимое переменное увеличивается в арифметической прогрессии, то функция возрастает в геометрической прогрессии со знаменателем . Если независимое переменное уменьшать, придавая ему целые отрицательные значения, то у будет уменьшаться в геометрической прогрессии со знаменателем . В самом деле, взяв уравнение , составим таблицу:
Приняв за абсциссу, а за ординату точки, построим точки, полученные в таблицах, и соединим их плавной кривой. Тогда получим кривую линию, изображенную на рис. 31. Эта линия называется графиком показательной функции.
Отметим, что показательная функция нигде не обращается в нуль, т. е. ее график нигде не пересекает ось .
Аналогичный график имеет и любая показательная функция с основанием, большим единицы ().
Если же взять основание положительное, но меньшее единицы (), то график будет иметь вид, изображенный на рис. 32.
Показательная функция – практическое занятие с решением
1) Составьте таблицу значений для функций и .
2) На координатной плоскости постройте точки, абсциссы которых соответствуют аргументам, а ординаты значениям функции и соедините сплошной кривой линией.
3) Сравните с значение выражения и для произвольных значений х.
4) Увеличиваются или уменьшаются значения функции при увеличении значений х ? Увеличиваются или уменьшаются значения функции при увеличении значений х?
5) В какой точке графики пересекают ось у ?
6) Сравните графики и запишите их сходные и отличительные черты.
7) Выполните задание для функций .
При а > 0, функция называется показательной функцией.
1) Область определения показательной функции все действительные числа.
2) Множество значений показательной функции все положительные
числа.
3) Так как = 1(при х = 0), то показательная функция пересекает ось у в точке (0; 1).
4) При а > 1 функция возрастающая, при функция убывающая.
5) Показательная функция не пересекает ось абсцисс и её график расположен выше оси х, т.е. в верхней полуплоскости.
Функция и её график называется экспонентой.
Экспонента при изменении аргумента увеличивается или уменьшается с большой скоростью.
6) При , если х бесконечно возрастают, соответствующие значения у бесконечно убывают и точки графика функции неограниченно стремятся к оси абсцисс. При точки на графике неограниченно стремятся к оси абсцисс.
Экспоненциально возрастающая и экспоненциально убывающие функции
Функция также называется экспоненциальной функцией.
Например: функцию можно записать в виде
Пример:
По графику функции зададим её уравнение.
Решение:
Составим таблицу значений.
Из таблицы значений видно, что при увеличении значений х на 1 единицу, значения у уменьшаются в .
Значит, .Тогда формула функции будет:
Пример:
При каких значениях переменных справедливо следующие:
а)равенство ; б) неравенство ; в) неравенство ?
Решение:
а) запишем равенство в виде . Здесь по свойству степени с действительным показателем х = 3.
б)запишем неравенство в виде . Здесь ясно, что .
в)запишем неравенство в виде (в виде степени с одинаковым основанием), степени с основанием меньше 1. Получим, что .
Преобразование графиков показательных функций
Общий вид показательной функции . Функция вида является основной функцией в семействе показательных функций. Выполняя различные преобразования можно построить графики следующих функций
.
•График в раз растягивается от оси х.
Например.
•При происходит отражение относительно оси х.
Например. График функции
можно построить при помощи графика функции
используя параллельный перенос.
Пример №18
Построим график функции при помощи параллельного переноса графика функции . 1.Для функции отметим точки (0; 3), (1; 6); (2; 12) и соединим эти точки гладкой линией. Прямая у = 0 является асимптотой 2.График функции перенесём параллельно на одну единицу влево и на одну единицу вверх (на вектор (-1; 1)), найдём новые координаты указанных точек и расположим их на координатной плоскости. Соединим эти точки гладкой линией и получим график функции .
Прямая у = 1 является горизонтальной асимптотой.
В реальной жизни, при ежегодном увеличении величины на постоянный процент, её состояние через лет можно оценить формулой , при уменьшении – формулой .Здесь а – начальное количество, – процент увеличения (уменьшения) ( десятичная дробь), -количество лет.
При помощи данных формул решим следующее задание.
Пример №19
Цена автомобиля купленного за 24 ООО руб ежегодно снижается на 12%. Запишем зависимость между количеством лет эксплуатации автомобиля и его ценой.
Решение.
В формулепримем а = 24000, = 12% = 0,12, 1 – = 0,88.
Тогда данную ситуацию можно смоделировать показательной
функцией .
Показательная функция. Число е.
Исследование:
Представьте, что вы вложили в банк 1 руб, под сложные проценты с процентной ставкой равной 100%. В течении года вы произвели вычислений раз, подставив в формулу сложного процентного роста следующие данные .
Вычислите значения функции и установите, к какому числу приближается значение функции при различных значениях .
Как видно, если банк будет чаще вычислять процент для вложенной суммы, то прибыль увеличится. Однако, отношение ежедневных вычислений к ежемесячным даёт прибыль 10 гяпик. Если даже банк будет находить процент для денег на счету ежесекундно , то и в данном случае разница между начислением процентов ежечасно или ежедневно будет незначительна. Из графика функции построенного при помощи графкалькулятора видно, что при функция имеет горизонтальную асимптоту.
Число е:
Исследование показывает, что при увеличении значений значение выражения колеблется между 2,71 и 2,72. Это число записывается буквой е и имеет значение е = 2,718 281 828 459… .
Число е, так же как и число является иррациональным числом. Эти числа называются трансцендентными числами. Трансцендентным называется число, которое не является корнем уравнения степени с целыми коэффициентами. Экспоненциальное возрастание или убывание по основанию е задаётся формулой . Здесь No-начальное значение, t -время, -постоянное число.
График функции y=ex
График функции .
Для построения графика функции можно использовать различные граф калькуляторы. Например, (http://www.meta-calculator.com/onlinc) или как показано на рисунке, при помощи программы Geometer’s Sketchpad®.
Показательная и логарифмическая функции их свойства и график
Понятие показательной функции и ее график:
Определение. Показательной функцией называется функция вида
График показательной функции (экспонента)
1. Область определения:
2. Область значений:
3. Функция ни четная, ни нечетная.
4. Точки пересечения с осями координат:
с осью
5. Промежутки возрастания и убывания:
функция при возрастает на всей области определения
функция при убывает на всей области определения
6. Промежутки знакопостоянства:
7.
8. Для любых действительных значений выполняются равенства:
Понятие показательной функции
Показательной функцией называется функция вида
Например, показательная функция
Отметим, что функция вида существует и при
Тогда при всех значениях Но в этом случае функция не называется показательной. (График функции — прямая, изображенная на рис. 118.)
Поскольку при выражение определено при всех действительных значениях то областью определения показательной функции являются все действительные числа.
Попытаемся сначала построить графики некоторых показательных функций, например “по точкам», а затем перейдем к характеристике общих свойств показательной функции.
Составим таблицу некоторых значений функции
Построим на координатной плоскости соответствующие точки (рис. 119, а) и соединим эти точки плавной линией, которую естественно считать графиком функции (рис. 119,6).
Как видим из графика, функция является возрастающей функцией, которая принимает все значения на промежутке
Аналогично составим таблицу некоторых значений функции
Построим на координатной плоскости соответствующие точки (рис. 120, а) и соединим эти точки плавной линией, которую естественно считать графиком функции (рис. 120, б).
Как видим из графика, функция является убывающей функцией, которая принимает все значения на промежутке. Заметим, что график функции можно получить из графика функции с помощью геометрических преобразований. Действительно,
Таким образом, график функции симметричен графику функции относительно оси (табл. 4, с. 28), и поэтому, если функция является возрастающей, функция обязательно будет убывающей.
Оказывается, что всегда при график функции похож на график функции — на график функции (рис. 121). График показательной функции называется экспонентой.
Свойства показательной функции
Как было обосновано выше, областью определения показательной функции являются все действительные числа:
Областью значений функции является множество всех положительных чисел, то есть функция принимает только положительные значения, причем любое положительное число является значением функции, то есть
Это означает, что график показательной функции всегда расположен выше оси и любая прямая, которая параллельна оси и находится выше нее, пересекает этот график.
При функция возрастает на всей области определения, при функция убывает на всей области определения.
Обоснование области значений и промежутков возрастания и убывания показательной функции проводится так: эти свойства проверяются последовательно для натуральных, целых, рациональных показателей, а затем уже переносятся на любые действительные показатели.
Следует учесть, что при введении понятия степени с иррациональным показателем мы уже пользовались возрастанием функции, когда проводили такие рассуждения: поскольку Таким образом, в нашей системе изложения материала мы можем обосновать эти свойства только для рациональных показателей, но, учитывая громоздкость таких обоснований, примем их без доказательства. Все остальные свойства показательной функции легко обосновываются с помощью этих свойств.
Функция не является ни четной, ни нечетной, поскольку (по определению Также поскольку (по свойству 1), а
Точки пересечения с осями координат. График функции пересекает ось в точке Действительно, на оси значение тогда
График показательной функции не пересекает ось поскольку на оси но значение не принадлежит области значений показательной функции только при но по определению
Промежутки знакопостоянства. при всех действительных значениях поскольку
Отметим еще одно свойство показательной функции. Поскольку график функции пересекает ось в точке то, учитывая возрастание функции при и убывание при получаем следующие соотношения между значениями функции и соответствующими значениями аргумента:
Функция не имеет ни наибольшего, ни наименьшего значений, поскольку ее область значений — промежуток который не содержит ни наименьшего, ни наибольшего числа.
Свойства показательной функции, приведенные в пункте 8 таблицы 49:
были обоснованы в разделе 3.
Отметим еще одно свойство показательной функции, которое выделяет ее из ряда других функций: если то при любых действительных значениях аргументов выполняется равенство
Действительно, В курсах высшей математики это свойство (вместе со строгой монотонностью) является основой аксиоматического определения показательной функции. В этом случае дается определение, что показательная функция — это строго монотонная функция, определенная на всей числовой оси, которая удовлетворяет функциональному уравнению а затем обосновывается, что функция совпадает с функцией
Кроме общих свойств показательной функции при отметим некоторые особенности поведения графиков показательных функций при конкретных значениях Так, на рисунке 122 приведены графики показательных функций при значениях основания
Сравнивая эти графики, можно сделать вывод: чем больше основание тем круче поднимается график функции при движении точки вправо и тем быстрее график приближается к оси при движении точки влево. Аналогично, чем меньше основание тем круче поднимается график функции при движении точки влево и тем быстрее график приближается к оси при движении точки вправо.
Заканчивая разговор о показательной функции, укажем те причины, которые мешают рассматривать показательные функции с отрицательным или нулевым основанием.
Отметим, что выражение можно рассматривать и при и при Но в этих случаях оно уже будет определено не при всех действительных значениях как показательная функция В частности, выражение определено при всех (и тогда а выражение — при всех целых значениях ( например По этой причине не берут основание показательной функции (получаем постоянную функцию при и (получаем функцию, определенную только при достаточно «редких» значениях Приведенные рассуждения относительно целесообразности выбора основания показательной функции не влияют на область допустимых значений выражения (например, как мы видели выше, пара значений принадлежит его ОДЗ, и это приходится учитывать при решении некоторых задач).
Примеры решения задач:
Пример №20
Сравните значения выражений:
Решение:
1) Функция является убывающей поэтому из неравенства получаем
2) Функция является возрастающей поэтому из неравенства получаем
Комментарий:
Учтем, что функция является возрастающей, а при — убывающей. Поэтому сначала сравним данное основание с единицей, а затем, сравнивая аргументы, сделаем вывод о соотношении между данными значениями функции.
Пример №21
Сравните с единицей положительное основание а, если известно, что выполняется неравенство:
Решение:
1) Поскольку и по условию то функция является убывающей, следовательно,
2) Поскольку и по условию то функция является возрастающей, следовательно,
Комментарий:
В каждом задании данные выражения — это два значения функции
Проанализируем, какое значение функции соответствует большему значению аргумента (для этого сначала сравним аргументы).
Если большему значению аргумента соответствует большее значение функции, то функция является возрастающей и Если большему значению аргумента соответствует меньшее значение функции, то функция является убывающей, и тогда
Пример №22
Постройте график функции:
Комментарий:
При значение следовательно, график функции всегда расположен выше оси Этот график пересекает ось в точке
При показательная функция возрастает, следовательно, ее графиком будет кривая (экспонента), точки которой при увеличении аргумента поднимаются.
При показательная функция убывает, следовательно, графиком функции будет кривая, точки которой при увеличении аргумента опускаются. (Напомним, что, опускаясь вниз, график приближается к оси но никогда ее не пересекает.)
Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №23
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Комментарий:
Составим план построения графика данной функции с помощью последовательных геометрических преобразований (табл. 4 на с. 28). 1. Мы можем построить график функции основание показательная функция убывает).
2. Затем можно построить график функции справа от оси (и на самой оси) график функции остается без изменений, и эта же часть графика отображается симметрично относительно оси
3. После этого можно построить график функции
параллельно перенести график вдоль оси на (-3) единицы.
4. Затем можно построить график данной функции выше оси (и на самой оси) график функции должен остаться без изменений(но таких точек у графика функции нет, а ниже оси — график функции необходимо отобразить симметрично относительно оси
Решение показательных уравнении и неравенств
Основные формулы и соотношения:
График функции
– возрастает
– убывает
– постоянная
Схема равносильных преобразований простейших показательных уравнений:
Ориентир:
При
Пример №24
Ответ: –1
Корней нет (поскольку для всех
Ответ: корней нет.
Приведение некоторых показательных уравнений к простейшим:
1) Если в левой и правой частях показательного уравнения стоят только произведения, частные, корни или степени, то целесообразно с помощью основных формул попробовать записать обе части уравнения как степени с одним основанием.
Пример №25
Ответ:
2) Если в одной части показательного уравнения стоит число, а в другой все члены содержат выражение вида (показатели степеней отличаются только свободными членами), то удобно в этой части уравнения вынести за скобки наименьшую степень
Пример №26
Ответ: 2
Объяснение и обоснование:
Показательными уравнениями обычно называют уравнения, в которых переменная входит в показатель степени (а основание этой степени не содержит переменной).
Простейшие показательные уравнения
Рассмотрим простейшее показательное уравнение вида
где Поскольку при этих значениях функция строго монотонна (возрастает при и убывает при то каждое свое значение она принимает только при одном значении аргумента. Это означает, что уравнение имеет единственный корень. Чтобы его найти, достаточно представить
Очевидно, что является корнем уравнения
Графически это проиллюстрировано на рисунке 123.
Например, чтобы решить уравнение достаточно представить это уравнение в виде и записать его единственный корень
Если то уравнение корней не имеет, поскольку всегда больше нуля. (На графиках, приведенных на рисунке 124, прямая не пересекает график функции
Например, уравнение не имеет корней.
Обобщая приведенные выше рассуждения относительно решения простейших показательных уравнений, отметим, что при уравнение вида
равносильно уравнению
Коротко это утверждение можно записать так: при
Чтобы обосновать равносильность этих уравнений, достаточно заметить, что равенства (2) и (3) могут быть верными только одновременно, поскольку функция является строго монотонной и каждое свое значение принимает только при одном значении аргумента (то есть из равенства степеней (2) обязательно вытекает равенство показателей (3)). Таким образом, все корни уравнения (2) (которые обращают это уравнение в верное равенство) будут корнями и уравнения (3), и наоборот, все корни уравнения (3) будут корнями уравнения (2). А это и означает, что уравнения (2) и(3) равносильны.
В простейших случаях при решении показательных уравнений пытаются с помощью основных формул действий над степенями (см. таблицу 46) привести (если это возможно) данное уравнение к виду
Для решения более сложных показательных уравнений чаще всего используют замену переменных (применение этого метода рассмотрено в табл. 51, с. 344) или свойства соответствующих функций (применение этих методов рассмотрено в табл. 58, с. 403).
Заметим, что все равносильные преобразования уравнения всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого уравнения). Но в показательных уравнениях чаще всего областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решении уравнения (см. ниже задачи 1-3). Но если в ходе решения показательных уравнений равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится вспоминать об ОДЗ (задача 4″ на с. 343).
Примеры решения задач:
Пример №27
Решите уравнение:
Решение:
1)
2) — корней нет, поскольку всегда;
3)
Комментарий:
При всегда поэтому уравнение не имеет корней.
Другие уравнения приведем к виду и перейдем к равносильному уравнению
Пример №28
Решите уравнение:
Решение:
1) Данное уравнение равносильно уравнениям:
Ответ: 5.
2) Данное уравнение равносильно уравнениям:
Ответ: 1.
Комментарий:
В левой и правой частях данных уравнений стоят только произведения, частные, корни или степени. В этом случае для приведения уравнения к виду попробуем применить основные формулы действий над степенями, чтобы записать обе части уравнения как степени с одним основанием.
В уравнении 1 следует обратить внимание на то, что а таким образом, левую и правую части этого уравнения можно записать как степени числа 5.
Для преобразования уравнения 2 напомним, что все формулы можно применять как слева направо, так и справа налево, например для левой части этого уравнения воспользуемся формулой то есть запишем
Пример №29
Решите уравнение
Решение:
Данное уравнение равносильно уравнениям:
Ответ: 1.
Комментарий:
В левой части уравнения все члены содержат выражения вида (показатели степеней отличаются только свободными членами). В этом случае в левой части уравнения удобно вынести за скобки наименьшую степень числа 3, то есть
Пример №30
Решите уравнение
Решение:
► ОДЗ:
Рассмотрим два случая.
1) При получаем уравнение корни которого — все действительные числа из ОДЗ, то есть
2) При значение и тогда данное уравнение равносильно уравнению
Отсюда
Ответ: 1) при
2) при
Комментарий:
Это уравнение относительно переменной которое содержит параметр Анализируя основания степеней в уравнении, делаем вывод, что при любых значениях основание Функция является возрастающей, а при — постоянной (см. графики функции в табл. 50).
Основание а при всех других значениях основание
Рассмотрим каждый из этих случаев отдельно, то есть:
Решение более сложных показательных уравнений и их систем
Схема поиска плана решения показательных уравнений:
- Избавляемся от числовых слагаемых в показателях степеней (используя справа налево основные формулы действий над степенями, приведенные в табл. 50).
- Если возможно, приводим все степени (с переменной в показателе) к одному основанию и выполняем замену переменной.
Учитывая, что приводим все степени к одному основанию 2: Замена дает уравнение
Обратная замена дает тогда корней нет.
Ответ: 1.
3. Если нельзя привести к одному основанию, то пытаемся привести все степени к двум основаниям так, чтобы получить однородное уравнение (которое решается делением обеих частей уравнения на наибольшую степень одного из видов переменных).
Приведем все степени к двум основаниям 2 и 3:
Имеем однородное уравнение (у всех членов одинаковая суммарная степень — Для его решения разделим обе части на
Замена дает уравнение Обратная замена дает — корней нет или тогда Ответ: 0.
4. В других случаях переносим все члены уравнения в одну сторону и пробуем разложить полученное уравнение на множители или применяем специальные приемы решения, в которых используются свойства соответствующих функций.
Если попарно сгруппировать члены в левой части уравнения и в каждой паре вынести за скобки общий множитель, то получаем
Теперь можно вынести за скобки общий множитель
Тогда Получаем два уравнения:
Ответ: 2; 1.
Объяснение и обоснование:
Для решения более сложных показательных уравнений (в сравнении с теми, которые были рассмотрены в предыдущем пункте 30.1) чаще всего используют замену переменных. Чтобы сориентироваться, можно ли ввести замену переменных в данном показательном уравнении, часто бывает полезно в начале решения избавиться от числовых слагаемых в показателях степеней, используя формулы: Например, в уравнении вместо записываем произведение и получаем уравнение равносильное заданному.
Затем пробуем все степени (с переменной в показателе) привести к одному основанию и выполнить замену переменной. Например, в уравнении (2) степень с основанием 4 можно записать как степень с основанием и получить уравнение
Напомним общий ориентир: если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).
Обращаем внимание на то, что Таким образом, в уравнение (3) переменная входит фактически в одном виде — поэтому в этом уравнении удобно ввести замену Получаем квадратное уравнение для которого находим корни, а затем выполняем обратную замену (см. решение в табл. 51).
Отметим, что как использование основных формул действий над степенями, так и использование замены и обратной замены всегда приводит к уравнению, равносильному данному на его ОДЗ (в уравнении (1) — на множестве всех действительных чисел). Это обусловлено тем, что все указанные преобразования мы можем выполнить и в прямом, и в обратном направлениях. (Таким образом, мы всегда сможем доказать, что каждый корень первого уравнения является корнем второго и наоборот, аналогично тому, как был обоснован равносильный переход для простейших показательных уравнений на с. 341).
В тех случаях, когда все степени (с переменной в показателе) в показательном уравнении, которое не приводится непосредственно к простейшему, не удается привести к одному основанию, следует попытаться привести все степени к двум основаниям так, чтобы получить однородное уравнение.
Например, рассмотрим уравнение
Все степени в этом уравнении можно записать через основания 2 и 3, поскольку
Получаем уравнение
Все одночлены, стоящие в левой части этого уравнения, имеют степень (степень одночлена также равна
Напомним (см. раздел 2, с. 172):
Если все члены уравнения, в левой и правой частях которого стоят многочлены от двух переменных (или от двух функций одной переменной), имеют одинаковую суммарную степень, то уравнение называется однородным.
Решается однородное уравнение делением обеих его частей на наибольшую степень одной из переменных.
Следовательно, уравнение (6) является однородным, и его можно решить делением обеих частей или на или на Отметим, что при всех значениях выражения не равны нулю. Таким образом, при делении на эти выражения не может произойти потери корней (как это могло быть, например, для однородных тригонометрических уравнений). В результате деления обеих частей уравнения на любое из этих выражений всегда получается уравнение, равносильное данному. Например, если разделить обе части уравнения (6) на получаем
или после сокращения
В последнем уравнении все члены можно представить как степени с одним основанием и выполнить замену Далее решение полученного уравнения полностью аналогично решению уравнения (2). Полное решение этого уравнения приведено в таблице 51.
Составляя план решения показательного уравнения, необходимо учитывать, что при решении некоторых из них целесобразно перенести все члены уравнения в одну сторону и попытаться разложить полученное выражение на множители, например, с использованием группировки членов, как это сделано в таблице 51 для уравнения
Для решения некоторых показательных уравнений можно применить свойства соответствующих функций.
Примеры решения задач:
Пример №31
Решите уравнение
Решение:
Замена Получаем
Тогда Отсюда
Обратная замена дает
— корней нет или тогда
Ответ: 1.
Комментарий:
В данное уравнение переменная входит только в одном виде и поэтому удобно ввести замену и, получив дробное уравнение, найти его корни, а затем выполнить обратную замену.
Как уже отмечалось, замена и обратная замена — это равносильные преобразования данного уравнения, но при решении полученного дробного уравнения следует позаботиться о том, чтобы не получить посторонних корней (для этого, например, достаточно учесть, что и поэтому ОДЗ полученного уравнения: будет учтена автоматически).
Пример №32
Решите уравнение
Решение:
Замена дает уравнение
Обратная замена дает тогда
корней нет
Ответ: 0.
Комментарий:
- Избавляемся от числовых слагаемых в показателях степеней.
- Приводим все степени (с переменной в показателе) к одному основанию 5.
- Выполняем замену решаем полученное уравнение, производим обратную замену и решаем полученные простейшие показательные уравнения (а также учитываем, что все преобразования были равносильными).
Пример №33
Решите уравнение
Решение:
Ответ: 2
Комментарий:
- Избавляемся от числовых слагаемых в показателях степеней,переносим все члены уравнения в одну сторону и приводим подобные члены.
- Замечаем, что степени всех членов полученного уравнения (с двумя основаниями 2 и 3) одинаковые — следовательно, это уравнение однородное. Его можно решить делением обеих частей на наибольшую степень одного из видов выражений с переменной — или на или на Учитывая, что при всех значениях в результате деления на получаем уравнение, равносильное предыдущему (а значит, и заданному).
При решении систем уравнений, содержащих показательные функции, чаще всего используются традиционные методы решения систем уравнений: метод подстановки и метод замены переменных.
Пример №34
Решите систему уравнений
Решение:
Из первого уравнения системы
Тогда из второго уравнения получаем то есть Замена дает уравнение из которого получаем уравнение имеющее корни: Обратная замена дает тогда откуда Находим соответствующие значения если если
Ответ:
Комментарий:
Если из первого уравнения выразить через и подставить во второе уравнение, то получим показательное уравнение, которое мы умеем решать (аналогично решению задачи 2).
Выполняя замену, учитываем, что Тогда в полученном дробном уравнении знаменатель Таким образом, это дробное уравнение равносильно уравнению
Пример №35
Решите систему уравнений
Решение:
Замена и дает систему
Из второго уравнения этой системы имеем Тогда из первого уравнения получаем Отсюда Обратная замена дает
Ответ:
Комментарий:
Если обозначить то
Тогда данная система будет равносильна алгебраической системе, которую легко решить.
После обратной замены получаем систему простейших показательных уравнений
Решение показательных неравенств
График показательной функции :
Схема равносильных преобразований простейших показательных неравенств:
знак неравенства сохраняется знак неравенства меняется на противоположный
Пример №36
. Функция является возрастающей, следовательно:
Ответ:
Пример №37
Функция убывающая, следовательно:
Ответ:
Решение более сложных показательных неравенств
I. С помощью равносильных преобразований (по схеме решения показательных уравнений, табл. 51) данное неравенство приводится к неравенству известного вида (квадратному, дробному и т. д.). После решения полученного неравенства приходим к простейшим показательным неравенствам.
Пример №38
Замена дает неравенство решения которого (см. рисунок).
Обратная замена дает (решений нет) или откуда
Ответ:
II. Применяем общий метод интервалов, приводя данное неравенство к виду f (x)0 и используя схему:
1. Найти ОДЗ.
2. Найти нули
3. Отметить нули функции на ОДЗ и найти знак в каждом из промежутков, на которые разбивается ОДЗ.
4. Записать ответ, учитывая знак неравенства.
Решим неравенство методом интервалов. Данное неравенство равносильно неравенству Обозначим
1. ОДЗ:
2. Нули функции:
Поскольку функция является возрастающей (как сумма двух возрастающих функций), то значение, равное нулю, она принимает только в одной точке области определения:
3. Отмечаем нули функции на ОДЗ, находим знак в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства
Ответ:
Объяснение и обоснование:
Решение простейших показательных неравенств вида где основывается на свойствах функции которая возрастает при и убывает при Например, чтобы найти решение неравенства достаточно представить в виде Получаем неравенство
При функция возрастает, следовательно, большему значению функции соответствует большее значение аргумента, поэтому из неравенства (1) получаем (знак этого неравенства совпадает со знаком неравенства (1)).
При функция убывает, следовательно, большему значению функции соответствует меньшее значение аргумента, поэтому из неравенства (1) получаем (знак этого неравенства противоположен знаку неравенства (1)).
Графически это проиллюстрировано на рисунке 125.
Например, чтобы решить неравенство достаточно представить это неравенство в виде учесть, что (функция является возрастающей, следовательно, при переходе к аргументам знак неравенства не меняется), и записать решение:
Заметим, что решение данного неравенства можно записывать в виде или в виде промежутка
Аналогично, чтобы решить неравенство Достаточно представить это неравенство в виде Учесть что (Функция является убывающей, таким образом, при переходе к аргументам знак неравенства меняется на противоположный), и записать решение:
Учитывая, что при любых положительных значениях а значение всегда больше нуля, получаем, что при неравенство решений не имеет, а неравенство выполняется при всех действительных значениях
Например, неравенство не имеет решений, а решениями неравенства являются все действительные числа.
Обобщая приведенные выше рассуждения относительно решения простейших показательных неравенств, отметим, что при неравенство равносильно неравенству а при — неравенству
При (знак неравенства сохраняется).
При (знак неравенства меняется на противоположный).
Чтобы обосновать равносильность соответствующих неравенств, достаточно заметить, что при неравенства могут быть верными только одновременно, поскольку функция при является возрастающей и большему значению функции соответствует большее значение аргумента (и наоборот: большему значению аргумента соответствует большее значение функции). Таким образом, все решения неравенства (2) (которые обращают его в верное числовое неравенство) будут и решениями неравенства (3), и наоборот: все решения неравенства (3) будут решениями неравенства (2). А это и означает, что неравенства (2) и (3) являются равносильными.
Аналогично обосновывается равносильность неравенств и при
В простейших случаях при решении показательных неравенств, как и при решении показательных уравнений, пытаются с помощью основных формул действий над степенями привести (если это возможно) данное неравенство к виду
Для решения более сложных показательных неравенств чаще всего используют замену переменных или свойства соответствующих функций.
Заметим, что аналогично решению показательных уравнений все равносильные преобразования неравенства всегда выполняются на его области допустимых значений (то есть на общей области определения для всех функций, входящих в запись этого неравенства). Для показательных неравенств достаточно часто областью допустимых значений (ОДЗ) является множество всех действительных чисел. В этих случаях, как правило, ОДЗ явно не находят и не записывают в решение неравенства (см. далее задачу 1). Но если в процессе решения показательного неравенства равносильные преобразования выполняются не на всем множестве действительных чисел, то в этом случае приходится учитывать ОДЗ (см. далее задачу 2).
Примеры решения задач:
Пример №39
Решите неравенство
Решение:
Поскольку функция является убывающей, то
Отсюда ( см.рисунок)
Ответ:
Комментарий:
Запишем правую часть неравенства как степень числа Поскольку то при переходе от степеней к показателям знак неравенства меняется на противоположный (получаем неравенство, равносильное данному).
Для решения полученного квадратного неравенства используем графическую иллюстрацию.
Пример №40
Решите неравенство
Решение:
ОДЗ:
Замена дает неравенство
равносильное неравенству Поскольку получаем Отсюда Учитывая, что имеем Выполняя обратную замену, получаем Тогда
Функция является возрастающей, таким образом, Учитывая ОДЗ, получаем
Ответ:
Комментарий:
Поскольку равносильные преобразования неравенств выполняются на ОДЗ исходного неравенства, то зафиксируем эту ОДЗ. Используя формулу избавляемся от числового слагаемого в показателе степени и получаем степени с одним основанием 3, что позволяет ввести замену
В полученном неравенстве знаменатель положителен, поэтому это дробное неравенство можно привести к равносильному ему квадратному.
После выполнения обратной замены следует учесть не только возрастание функции но и ОДЗ исходного неравенства.
Пример №41
Решите неравенство
Решение:
Решим неравенство методом интервалов. Обозначим
1 ОДЗ:
2. Нули функции:
Замена Получаем Обратная замена дает:
Отсюда Отметим нули функции на ОДЗ, находим знак в каждом из полученных промежутков и записываем решения неравенства
Ответ:
Комментарий:
Данное неравенство можно решать или приведением к алгебраическому неравенству, или методом интервалов. Для решения его методом интервалов используем схему, приведенную в таблице 52.
При нахождении нулей функции приведем все степени к двум основаниям (2 и 3), чтобы получить однородное уравнение. Это уравнение решается делением обеих частей на наивысшую степень одного из видов переменных — на Учитывая, что при всех значениях в результате деления на получаем уравнение, равносильное предыдущему.
Разумеется, для решения данного неравенства можно было учесть, что всегда, и после деления данного неравенства на и замены получить алгебраическое неравенство.
Пример №42
Решите неравенство
Комментарий:
Данное нестрогое неравенство также удобно решать методом интервалов. Записывая ответ, следует учитывать, что в случае, когда мы решаем нестрогое неравенство все нули функции должны войти в ответ.
Решение:
Обозначим
1. ОДЗ: Тогда (см. рисунок).
2. Нули функции:
Тогда Из первого уравнения: — не принадлежит ОДЗ, а из второго:
3. Отмечаем нули на ОДЗ, находим знак в каждом из промежутков, на которые разбивается ОДЗ, и записываем решение неравенства
Ответ:
Показательные функции в высшей математике
Рассмотрим функцию, заданную равенством Составим таблицу её значений для нескольких значений аргумента:
На рисунке 19, а обозначены точки, координаты которых соответствуют этой таблице. Когда на этой же координатной плоскости обозначить больше точек с координатами удовлетворяющих равенству они разместятся, как показано на рисунке 19, б. А если для каждого действительного значения вычислить соответствующее значение и обозначить на координатной плоскости точки с координатами они разместятся на одной бесконечной кривой (рис. 19, в). Эта кривая — график функции
График функции размещён в I и II координатных четвертях. Когда он как угодно близко подходит к оси но общих точек с ней не имеет. Говорят, что график функции асимптотически приближается к оси что ось — асимптота этого графика. Когда неограниченно увеличивается, график функции всё дальше отходит от оси Как видим, функция определена для всех действительных чисел, её область значений — промежуток На всей области определения функция возрастает, она ни чётная, ни нечётная, ни периодическая.
Рассматриваемая функция — пример показательной функции, а именно — показательная функция с основанием 2.
Показательной функцией называется функция, заданная формулой
Примеры других показательных функций: Их графики изображены на рисунке 20. Согласно определению функция не является показательной.
Основные свойства показательной функции
- Область определения функции — множество ибо при каждом положительном и действительном выражение определено.
- Область значений функции — множество поскольку, если основание степени положительное, то положительная и степень Следовательно, функция принимает только положительные значения.
- Если функция возрастает, а если — убывает. Это свойство хорошо видно на графиках функций (рис. 20).
- Функция каждое своё значение принимает только один раз, т. е. прямую, параллельную оси график показательной функции может пересечь только в одной точке. Это следует из свойства 3.
- Функция ни чётная, ни нечётная, ни периодическая. Поскольку каждое своё значение она принимает только один раз, то не может быть чётной или периодической. Не может она быть и нечётной, так как не имеет ни отрицательных, ни нулевых значений.
- График каждой показательной функции проходит через точку поскольку если
При решении задач и упражнений, связанных с показательной функцией, особенно часто используется третье свойство, в котором указывается на монотонность показательной функции, то есть её возрастание или убывание. В частности из него вытекают следующие утверждения.
- Если
- Если
- Если
Присмотритесь к графикам показательных функций и (рис. 21). Угловой коэффициент касательной, проведённой в точке к графику функции меньше 1, а к графику функции — больше 1. Существует ли такая показательная функция, у которой угловой коэффициент касательной к её графику в точке равен 1? Существует (рис. 22).Основание этой показательной функции — иррациональное число 2,71828 …, которое принято обозначать буквой Показательная функция в математике и многих прикладных науках встречается довольно часто, ее называют экспонентом (лат. exponens — выставлять напоказ).
К показательной функции иногда относят также функции вида При помощи таких функций описывают много разных процессов, связанных с физикой, химией, биологией, экономикой, социологией и т. д. Например, процессы новообразования и распада вещества можно описать с помощью формулы Здесь — количество вновь образованного (или распавшегося) вещества в момент времени — начальное количество вещества, — постоянная, значение которой определяется для конкретной ситуации. Подберите самостоятельно соответствующие примеры.
Пример №43
Сравните с единицей число:
Решение:
а) Представим число 1 в виде степени с основанием 0,5. Имеем: Поскольку функция убывающая и отсюда
функция возрастающая и поэтому отсюда
Пример №44
Функция задана на промежутке Найдите её наименьшее и наибольшее значения.
Решение:
Поскольку то данная функция убывающая. Поэтому её наименьшее и наибольшее значения:
Пример №45
Постройте график функции
Решение:
Функция — чётная (проверьте). График чётной функции симметричен относительно оси поэтому достаточно построить график заданной функции для и отобразить его симметрично относительно оси Если Построим график функции для и отобразим его симметрично относительно оси (рис. 23).
- Производные показательной и логарифмической функций
- Показательно-степенные уравнения и неравенства
- Показательные уравнения и неравенства
- Логарифмические уравнения и неравенства
- Техника дифференцирования
- Дифференциальная геометрия
- Логарифмическая функция, её свойства и график
- Логарифмические выражения
28
Ноя 2013
Категория: 11 Исследование функции
2013-11-28
2021-09-24
Надеюсь, вы различаете понятия «точка минимума», «минимум», «наименьшее значение функции»… + показать
Задача 1. Найдите точку минимума функции .
Решение: + показать
Задача 2. Найдите наименьшее значение функции
Решение: + показать
Задача 3. Найдите точку максимума функции .
Решение: + показать
Задача 4. Найдите минимум функции .
Решение: + показать
Задача 5. Найдите наименьшее значение функции
Решение: + показать
Вы можете пройти тест (исследование функции без использования производной)
Автор: egeMax |
комментариев 28
Нахождение
наименьшего значения показательной функции.
Краткая
теоретическая часть
Рассмотрим,
как производная используется для нахождения наибольшего и наименьшего
значения функции на отрезке. Наибольшее и наименьшее значение непрерывной
функции на отрезке может быть как на концах отрезка, так и внутри него. ( в
отличие от экстремумов функции, которые на концах промежутка не могут быть).
Если наибольшее или наименьшее значение достигается внутри отрезка, то это
только в стационарных точках (где производная равна нулю) или в
критических ( где производная не существует). Будем их называть
одним словом «Критические».
Алгоритм нахождения
наибольшего и наименьшего значения функции y
= f(x)
на отрезке [a;b]
1. Найти
производную f ´(x).
2. Найти
стационарные и критические точки (приравнять производную к нулю, то есть
найти f
´(x)=0).
3. Из
полученных точек выбрать те, которые попадают в заданный по условию отрезок.
4. Вычислить
значение функции в выбранных точках и на концах промежутка.
5. Из
полученных чисел выбрать самое наибольшее Унаиб
или самое наименьшее Унаим.
Самостоятельная
работа.
Вариант
1.
1. Найдите наименьшее
значение функции на отрезке .
2. Найдите наименьшее
значение функции на
отрезке .
3. Найдите наименьшее
значение функции на отрезке .
4. Найдите наименьшее
значение функции на отрезке .
5. Найдите наименьшее
значение функции на
отрезке .
6. Найдите наименьшее
значение функции на отрезке .
7. Найдите наименьшее
значение функции .
8. Найдите наименьшее
значение функции .
9.Найдите наименьшее
значение функции на отрезке .
Вариант
2.
1. Найдите наименьшее
значение функции на отрезке .
2. Найдите наименьшее
значение функции на
отрезке .
3. Найдите наименьшее
значение функции на отрезке .
4. Найдите наименьшее
значение функции на отрезке .
5. Найдите наименьшее
значение функции на
отрезке .
6. Найдите наименьшее
значение функции на отрезке .
7. Найдите наименьшее
значение функции .
8. Найдите наименьшее
значение функции .
9.Найдите наименьшее
значение функции на отрезке .
Вариант
3.
1. Найдите наименьшее
значение функции на отрезке .
2. Найдите наименьшее
значение функции на
отрезке .
3. Найдите наименьшее
значение функции на отрезке .
4. Найдите наименьшее
значение функции на отрезке .
5. Найдите наименьшее
значение функции на
отрезке .
6. Найдите наименьшее
значение функции на отрезке .
7. Найдите наименьшее
значение функции .
8. Найдите наименьшее
значение функции .
9.Найдите наименьшее
значение функции на отрезке .
Вариант
4.
1.
Найдите
наименьшее значение функции на отрезке .
2.
Найдите
наименьшее значение функции на
отрезке .
3.
Найдите
наименьшее значение функции на отрезке .
4.
Найдите
наименьшее значение функции на отрезке .
5.
Найдите
наименьшее значение функции на
отрезке .
6.
Найдите
наименьшее значение функции на отрезке .
7. Найдите наименьшее
значение функции .
8. Найдите наименьшее
значение функции .
9. Найдите наименьшее значение функции на отрезке .