Как найти наименьшее значение функции пример

Наибольшее и наименьшее значение функции

Как найти?

Постановка задачи

Найти наибольшее и наименьшее значение функции $ f(x) $ на отрезке $ [a,b] $

План решения

Наибольшее и наименьшее значение непрерывной функции $ f(x) $ на промежутке $ [a,b] $ достигаются в критических точках, то есть в точках в которых производная функции равна нулю $ f'(x) = 0 $, бесконечности $ f'(x) = pm infty $, не существует, либо на концах отрезка $ [a,b] $

  1. Проверяем на непрерывность функцию $ f(x) $ на заданном отрезке
  2. Если функция непрерывная, то находим производную $ f'(x) $ и приравниваем её к нулю
  3. Решая уравнение $ f'(x) = 0 $ получаем корни, являющиеся критическими точками
  4. Выбираем критические точки, принадлежащие отрезку $ [a,b] $
  5. Вычисляем значения функции $ f(x) $ в оставшихся критических точках, а так же на концах промежутка $ [a,b] $. Затем выбираем из них наибольшее $ M $ и наименьшее $ m $

Примеры решений

Пример 1
Найти наибольшее и наименьшее значение функции $ y = 2x^3 – 3x^2 – 4 $ на отрезке $ [0;2] $
Решение

Функция представляет собой кубический многочлен. Точек разрыва нет, значит функция непрерывна на отрезке $ [0;2] $.

Находим производную: $$ y’ = (2x^3 – 3x^2 – 4)’ = 6x^2 – 6x $$

Приравниваем производную к нулю. Решаем уравнение и получаем критические точки:

$$ 6x^2 – 6x = 0 $$ $$ 6x(x – 1) = 0 $$ $$ x_1 = 0, x_2 = 1 $$

Проверяем принадлежность полученных точек отрезку $ [0;2] $:

$$ x_1 in [0;2], x_2 in [0;2] $$

Так как обе точки принадлежат отрезку, то вычисляем в них значение функции $ f(x) $, так же значение этой функции на концах интервала $ [0;2] $:

$$ y(x_1) = y(a) = f(0) = 2 cdot 0^3 – 3 cdot 0^2 – 4 = -4 $$

$$ y(x_2) = y(1) = 2 cdot 1^3 – 3 cdot 1^2 – 4 = -5 $$

$$ y(b) = y(2) = 2 cdot 2^3 – 3 cdot 2^2 – 4 = 0 $$

Среди полученных значений наибольшее $ M = 0 $, наименьшее $ m = -5 $

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ M = 0, m = -5 $$
Пример 2
Найти наименьшее и наибольшее значение функции $ y = frac{4x^2}{3+x^2} $ на $ [-1;1] $
Решение

Функция непрерывна на $ x in [-1;1] $ так как знаменатель не обращается в ноль ни при каком $ x $.

Выполняем нахождение производной:

$$ y’ = (frac{4x^2}{3+x^2})’ = frac{(4x^2)'(3+x^2)-(4x^2)(3+x^2)’}{(3+x^2)^2} = $$

$$ = frac{8x(3+x^2)-(4x^2)(2x)}{(3+x^2)^2} = frac{24x+8x^3-8x^3}{3+x^2)^2} = frac{24x}{(3+x^2)^2} $$

Приравниваем полученную производную к нулю и вычисляем критические точки:

$$ frac{24x}{(3+x^2)^2} = 0 $$ $$ 24x = 0, 3+x^2 neq 0 $$ $$ x = 0 $$

Получена единственная критическая точка $ x = 0 $, которая принадлежит $ [-1; 1] $.

Вычисляем значение функции $ f(x) $ в критической точке и на концах интервала $ [-1;1] $:

$$ y(-1) = frac{4cdot (-1)^2}{3+(-1)^2} = frac{4}{4}=1 $$

$$ y(0) = frac{0}{3} = 0 $$

$$ y(1) = frac{4cdot 1^2}{3+1^2} = frac{4}{4} = 1 $$

Из полученных значений видно, что максимальное значение $ M = 1 $ и минимальное значение $ m = 0 $.

Ответ
$$ m = 0, M = 1 $$

На практике довольно часто приходится использовать производную для того, чтобы вычислить самое большое и самое маленькое значение функции. Мы выполняем это действие тогда, когда выясняем, как минимизировать издержки, увеличить прибыль, рассчитать оптимальную нагрузку на производство и др., то есть в тех случаях, когда нужно осуществить поиск и определить оптимальное значение какого-либо параметра или количество. Чтобы решить такие задачи верно, надо хорошо понимать, что такое наибольшее и наименьшее значение функции.

Обычно нами строится выражение этих значений в рамках некоторого интервала x, который может в свою очередь соответствовать всей области определения функции или ее части. Это может быть как отрезок [a; b], так и открытый интервал (a; b), (a; b], [a; b), бесконечный интервал (a; b), (a; b], [a; b) либо бесконечный промежуток -∞; a, (-∞; a], [a; +∞), (-∞; +∞).

В этом материале мы расскажем, как найти наибольшее и наименьшее значение явно заданной функции с одной  переменной y=f(x)y=f(x), чтобы вам не нужно было искать это самостоятельно онлайн.

Основные определения

Начнем, как всегда, с формулировки основных определений: какое значение называют максимальным и минимальным?.

Определение 1

Наибольшее значение функции y=f(x) на некотором промежутке x – это значение max y=f(x0)x∈X, которое при любом значении xx∈X, x≠x0 делает справедливым неравенство f(x)≤f(x0).

Определение 2

Минимальное значение функции y=f(x) на некотором промежутке x– это значение minx∈Xy=f(x0), которое при любом значении x∈X, x≠x0 делает справедливым неравенство f(Xf(x)≥f(x0).

Данные определения являются достаточно очевидными. Еще проще можно сказать так: наибольшее значение функции – это ее наибольшее число, которое она может принимать на известном интервале при абсциссе x0, а наименьшее – это самое маленькое принимаемое значение на том же интервале при x0.

Определение 3

Стационарными точками называются такие значения аргумента функции, при которых ее производная обращается в 0.

Зачем нам нужно знать, что такое стационарные точки?  Для ответа на этот вопрос надо вспомнить теорему Ферма. Из нее следует, что стационарная точка – это такая точка, в которой находится экстремум дифференцируемой функции (т.е. ее локальный минимум или максимум). Следовательно, функция будет принимать наименьшее или то, что больше всего, значение на некотором промежутке именно в одной из стационарных точек.

Еще  функция может принимать наибольшее или наименьшее значение в тех точках, в которых сама функция является определенной, а ее первой производной не существует.

Первый вопрос, который возникает при изучении этой темы: во всех ли случаях мы можем определить наибольшее или найти наименьшее значение функции на заданном отрезке? Нет, мы не можем этого сделать тогда, когда границы заданного промежутка будут совпадать с  границами области определения, или если мы имеем дело с интервалом, не имеющим конца. Бывает и так, что функция в заданном отрезке или на бесконечности будет принимать бесконечно малые или бесконечно большие значения (мало и много). В этих случаях определить или найти наибольшее и/или наименьшее значение не представляется возможным.

Более понятными эти моменты станут после изображения на графиках:

Наибольшее и наименьшее значение функции на отрезке

Наибольшее и наименьшее значение функции на отрезке

Первый рисунок показывает нам функцию, которая принимает наибольшее и наименьшее значения (max y и min y) в стационарных точках, расположенных на отрезке [-6;6].

Разберем подробно случай, указанный на втором графике. Изменим значение отрезка на [1;6] и получим, что наибольшее значение функции будет достигаться в точке с абсциссой в правой границе интервала, а наименьшее – в стационарной точке.

На третьем рисунке абсциссы точек представляют собой граничные точки отрезка [-3;2]. Они соответствуют наибольшему и наименьшему значению заданной функции.

Наибольшее и наименьшее значение функции на открытом интервале

Наибольшее и наименьшее значение функции на открытом интервале

Теперь посмотрим на четвертый рисунок. В нем функция принимает max y (наибольшее значение) и min y (наименьшее значение) в стационарных точках на открытом интервале (-6;6).

Если мы возьмем интервал [1;6), то можно сказать, что наименьшее значение функции на нем будет достигнуто в стационарной точке. Наибольшее значение нам будет неизвестно. Функция могла бы принять наибольшее значение при x, равном 6, если бы x=6 принадлежала интервалу. Именно этот случай нарисован на графике 5.

На графике 6 наименьшее значение данная функция приобретает в правой границе интервала (-3;2], а о наибольшем значении мы не можем сделать определенных выводов.

Наибольшее и наименьшее значение функции на бесконечности

Наибольшее и наименьшее значение функции на бесконечности

На рисунке 7 мы видим, что функция будет иметь max y в стационарной точке, имеющей абсциссу, равную 1. Наименьшего значения функция достигнет на границе интервала с правой стороны. На минус бесконечности значения функции будут асимптотически приближаться к y=3.

Если мы возьмем интервал x∈2; +∞, то увидим, что заданная функция не будет принимать на нем ни наименьшего, ни наибольшего значения. Если x стремится к 2, то значения функции будут стремиться к минус бесконечности, поскольку прямая x=2 – это вертикальная асимптота. Если же абсцисса стремится к плюс бесконечности, то значения функции будут асимптотически приближаться к y=3. Именно этот случай изображен на рисунке 8.

Как найти наибольшее и наименьшее значение непрерывной функции на заданном отрезке

Как найти наибольшее и наименьшее значение функции на отрезке?

В этом пункте мы приведем последовательность действий, которую нужно выполнить, чтобы найти наибольшее значение функции на некотором отрезке или как найти наименьшее значение функции.

  1. Для начала найдем область определения функции. Проверим, входит ли в нее заданный в условии отрезок.
  2. Теперь вычислим точки, содержащиеся в данном отрезке, в которых не существует первой производной. Чаще всего их можно встретить у функций, аргумент которых записан под знаком модуля, или у степенных функций, показатель которых является дробно рациональным числом.
  3. Далее выясним, какие стационарные точки попадут в заданный отрезок. Для этого надо вычислить производную функции, потом приравнять ее к 0 и решить получившееся в итоге уравнение, после чего выбрать подходящие корни. Если у нас не получится ни одной стационарной точки или они не будут попадать в заданный отрезок, то мы переходим к следующему шагу.
  4. Определим, какие значения будет принимать функция в заданных стационарных точках (если они есть), или в тех точках, в которых не существует первой производной (если они есть), либо же вычисляем значения для x=a и x=b.
  5. У нас получился ряд значений функции, из которых теперь нужно выбрать самое больше и самое маленькое. Это и будут наибольшее и наименьшее значения функции, которые нам нужно найти.

Посмотрим, как правильно применить этот алгоритм при решении задач.

Пример 1

Условие: задана функция y=x3+4×2. Определите ее наибольшее и наименьшее значение на отрезках [1;4] и [-4;-1].

Решение:

Начнем с нахождения области определения данной функции. В этом случае ей будет множество всех действительных чисел, кроме 0. Иными словами, D(y): x∈(-∞; 0)∪0; +∞. оба отрезка, заданных в условии, будут находиться внутри области определения.

Теперь вычисляем производную функции согласно правилу дифференцирования дроби:

y’=x3+4×2’=x3+4’·x2-x3+4·x2’x4==3×2·x2-(x3-4)·2xx4=x3-8×3

Мы узнали, что производная функции будет существовать во всех точках отрезков [1;4] и [-4;-1].

Теперь нам надо определить стационарные точки функции. Сделаем это с помощью уравнения x3-8×3=0. У него есть только один действительный корень, равный 2. Он будет стационарной точкой функции и попадет в первый отрезок [1;4].

Вычислим значения функции на концах первого отрезка и в данной точке, т.е. для x=1, x=2 и x=4:

y(1)=13+412=5y(2)=23+422=3y(4)=43+442=414

Мы получили, что наибольшее значение функции max yx∈[1; 4]=y(2)=3 будет достигнуто при x=1, а наименьшее min yx∈[1; 4]=y(2)=3 – при x=2.

Второй отрезок не включает в себя ни одной стационарной точки, поэтому нам надо вычислить значения функции только на концах заданного отрезка:

y(-1)=(-1)3+4(-1)2=3

Значит,  max yx∈[-4; -1]=y(-1)=3, min yx∈[-4; -1]=y(-4)=-334.

Ответ: Для отрезка [1;4] – max yx∈[1; 4]=y(2)=3, min yx∈[1; 4]=y(2)=3, для отрезка [-4;-1] – max yx∈[-4; -1]=y(-1)=3, min yx∈[-4; -1]=y(-4)=-334.

См. на рисунке:

Как найти наибольшее и наименьшее значение непрерывной функции на заданном отрезке

Как найти наибольшее и наименьшее значение непрерывной функции на открытом или бесконечном интервале

Перед тем как изучить данный способ, советуем вам повторить, как правильно вычислять односторонний предел и предел на бесконечности, а также узнавать основные методы их нахождения. Чтобы найти наибольшее и/или наименьшее значение функции на открытом или бесконечном интервале, выполняем последовательно следующие действия.

  1. Для начала нужно проверить, будет ли заданный интервал являться подмножеством области определения данной функции.
  2. Определим все точки, которые содержатся в нужном интервале и в которых не существует первой производной. Обычно они бывают у функций, где аргумент заключен в знаке модуля, и у степенных функций с дробно рациональным показателем. Если же эти точки отсутствуют, то можно переходить к следующему шагу.
  3. Теперь определим, какие стационарные точки попадут в заданный промежуток. Сначала приравняем производную к 0, решим уравнение и подберем подходящие корни. Если у нас нет ни одной стационарной точки или они не попадают в заданный интервал, то сразу переходим к дальнейшим действиям.  Их определяет вид интервала.
  • Если интервал имеет вид [a;b), то нам надо вычислить значение функции в точке x=a и односторонний предел limx→b-0f(x).
  • Если интервал имеет вид (a;b], то нам надо вычислить значение функции в точке x=b и односторонний предел limx→a+0f(x).
  • Если интервал имеет вид  (a;b), то нам надо вычислить односторонние пределы limx→b-0f(x),limx→a+0f(x).
  • Если интервал имеет вид [a; +∞), то надо вычислить значение в точке x=a и предел на плюс бесконечности limx→+∞f(x).
  • Если интервал выглядит как (-∞; b], вычисляем значение в точке x=b и предел на минус бесконечности limx→-∞f(x).
  • Если -∞; b, то считаем односторонний предел limx→b-0f(x) и предел на минус бесконечности limx→-∞f(x)
  • Если же -∞; +∞, то считаем пределы на минус и плюс бесконечности limx→+∞f(x),  limx→-∞f(x).
  1. В конце нужно сделать вывод на основе полученных значений функции и пределов. Здесь возможно множество вариантов. Так, если односторонний предел равен минус бесконечности или плюс бесконечности, то сразу понятно, что о наименьшем и наибольшем значении функции сказать ничего нельзя. Ниже мы разберем один типичный пример. Подробные описания помогут вам понять, что к чему. При необходимости можно вернуться к рисункам 4-8 в первой части материала.
Пример 2

Условие: дана функция y=3e1x2+x-6-4. Вычислите ее наибольшее  и наименьшее значение в интервалах  -∞; -4, -∞; -3, (-3;1], (-3;2), [1;2), 2; +∞, [4; +∞).

Решение

Первым делом находим область определения функции. В знаменателе дроби стоит квадратный (квадратичный) трехчлен, который не должен обращаться в 0:

x2+x-6=0D=12-4·1·(-6)=25×1=-1-52=-3×2=-1+52=2⇒D(y): x∈(-∞; -3)∪(-3; 2)∪(2; +∞)

Мы получили область определения функции, к которой принадлежат все указанные в условии интервалы.

Теперь выполним дифференцирование функции и получим:

y’=3e1x2+x-6-4’=3·e1x2+x-6’=3·e1x2+x-6·1×2+x-6’==3·e1x2+x-6·1’·x2+x-6-1·x2+x-6′(x2+x-6)2=-3·(2x+1)·e1x2+x-6×2+x-62

Следовательно, производные функции существуют на всей области ее определения.

Перейдем к нахождению стационарных точек. Производная функции обращается в 0 при x=-12. Это стационарная точка, которая находится в интервалах (-3;1] и (-3;2).

Вычислим значение функции при x=-4 для промежутка (-∞; -4], а также предел на минус бесконечности:

y(-4)=3e1(-4)2+(-4)-6-4=3e16-4≈-0.456limx→-∞3e1x2+x-6=3e0-4=-1

Поскольку 3e16-4>-1, значит, max yx∈(-∞; -4]=y(-4)=3e16-4. Это не дает нам возможности однозначно определяться с наименьшим значением функции. Мы можем только сделать вывод, что внизу есть ограничение -1, поскольку именно к этому значению функция приближается асимптотически на минус бесконечности.

Особенностью второго интервала является то, что в нем нет ни одной стационарной точки и ни одной строгой границы. Следовательно, ни наибольшего, ни наименьшего значения функции мы вычислить не сможем. Определив предел на минус бесконечности и при стремлении аргумента к -3 с левой стороны, мы получим только интервал значений:

limx→-3-03e1x2+x-6-4=limx→-3-03e1(x+3)(x-3)-4=3e1(-3-0+3)(-3-0-2)-4==3e1(+0)-4=3e+∞-4=+∞limx→-∞3e1x2+x-6-4=3e0-4=-1

Значит, значения функции будут расположены в интервале -1; +∞

Чтобы найти наибольшее значение функции в третьем промежутке, определим ее значение в стационарной точке  x=-12, если x=1. Также нам надо будет знать односторонний предел для того случая, когда аргумент стремится к -3 с правой стороны:

y-12=3e1-122+-12-6-4=3e425-4≈-1.444y(1)=3e112+1-6-4≈-1.644limx→-3+03e1x2+x-6-4=limx→-3+03e1(x+3)(x-2)-4=3e1-3+0+3(-3+0-2)-4==3e1(-0)-4=3e-∞-4=3·0-4=-4

У нас получилось, что наибольшее значение функция примет в стационарной точке max yx∈(3; 1]=y-12=3e-425-4. Что касается наименьшего значения, то его мы не можем определить. Все, что нам известно, – это наличие ограничения снизу до -4.

Для интервала (-3;2) возьмем результаты предыдущего вычисления и еще раз подсчитаем, чему равен односторонний предел при стремлении к 2 с левой стороны:

y-12=3e1-122+-12-6-4=3e-425-4≈-1.444limx→-3+03e1x2+x-6-4=-4limx→2-03e1x2+x-6-4=limx→-3+03e1(x+3)(x-2)-4=3e1(2-0+3)(2-0-2)-4==3e1-0-4=3e-∞-4=3·0-4=-4

Значит, max yx∈(-3; 2)=y-12=3e-425-4, а наименьшее значение определить невозможно, и значения функции ограничены снизу числом -4.

Исходя из того, что у нас получилось в двух предыдущих вычислениях, мы можем утверждать, что на интервале [1;2) наибольшее значение функция примет при x=1, а найти наименьшее невозможно.

На промежутке (2; +∞) функция не достигнет ни наибольшего, ни наименьшего значения, т.е. она будет принимать значения из промежутка -1; +∞.

limx→2+03e1x2+x-6-4=limx→-3+03e1(x+3)(x-2)-4=3e1(2+0+3)(2+0-2)-4==3e1(+0)-4=3e+∞-4=+∞limx→+∞3e1x2+x-6-4=3e0-4=-1

Вычислив, чему будет равно значение функции при x=4, выясним, что max yx∈[4; +∞)=y(4)=3e114-4 , и заданная функция на плюс бесконечности будет асимптотически приближаться к прямой y=-1.

Сопоставим то, что у нас получилось в каждом вычислении, с графиком заданной функции. На рисунке асимптоты показаны пунктиром.

Как найти наибольшее и наименьшее значение непрерывной функции на открытом или бесконечном интервале

Это все, что мы  хотели рассказать о нахождении наибольшего и наименьшего значения функции. Те последовательности действий, которые мы привели, помогут сделать необходимые вычисления максимально быстро и просто. Но помните, что зачастую бывает полезно сначала выяснить, на каких промежутках функция будет убывать, а на каких возрастать, после чего можно делать дальнейшие выводы. Так можно более точно определить наибольшее и наименьшее значение функции и обосновать полученные результаты.

Определение

Наибольшим или наименьшим значением функции в определенной области называют наибольшее или наименьшее значение, которое достигает эта функция на указанной области.

Чтобы найти наибольшее или наименьшее значение функции в данной области, нужно решить задачу на экстремум, то есть найти производную заданной функции, приравнять её к нулю и найти точки, в которых производная функции обращается в нуль. Потом из этих точек нужно выбрать только те, которые входят в нашу заданную область. Затем нужно вычислить значение функций в этих точках. Кроме этого, нужно найти значение функции в граничных точках заданной области (если это отрезок) и сравнить их со значениями в точках экстремума. Потом можно сделать вывод о наименьшем или наибольшем значении функции в данной области.

Пример 1

Определить наименьшее и наибольшее значения функции y=x3−6×2+9y=x^3-6x^2+9 на отрезке [−1;2][-1;2].

Решение

Сначала вычисляем производную исходной функции:

y′=3×2−12xy’=3x^2-12x

Затем приравниваем ее к нулевому значению и решаем уравнение:

3×2−12x=03x^2-12x=0

x(3x−12)=0x(3x-12)=0

x1=0x_1=0

x2=4x_2=4

Затем — непосредственный поиск максимального и минимального значений функции на заданном отрезке. Важно отметить, что точка x=4x=4 не входит в заданный отрезок, поэтому значение функции в этой точке вычислять не требуется.

Находим значение функции в точке x1x_1:

f(0)=9f(0)=9

Кроме этого, нужно найти значение функции в граничных точках нашего отрезка, то есть в точках x=−1x=-1 и x=2x=2:

f(−1)=−1−6+9=2f(-1)=-1-6+9=2

f(2)=8−24+9=−7f(2)=8-24+9=-7

Получаем, что на заданном отрезке, наименьшее значение функции, которое равно −7-7, достигается в точке x=2x=2 , а наибольшее значение, равное 99, достигается в точке x=0x=0.

Пример 2

Найти наибольшее и наименьшее значение функции-параболы y=3x2y=3x^2 на всей области её определения.

Решение

Функция y=3x2y=3x^2 определена на всем интервале от минус бесконечности к плюс бесконечности. Найдем производную этой функции:

y′=6xy’=6x

Приравниваем производную к нулю:

6x=06x=0

x=0x=0

Точка x=0x=0 — единственный экстремум этой функции. В этой точке функция равна f(0)=0f(0)=0. Остается решить максимум это или минимум.

Так как график нашей функции это парабола, ветви которой направлены вверх (поскольку 3>03>0), то точка x=0x=0 — точка минимума этой функции. Следовательно, функция y=3x2y=3x^2 достигает своего минимального значения в точке x=0x=0 равного 00. Максимального значения эта функция не имеет. Оно только приближается к сколь угодно большому числу когда значение аргумента стремится к плюс или минус бесконечности.

Тест по теме “Наибольшие и наименьшие значения функции”

Не можешь разобраться в этой теме?

Обратись за помощью к экспертам

Бесплатные доработки

Гарантированные бесплатные доработки

Быстрое выполнение

Быстрое выполнение от 2 часов

Проверка работы

Проверка работы на плагиат

Образовательные задачи урока.


  • повторить необходимые и достаточные условия
    существования точек экстремума, понятия:
    стационарные и критические точки;
  • ввести алгоритм нахождения наибольшего и
    наименьшего значения функции на отрезке
  • сформировать умение решать задачи на
    нахождение наибольшего и наименьшего значения
    степенной функции на отрезке с помощью
    производной.
  • разобрать прототипы задач № 1 В14
    экзаменационной работы в формате ЕГЭ.
  • Продолжить формирование общеучебных умений и
    навыков: навыков самоконтроля, умения писать
    необходимом темпе.

Воспитательные задачи:


  • cодействовать в ходе урока формированию
    основных мировоззренческих идей (материальность
    мира, познаваемость мира и его закономерностей,
    обусловленность развития науки потребностям
    производства);
  • cодействовать воспитанию у учащихся таких
    нравственных качеств, как коллективизм;
  • cодействовать профилактике утомляемости
    школьников, используя разнообразные виды работы
    на уроке.

I. Организационный момент. Приветствие.
Проверка готовности класса к уроку. Выявление
отсутствующих.

II. Актуализация знаний учащихся.

Повторить с учащимися основные понятия прошлых
уроков: точки экстремума, каково достаточное
условие точек экстремума, стационарные точки и
критические точки (учащихся отвечают с места)

Повторить таблицу производных основных
функций и основные правила нахождения

III. Изучение нового материала.

Алгоритм нахождения наибольшего и наименьшего
значения функции на отрезке

(учащиеся записывают себе в тетрадь).

Пусть функция непрерывна и дифференцируема на
отрезке , то
для нахождения наибольшего и наименьшего
значения функции на отрезке нужно:

  1. найти производную функции, найти стационарные
    точки (решаем уравнение, приравнивая производную
    к нулю)
  2. среди полученных стационарных точек выбрать те,
    которые принадлежат отрезку
  3. найти значение в стационарных точках и в концах
    отрезка, то есть и .
  4. среди полученных значений выбрать наибольшее
    или наименьшее.

Записать схему нахождения наибольшего и
наименьшего значения функции на отрезке в
тетради (учитель оформляет схему на доске):

Пусть
непрерывна на
и дифференцируема. Тогда, для нахождения или :

  1. Находим находим
  2. Проверяем принадлежность отрезку
  3. Находим , , .
  4. Среди полученных значений выбираем или .
  5. Записываем ответ (Акцентировать внимание, что в
    ответе должно быть записано либо целое число,
    либо конечная десятичная дробь).

Пример № 1. Найти наименьшее значение функции
на отрезке . (Учитель
совместно с учащимися записывает решение на
доске последовательно проговаривая каждый пункт
алгоритма).

Решение:

Ответ:

Пример № 2. Найти наибольшее значение
функции на
отрезке

Решение:

Ответ: 23

Пример № 3. Найдите наименьшее значение
функции на
отрезке .

Решение:

Ответ: -3

Пример № 4. Найдите наибольшее
значение функции на отрезке .

Решение:

Упростим функцию

Ответ: 1

IV. Закрепление материала.


  1. Найдите наименьшее значение функции на отрезке
  2. Найдите наименьшее значение функции на отрезке
  3. Найдите наименьшее значение функции на отрезке

V. Итоги урока.


  1. Повторить алгоритм нахождения наибольшего и
    наименьшего значения функции на отрезке.
  2. Выставить отметки за урок.

VI. Домашнее задание:


  1. Найдите наименьшее значение функции на отрезке
  2. Найдите наибольшее значение функции на отрезке
  3. Найдите наибольшее значение функции на отрезке
  4. Найдите наименьшее значение функции на отрезке
  5. Найти наибольшее значение функции на отрезке

Урок № 2. “Нахождение наибольшего и
наименьшего значения функций и на отрезке .

Тип урока: комбинированный.

Образовательные задачи:


  • обеспечить повторение в ходе урока алгоритма
    нахождения наибольшего и наименьшего значения
    функции на отрезке;
  • продолжить формирования навыка применения
    этого алгоритма при решении второго типа задач
    экзаменационных вариантов ЕГЭ;
  • продолжить формирование общеучебных умений и
    навыков: навыков самоконтроля, умения в
    необходимом темпе читать и писать, анализировать
    условия задачи.

Воспитательные задачи:


  • содействовать в ходе урока формированию
    основных мировоззренческих идей (материальность
    мира, познаваемость мира и его закономерностей,
    обусловленность развития науки потребностям
    производства);
  • содействовать воспитанию у учащихся таких
    нравственных качеств, как коллективизм. умение
    слушать товарищей;
  • содействовать профилактике утомляемости
    школьников.

I. Организационный момент. Приветствие.
Проверка готовности класса к уроку. Выявление
отсутствующих.

II. Проверка домашнего задания. Фронтальная
проверка домашнего задания. Если у большинства
учащихся возникли вопросы, разобрать на доске
решение конкретного задания, если лишь у
некоторых, объяснить в индивидуальном порядке,
предварительно схематично обговорив решение у
доски.

III. Актуализация знаний. Повторить еще раз
алгоритм нахождения наибольшего и наименьшего
значения функции на отрезке с оформлением схемы
на доске.

Повторить следующие формулы для дальнейшего
изучения материала:

, ,

Решить на повторение примеры (1 учащийся пишет
решение на доске с комментариями по решению,
остальные записывают себе в тетради).

IV. Решение новых прототипов задач (разбирает
решение учитель)

Пример № 1. Найти наименьшее значение
функции на
отрезке

Решение

Ответ:1

Пример № 2. Найти наименьшее значение
функции на
отрезке

Решение. Преобразуем и упростим функцию , используя
свойство логарифмов

Ответ: -6

V. Закрепление материала (самостоятельное
решение задач учащимися у доски).

Пример № 3. Найти наибольшее значение функции
на отрезке

Решение.

Ответ: 51

Пример № 4. Найти наименьшее значение функции
на отрезке

Решение.

(, так как )

Ответ: 4

Пример № 5. Найти наименьшее значение функции
на отрезке

Решение

Ответ: -1

Пример № 6. Найти наибольшее значение функции
на отрезке

Решение:

Ответ: 1

Пример № 7: Найдите наибольшее значение
функции на
отрезке

Решение

Ответ: 36

VI. Итоги урока.


  1. Повторить алгоритм нахождения наибольшего и
    наименьшего значения функции на отрезке.
  2. Проговорить основные алгоритмы решения тех
    примеров, которые изучены на уроке.

VII. Домашнее задание по вариантам.

Преподаватель который помогает студентам и школьникам в учёбе.

Наибольшее и наименьшее значения функции с примерами решения

От максимумов и минимумов функции следует отличать её наибольшее и наименьшее значения на промежутке. Функция может иметь несколько максимумов (минимумов) на некотором промежутке (рис. 91), но не более одного наибольшего (наименьшего) значения. Функция может не иметь максимума (минимума) на промежутке, но иметь наибольшее (наименьшее) значение.

Например функция, график которой изображён на рисунке 91, наибольшее значение имеет в точке Наибольшее и наименьшее значения функции с примерами решения

Наибольшее и наименьшее значения функции тесно связаны с её областью значений. Если область значений непрерывной функции — промежуток  Наибольшее и наименьшее значения функции с примерами решения наименьшее значение данной функции, Наибольшее и наименьшее значения функции с примерами решения — наибольшее её значение.

Поскольку непрерывная функция наибольшее и наименьшее значения может иметь только в точках экстремума или на концах отрезка, то для нахождения этих значений пользуются таким правилом.

Чтобы найти наибольшее и наименьшее значения непрерывной функции Наибольшее и наименьшее значения функции с примерами решения на промежутке Наибольшее и наименьшее значения функции с примерами решения нужно вычислить её значения Наибольшее и наименьшее значения функции с примерами решения на концах данного промежутка и в критических точках, принадлежащих этому промежутку, а потом выбрать из них наибольшее и наименьшее.

Записывают так: Наибольшее и наименьшее значения функции с примерами решения

Наибольшее и наименьшее значения функции с примерами решения

Пример №1

Найдите наибольшее и наименьшее значения функции Наибольшее и наименьшее значения функции с примерами решения на промежутке Наибольшее и наименьшее значения функции с примерами решения

Решение:

 Наибольшее и наименьшее значения функции с примерами решения Критические точки: Наибольшее и наименьшее значения функции с примерами решенияНаибольшее и наименьшее значения функции с примерами решения

Из этих четырёх значений функции наименьшим является -15, а наибольшим — 66.

Ответ, Наибольшее и наименьшее значения функции с примерами решения

Пример №2

Найдите наибольшее и наименьшее значения функции Наибольшее и наименьшее значения функции с примерами решения

Решение:

Областью определения функции является промежуток Наибольшее и наименьшее значения функции с примерами решения

Наибольшее и наименьшее значения функции с примерами решения
Если Наибольшее и наименьшее значения функции с примерами решения отсюда Наибольшее и наименьшее значения функции с примерами решения

Если Наибольшее и наименьшее значения функции с примерами решения а если Наибольшее и наименьшее значения функции с примерами решения Следовательно, Наибольшее и наименьшее значения функции с примерами решения — точка максимума.

Поскольку на промежутке Наибольшее и наименьшее значения функции с примерами решения функция имеет только одну критическую точку Наибольшее и наименьшее значения функции с примерами решения и эта точка является точкой максимума, то наибольшее значение функция принимает именно в этой точке и оно равно Наибольшее и наименьшее значения функции с примерами решения Наименьшего значения функция не имеет.

Ответ, Наибольшее и наименьшее значения функции с примерами решения Наименьшего значения функция не имеет.

К нахождению наибольшего или наименьшего значений функции сводится решение многих прикладных задач.

Пример №3

Есть квадратный лист жести со стороной 60 см. Найдите размеры квадратов, которые надо вырезать в углах данного листа, чтобы из полученной заготовки сделать коробку наибольшего объёма {рис. 93).

Решение:

Чтобы получить коробку (в форме прямоугольного параллелепипеда), надо вырезать равные квадраты в углах листа. Пусть Наибольшее и наименьшее значения функции с примерами решения — длина стороны такого квадрата. Тогда высота коробки равна Наибольшее и наименьшее значения функции с примерами решения а сторона основания Наибольшее и наименьшее значения функции с примерами решения Объём коробки Наибольшее и наименьшее значения функции с примерами решения — функция от Наибольшее и наименьшее значения функции с примерами решения

Наибольшее и наименьшее значения функции с примерами решения

Надо исследовать математическую модель задачи: при каком значении Наибольшее и наименьшее значения функции с примерами решения: функция Наибольшее и наименьшее значения функции с примерами решения на промежутке Наибольшее и наименьшее значения функции с примерами решения принимает наибольшее значение.

Наибольшее и наименьшее значения функции с примерами решения

Значение Наибольшее и наименьшее значения функции с примерами решения не принадлежит промежутку Наибольшее и наименьшее значения функции с примерами решения Поэтому Наибольшее и наименьшее значения функции с примерами решения

Поскольку при Наибольшее и наименьшее значения функции с примерами решения а при Наибольшее и наименьшее значения функции с примерами решения — точка максимума. Итак, в этой точке функция Наибольшее и наименьшее значения функции с примерами решения принимает наибольшее значение.

Ответ. Надо вырезать квадраты, стороны которых равны 10 см.

  • Заказать решение задач по высшей математике

Пример №4

Найдите область значений функции Наибольшее и наименьшее значения функции с примерами решения если Наибольшее и наименьшее значения функции с примерами решения

Решение:

 Наибольшее и наименьшее значения функции с примерами решения Найдём критические точки: Наибольшее и наименьшее значения функции с примерами решения отсюда Наибольшее и наименьшее значения функции с примерами решения

Найдём значение функции на концах промежутка Наибольшее и наименьшее значения функции с примерами решения и в критических точках: Наибольшее и наименьшее значения функции с примерами решения

Заданная функция непрерывна, её наибольшее значение 93, а наименьшее -115, значит, область её значений — отрезок Наибольшее и наименьшее значения функции с примерами решения

Ответ. Наибольшее и наименьшее значения функции с примерами решения

Пример №5

Найдите кратчайшее расстояние от точки Наибольшее и наименьшее значения функции с примерами решения до графика функции Наибольшее и наименьшее значения функции с примерами решения

Решение:

Пусть ближайшая к Наибольшее и наименьшее значения функции с примерами решения точка Наибольшее и наименьшее значения функции с примерами решения графика функции имеет абсциссу Наибольшее и наименьшее значения функции с примерами решения её ордината равна Наибольшее и наименьшее значения функции с примерами решения (рис. 94). Найдём квадрат расстояния между точками Наибольшее и наименьшее значения функции с примерами решенияНаибольшее и наименьшее значения функции с примерами решения Длина расстояния Наибольшее и наименьшее значения функции с примерами решения наименьшая, когда её квадрат наименьший. Итак, найдём наименьшее значение функции Наибольшее и наименьшее значения функции с примерами решенияНаибольшее и наименьшее значения функции с примерами решения

Уравнение Наибольшее и наименьшее значения функции с примерами решения действительных корней не имеет, поэтому функция Наибольшее и наименьшее значения функции с примерами решения имеет одну критическую точку Наибольшее и наименьшее значения функции с примерами решения Если Наибольшее и наименьшее значения функции с примерами решения Следовательно, Наибольшее и наименьшее значения функции с примерами решения — точка минимума. В этой точке функция Наибольшее и наименьшее значения функции с примерами решения принимает наименьшее значение.

Наименьшее значение квадрата расстояния

Наибольшее и наименьшее значения функции с примерами решения

Ответ. Наибольшее и наименьшее значения функции с примерами решения

  • Раскрытие неопределенностей
  • Дробно-рациональные уравнения
  • Дробно-рациональные неравенства
  • Прогрессии в математике – арифметическая, геометрическая
  • Рациональная дробь
  • Функция в математике
  • Правило Лопиталя
  • Вычисления в Mathematica с примерами

Добавить комментарий