Как найти наименьший общий множитель дроби

В данной статье рассказывается, как привести дроби к общему знаменателю и как найти наименьший общий знаменатель. Приведены определения, дано правило приведения дробей к общему знаменателю и рассмотрены практические примеры.

Что такое приведение дроби к общему знаменателю?

Обыкновенные дроби состоят из числителя – верхней части, и знаменателя – нижней части. Если дроби имеют одинаковый знаменатель, говорят, что они приведены к общему знаменателю. Например, дроби 1114, 1714, 914 имеют одинаковый знаменатель 14. Другими словами, они приведены к общему знаменателю.

Если же дроби имеют разные знаменатели, то их всегда можно привести к общему знаменателю при помощи нехитрых действий. Чтобы сделать это, нужно числитель и знаменатель умножить на определенные дополнительные множители.

Очевидно, что дроби 45 и 34 не приведены к общему знаменателю. Чтобы это сделать, нужно с использованием дополнительных множителей 5 и 4 привести их к знаменателю 20. Как именно сделать это? Умножим числитель и знаменатель дроби 45 на 4, а числитель и знаменатель дроби 34  умножим на 5. Вместо дробей 45 и 34 получим соответственно 1620 и 1520.

Приведение дробей к общему знаменателю

Приведение дробей к общему знаменателю – это умножение числителей и знаменателей дробей на такие множители, что в результате получаются идентичные дроби с одинаковым знаменателем.

Общий знаменатель: определение, примеры

Что такое общий знаменатель?

Общий знаменатель

Общий знаменатель дробей – это любое положительное число, которое является общим кратным всех данных дробей.

Другими словами, общим знаменателем какого-то набора дробей будет такое натуральное число, которое без остатка делится на все знаменатели этих дробей.

Ряд натуральных чисел бесконечен, и поэтому, согласно определению, каждый набор обыкновенных дробей имеет бесконечное множество общих знаменателей. Иначе говоря, существует бесконечно много общих кратных для всех знаменателей исходного набора дробей.

Общий знаменатель для нескольких дробей легко найти, пользуясь определением. Пусть есть дроби 16 и 35. Общим знаменателем дробей будет любое положительное общее кратное для чисел 6 и 5. Такими положительными общими кратными являются числа 30, 60, 90, 120, 150, 180, 210 и так далее.

Рассмотрим пример.

Пример 1. Общий знаменатель

Можно ди дроби 13, 216, 512 привести к общему знаменателю, который равен 150?

Чтобы выяснить, так ли это, нужно проверить, является ли 150 общим кратным для знаменателей дробей, то есть для чисел 3, 6, 12. Другими словами, число 150 должно без остатка делиться на 3, 6, 12.  Проверим:

150÷3=50, 150÷6=25, 150÷12=12,5

Значит, 150 не является общим знаменателем указанных дробей.

Наименьший общий знаменатель

Наименьшее натуральное число из множества общих знаменателей какого-то набора дробей называется наименьшим общим знаменателем.

Наименьший общий знаменатель

Наименьший общий знаменатель дробей – это наименьшее число среди всех общих знаменателей этих дробей.

Наименьший общий делитель данного набора чисел – это наименьшее общее кратное (НОК). НОК всех знаменателей дробей является наименьшим общим знаменателем этих дробей.

Как найти наименьший общий знаменатель? Его нахождение сводится к нахождению наименьшего общего кратного дробей. Обратимся к примеру:

Пример 2. Найти наименьший общий знаменатель

Нужно найти наименьший общий знаменатель для дробей 110 и 12728.

Ищем НОК чисел 10 и 28.  Разложим их на простые множители и получим:

10=2·528=2·2·7НОК(15, 28)=2·2·5·7=140

Как привести дроби к наименьшему общему знаменателю

Существует правило, которое объясняет, как привести дроби к общему знаменателю. Правило состоит из трех пунктов.

Правило приведения дробей к общему знаменателю
  1. Найти наименьший общий знаменатель дробей.
  2. Для каждой дроби найти дополнительный множитель. Чтобы найти множитель нужно наименьший общий знаменатель разделить на знаменатель каждой дроби.
  3. Умножить числитель и знаменатель на найденный дополнительный множитель.

Рассмотрим применение этого правила на конкретном примере.

Пример 3. Приведение дробей к общему знаменателю

Есть дроби 314 и 518. Приведем их к наименьшему общему знаменателю.

По правилу, сначала найдем НОК знаменателей дробей.

14=2·718=2·3·3НОК(14, 18)=2·3·3·7=126

Вычисляем дополнительные множители для каждой дроби. Для 314 дополнительный множитель находится как 126÷14=9, а для дроби 518 дополнительный множитель будет равен 126÷18=7.

Умножаем числитель и знаменатель дробей на дополнительные множители и получаем:

3·914·9=27126, 5·718·7=35126.

Приведение нескольких дробей к наименьшему общему знаменателю

По рассмотренному правилу к общему знаменателю можно приводить не только пары дробей, но и большее их количество.

Приведем еще один пример.

Пример 4. Приведение дробей к общему знаменателю

Привести дроби 32, 56,38 и 1718 к наименьшему общему знаменателю.

Вычислим НОК знаменателей. Находим НОК трех и большего количества чисел:

НОК(2, 6)=6НОК(6, 8)=24НОК(24, 18)=72НОК(2, 6, 8, 18)=72

Далее вычислим дополнительные множители для каждой дроби. 

Для 32 дополнительный множитель равен 72÷2= 36, для 56 дополнительный множитель равен 72÷6= 12, для 38 дополнительный множитель равен 72÷8= 9, наконец, для 1718 дополнительный множитель равен 72÷18= 4.

Умножаем дроби на дополнительные множители и переходим к наименьшему общему знаменателю:

32·36=1087256·12=607238·9=27721718·4=6872

Как привести дробь к наименьшему общему знаменателю (пример)

Как привести дробь к наименьшему общему знаменателю (пример)

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Нахождение наименьшего общего знаменателя бывает нужно для сложения, вычитания и сравнения дробей.

Наименьший общий знаменатель – это наименьшее число, которое нацело делится и на первый, и на второй знаменатель двух дробей.

Правило нахождения наименьшего знаменателя следующее:

Наименьший знаменатель

Для того, чтобы найти наименьший общий знаменатель двух дробей, нужно найти методом подбора наименьшее общее число, которое бы делилось и на первый, и на второй знаменатель. После этого нужно умножить каждую дробь на такое число, чтобы в знаменателе этих дробей получилось найденное нами наименьшее общее число.

Пример 1

Найти наименьший общий знаменатель двух дробей: 56frac{5}{6} и 34frac{3}{4}.

Решение

Находим методом подбора такое наименьшее число, которое нацело делилось бы и на 6, и на 4. Это число 12. Далее умножаем каждую дробь на такие числа, чтобы в знаменателе получилось 12. Первую дробь умножаем на 2, а вторую на 3:

56=5⋅26⋅2=1012frac{5}{6}=frac{5cdot2}{6cdot2}=frac{10}{12}

34=3⋅34⋅3=912frac{3}{4}=frac{3cdot3}{4cdot3}=frac{9}{12}

Дроби приведены к наименьшему общему знаменателю: 12.

Ответ

12

Пример 2

Найти наименьший общий знаменатель двух дробей: 521frac{5}{21} и 27frac{2}{7}.

Решение

Находим методом подбора такое наименьшее число, которое нацело делилось бы и на 21, и на 7. В этом случае это – один из знаменателей, число 21. Далее нужно умножить вторую дробь на такое число, чтобы в знаменателе получилось 21. Умножаем вторую дробь на 3:

27=2⋅37⋅3=621frac{2}{7}=frac{2cdot3}{7cdot3}=frac{6}{21}

Дроби приведены к наименьшему общему знаменателю: 21.

Ответ

21

Решение задач по алгебре онлайн от экспертов Студворк!

Тест по теме “Наименьший общий знаменатель”

Так для чего нужен общий знаменатель, или когда нужен общий знаменатель?
Ответ довольно прост, мы имеем право дроби складывать и вычитать только когда у данных дробей есть общий знаменатель. Поэтому важно понять, как находить общий знаменатель.

Определение:
Общий знаменатель – это число всегда положительное на которое делятся знаменатели данных дробей.

Формула основного свойства рациональных чисел.

Основное свойство рациональных чисел гласит:

(frac{p}{q}=frac{p times n}{q times n})

Такое решение называется приведением к общему знаменателю. Мы имеем право умножать одновременно на одно и тоже число и числитель и знаменатель.

Рассмотрим пример:

(frac{1}{2}=frac{1 times 4}{2 times 4}=frac{4}{8})

Получаем,

(frac{1}{2}=frac{4}{8})

Наименьший общий знаменатель.

Что такое наименьший общий знаменатель?

Определение:
Наименьший общий знаменатель – это наименьшее положительное число кратное знаменателям данных дробей.

Как привести к наименьшему общему знаменателю? Чтобы ответить на этот вопрос рассмотрим пример:

Приведите дроби с разными знаменателями к наименьшему общему знаменателю .

Решение:
Чтобы найти наименьший общий знаменатель нужно найти наименьшее общее кратное (НОК) знаменателей этих дробей.

У первой дроби знаменатель равен 20 разложим его на простые множители.
20=2⋅5⋅2

Так же разложим и второй знаменатель дроби 14 на простые множители.
14=7⋅2

НОК(14,20)= 2⋅5⋅2⋅7=140

Ответ: наименьший общий знаменатель будет равен 140.

Как привести дробь к общему знаменателю?

Нужно первую дробь (frac{1}{20}) домножить на 7, чтобы получить знаменатель 140.

(frac{1}{20}=frac{1 times 7}{20 times 7}=frac{7}{140})
А вторую дробь  умножить на 10.

(frac{3}{14}=frac{3 times 10}{14 times 10}=frac{30}{140})

Правила или алгоритм приведения дробей к общему знаменателю.

Алгоритм приведения дробей к наименьшему общему знаменателю:

  1. Нужно разложить на простые множители знаменатели дробей.
  2. Нужно найти наименьшее общее кратное (НОК) для знаменателей данных дробей.
  3. Привести дроби к общему знаменателю, то есть умножить и числитель и знаменатель дроби на множитель.

Общий знаменатель для нескольких дробей.

Как найти общий знаменатель для нескольких дробей?

Рассмотрим пример:
Найдите наименьший общий знаменатель для дробей (frac{2}{11}, frac{1}{15}, frac{3}{22})

Решение:
Разложим знаменатели 11, 15 и 22 на простые множители.

Число 11 оно само по себе уже простое число, поэтому его расписывать не нужно.
Разложим число 15=5⋅3
Разложим число 22=11⋅2

Найдем наименьшее общее кратное (НОК) знаменателей 11, 15, и 22.
НОК(11, 15, 22)=11⋅2⋅5⋅3=330

Мы нашли наименьший общий знаменатель для данных дробей. Теперь приведем данные дроби (frac{2}{11}, frac{1}{15}, frac{3}{22}) к общему знаменатели равному 330.

(begin{align}
frac{2}{11}=frac{2 times 30}{11 times 30}=frac{60}{330} \\
frac{1}{15}=frac{1 times 22}{15 times 22}=frac{22}{330} \\
frac{3}{22}=frac{3 times 15}{22 times 15}=frac{60}{330} \\
end{align})

Вопросы по теме:
Какой общий знаменатель у дробей (bf frac{2}{25}) и (bf frac{1}{14})?
Ответ:
Какой наименьший общий знаменатель у дробей 14 и 25? Воспользуемся алгоритмом приведения дробей к общему знаменателю алгебраических дробей.

Сначала разложим на простые множители знаменатели 14 и 25.
14=2⋅7
25=5⋅5
Теперь найдем НОК(14,25)=2⋅7⋅5⋅5=350.

Это мы нашли наименьший общий знаменатель:

( begin{align}
frac{2}{25}=frac{2 times 14}{25 times 14}=frac{28}{350} \\
frac{1}{14}=frac{1 times 25}{14 times 25}=frac{25}{350} \\
end{align})

Но не всегда нужно находит наименьший общий знаменатель иногда, можно найти любой знаменатель, а потом можно конечную дробь сократить. Например, для дробей (frac{2}{25}) и (frac{1}{14}) знаменателем может быть число 700, 1400 и т.д.

Наименьший общий знаменатель для двух или более чем двух дробей дробей равен наименьшему общему кратному знаменателей этих дробей.

Таким образом, нахождение наименьшего общего знаменателя для двух или нескольких дробей сводится к нахождению наименьшего общего кратного их знаменателей.

Чтобы найти наименьшее общее кратное (НОК) двух или нескольких чисел, необходимо:

1) разложить все эти числа на простые множители (выполнить каноническое разложение);

2) для нахождения НОК — выписать все множители, которые встречаются в каноническом разложении хотя бы одного из исходных чисел, причём каждый простой множитель следует взять с наибольшим встречающимся показателем;

3) вычислить произведение множителей, выписанных в пункте 2 (с учётом их степеней. Возведение в степень имеет приоритет перед умножением.)

Приведу пример. Нам нужно привести к наименьшему общему знаменателю дроби 11/120 и 13/126.

Для этого нам нужно найти наименьшее общее кратное знаменателей этих дробей.

Знаменатели этих дробей равны 120 и 126.

Выполним каноническое разложение этих чисел:

120 = 2^3 * 3 * 5;

126 = 2 * 3^2 * 7.

Находим НОК этих чисел. Для этого нужно выписать все простые множители, которые вообще встречаются в разложении хотя бы одного из этих чисел. В данном случае это множители 2, 3, 5 и 7. Причём каждый из них нужно взять с наибольшим показателем: двойку берём с показателем 3, тройку с показателем 2, пятёрку с показателем 1 и семёрку также с показателем 1.

Итак:

НОК (120, 126) = 2^3 * 3^2 * 5 * 7 = 8 * 9 * 5 * 7 = 2520.

Общий знаменатель равен 2520.

Чтобы привести две или несколько дробей к наименьшему общему знаменателю, нужно:

1) найти этот общий знаменатель, пользуясь вышеприведённым алгоритмом нахождения наименьшего общего знаменателя;

2) найти дополнительные множители для каждой дроби. Для этого найденный общий знаменатель необходимо разделить на знаменатели каждой из приведённых дробей (деление производится по отдельности);

3) помножить числители каждой из исходных дробей на дополнительные множители, найденные в пункте 2.

Например, нужно привести дроби 11/120 и 13/126 к наименьшему общему знаменателю.

1) Находим наименьший общий знаменатель. Он равен 2520.

2) Находим дополнительные множители.

Для первой дроби: 2520 : 120 = 21.

Для второй дроби: 2520 : 126 = 20.

3) Домножаем числители дробей на дополнительные множители.

Для первой дроби: 11 * 21 = 231.

Для второй дроби: 13 * 20 = 260.

Итак, дроби 11/120 и 13/126 после приведения к наименьшему общему знаменателю стали равными 231/2520 и 260/2520.

Несколько слов по поводу нахождения общего знаменателя у дробей, знаменатели которых содержат буквы (переменные или константы).

Если знаменатели двух или нескольких дробей представляют собой многочлены, то для нахождения простейшего общего знаменателя достаточно разложить все знаменатели на одночлены и затем взять произведение всех одночленов, которые встречаются в разложении хотя бы одного знаменателя, при этом взяв каждый одночлен в наибольшей встречающейся степени.

Если же знаменатели выражены одночленами — простейшим общим знаменателем будет одночлен, коэффициент которого равен наименьшему общему кратному коэффициентов знаменателей-одночленов, а далее следуют все буквы, которые встречаются хотя бы в одном из знаменателей, причём каждую букву необходимо взять с наибольшим встречающимся показателем.

Например, для знаменателей 8a^3c^7d и 12ab^5c^4d^2e простейшим общим знаменателем будет 24a^3b^5c^7d^2e.

Ну а по поводу наибольшего общего знаменателя — не шутка ли это?

Наибольшего общего знаменателя не существует по той причине, что ряд натуральных чисел бесконечен.

Добавить комментарий