Как найти наименьший положительный период функции cos

Преподаватель который помогает студентам и школьникам в учёбе.

Содержание:

Некоторые свойства функции Функция y=cos x и её свойства и график с примерами решения

Например, областью определения функции Функция y=cos x и её свойства и график с примерами решения является множество всех действительных чисел, множеством значений функции Функция y=cos x и её свойства и график с примерами решения является отрезок Функция y=cos x и её свойства и график с примерами решения наименьший положительный период функции Функция y=cos x и её свойства и график с примерами решения равен Функция y=cos x и её свойства и график с примерами решения

Определение функции y=cos x

Определение:

Зависимость, при которой каждому действительному числу Функция y=cos x и её свойства и график с примерами решения соответствует значение Функция y=cos x и её свойства и график с примерами решения называется функцией Функция y=cos x и её свойства и график с примерами решения

Свойства функции y=cos x

Свойства функции Функция y=cos x и её свойства и график с примерами решения приведены в таблице.:

Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

График функции y=cos x

График функции Функция y=cos x и её свойства и график с примерами решения изображен на рисунке 83. Этот график может быть получен путем преобразования (сдвига) графика функции Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

Пример №1

Определите, какие из данных точек принадлежат графику функции Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) Подставим в формулу Функция y=cos x и её свойства и график с примерами решения значение аргумента Функция y=cos x и её свойства и график с примерами решения и найдем соответствующее значение функции Функция y=cos x и её свойства и график с примерами решенияПолученное значение функции равно ординате точки Функция y=cos x и её свойства и график с примерами решения значит, точка Функция y=cos x и её свойства и график с примерами решения принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

б)    При Функция y=cos x и её свойства и график с примерами решения — получим Функция y=cos x и её свойства и график с примерами решения Точка Функция y=cos x и её свойства и график с примерами решения принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

в)    При Функция y=cos x и её свойства и график с примерами решения получим Функция y=cos x и её свойства и график с примерами решения Точка Функция y=cos x и её свойства и график с примерами решения не принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

г)    При Функция y=cos x и её свойства и график с примерами решения получим Функция y=cos x и её свойства и график с примерами решения Точка Функция y=cos x и её свойства и график с примерами решения принадлежит графику функции Функция y=cos x и её свойства и график с примерами решения

Пример №2

Найдите область определения и множество значений функции Функция y=cos x и её свойства и график с примерами решения

Решение:

Областью определения функции является множество всех действительных чисел, т. е. Функция y=cos x и её свойства и график с примерами решения

Множеством значений функции Функция y=cos x и её свойства и график с примерами решения является отрезок Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения Тогда по свойству неравенств Функция y=cos x и её свойства и график с примерами решенияФункция y=cos x и её свойства и график с примерами решения Таким образом, Функция y=cos x и её свойства и график с примерами решения

Пример №3

Найдите наименьшее значение функции Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения тогда Функция y=cos x и её свойства и график с примерами решения Наименьшее значение функции Функция y=cos x и её свойства и график с примерами решения равно -6.

Пример №4

Используя свойство периодичности функции Функция y=cos x и её свойства и график с примерами решения найдите значение выражения:

Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как число Функция y=cos x и её свойства и график с примерами решения является наименьшим положительным периодом функции Функция y=cos x и её свойства и график с примерами решения Тогда:

Функция y=cos x и её свойства и график с примерами решения

Функция y=cos x и её свойства и график с примерами решения

  • Заказать решение задач по высшей математике

Пример №5

Используя свойство четности функции Функция y=cos x и её свойства и график с примерами решения найдите значение выражения:

Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как функция Функция y=cos x и её свойства и график с примерами решения четная, то Функция y=cos x и её свойства и график с примерами решения

Тогда:

Функция y=cos x и её свойства и график с примерами решения

Пример №6

Исследуйте функцию на четность (нечетность):

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) Функция y=cos x и её свойства и график с примерами решения — область определения симметрична относительно нуля;

Функция y=cos x и её свойства и график с примерами решения значит, функция является четной.

 Функция y=cos x и её свойства и график с примерами решения –  область определения симметрична относительно нуля;

Функция y=cos x и её свойства и график с примерами решения значит, функция является нечетной.

Пример №7

Найдите нули функции:

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) Пусть Функция y=cos x и её свойства и график с примерами решения Нулями функции Функция y=cos x и её свойства и график с примерами решения являются числа Функция y=cos x и её свойства и график с примерами решения Тогда Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения Таким образом, числа Функция y=cos x и её свойства и график с примерами решения являются нулями функции Функция y=cos x и её свойства и график с примерами решения

б)    Пусть Функция y=cos x и её свойства и график с примерами решения Нулями функции Функция y=cos x и её свойства и график с примерами решения являются числа Функция y=cos x и её свойства и график с примерами решения Тогда Функция y=cos x и её свойства и график с примерами решения значит, Функция y=cos x и её свойства и график с примерами решения

Таким образом, числа Функция y=cos x и её свойства и график с примерами решения являются нулями функции Функция y=cos x и её свойства и график с примерами решения 

Пример №8

Определите знак произведения Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как Функция y=cos x и её свойства и график с примерами решения  т. е. углы

4,5 радиана и 2 радиана принадлежат промежутку Функция y=cos x и её свойства и график с примерами решения на котором функция Функция y=cos x и её свойства и график с примерами решения принимает отрицательные значения, значит, Функция y=cos x и её свойства и график с примерами решения

Угол 7 радиан принадлежит промежутку, на котором функция Функция y=cos x и её свойства и график с примерами решения принимает положительные значения, т. е. Функция y=cos x и её свойства и график с примерами решения Значит, Функция y=cos x и её свойства и график с примерами решения

Пример №9

Что больше: Функция y=cos x и её свойства и график с примерами решения

Решение:

Так как функция Функция y=cos x и её свойства и график с примерами решения убывает на промежутке Функция y=cos x и её свойства и график с примерами решения то из того, что Функция y=cos x и её свойства и график с примерами решения следует, что Функция y=cos x и её свойства и график с примерами решения

Пример №10

Постройте график функции:

Функция y=cos x и её свойства и график с примерами решения

Решение:

а) График функции Функция y=cos x и её свойства и график с примерами решения получаем из графика функции Функция y=cos x и её свойства и график с примерами решения сдвигом его вдоль оси абсцисс на Функция y=cos x и её свойства и график с примерами решения влево (рис. 86).

б)    График функции Функция y=cos x и её свойства и график с примерами решения получаем из графика функции Функция y=cos x и её свойства и график с примерами решения сдвигом его вдоль оси ординат на 2 единицы вниз (рис. 87).

Функция y=cos x и её свойства и график с примерами решения

  • Функции y=tg x и y=ctg x – их свойства, графики
  • Арксинус, арккосинус, арктангенс и арккотангенс числа
  • Тригонометрические уравнения
  • Тригонометрические неравенства
  • Определение синуса и косинуса произвольного угла
  • Определение тангенса и котангенса произвольного угла
  • Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
  • Функция y=sin x и её свойства и график

С периодическими функциями мы встречаемся в школьном курсе алгебры. Это функции, все значения которых повторяются через определенный период. Как будто мы копируем часть графика — и повторяем этот паттерн на всей области определения функции. Например, y = sin x, , y = tg x — периодические функции.

Дадим определение периодической функции:

Функция y=f(x) называется периодической, если существует такое число T, не равное нулю, что для любого x из ее области определения f(x + T) = f(x).

Другими словами, это функция, значения которой не изменяются при добавлении к значениям её аргумента некоторого фиксированного ненулевого числа T. Число T называется периодом функции. Как правило, говоря о периоде, мы имеем в виду наименьший положительный период функции.

Например, y = sin x, , y = cos x, , y = tg x, , y = ctg x — периодические функции.

Для функций y = sin x и y = cos x период T = 2pi,

Для функций tg x и y = ctg x период T = pi.

Но не только тригонометрические функции являются периодическими. Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задачи:

1. Периодическая функция y = fleft(xright) определена для всех действительных чисел. Ее период равен двум и f(1)=5. Найдите значение выражения 3f(7) - 4 f(-3).

График функции {y = }fleft(xright) может выглядеть, например, вот так:

Отметим точку М (1; 5), принадлежащую графику функции {y = }fleft(xright). Поскольку период функции равен 2, значения функции в точках 3, 5, 7dots 1 + 2k будут также равны пяти. Здесь k — целое число.

Как ведет себя функция {y = }fleft(xright) в других точках — мы не знаем. Но знаем, что ее график состоит из повторяющихся элементов длиной 2, что и нарисовано.

Значения функции {y = }fleft(xright) в точках -3 и 7 равны пяти. Мы получим: 3fleft(7right)4fleft(-3right)=3cdot 5-4cdot 5=-5.

2. График четной периодической функции y = fleft(xright) совпадает с графиком функции zleft(xright)=2(x-1)^2 на отрезке от 0 до 1; период функции y = fleft(xright) равен 2. Постройте график функции y = fleft(xright) и найдите f(4 ).

Построим график функцииzleft(xright)=2(x-1)^2 при xin [0;1].

Поскольку функция y = { f}left({ x}right) четная, ее график симметричен относительно оси ординат. Построим часть графика при xin [-1;0], симметричную части графика от 0 до 1.

Период функции y = fleft(xright) равен 2. Повторим периодически участок длины 2, который уже построен.

Найдем f(4)

f(4)= f (0 + 2cdot 2) = f(0) = 2.

3. Найдите наименьший положительный период функции fleft(xright)={sin 3x+{cos 5x}}

Наименьший положительный период функции y={sin x} равен 2pi.

График функции y=sin 3x получается из графика функции y={sin x} сжатием в 3 раза по оси X (смотри тему «Преобразование графиков функций).

Значит, у функции y={sin 3x} частота в 3 раза больше, чем у функции y={sin x}, а наименьший положительный период в 3 раза меньше и равен frac{{rm 2}pi }{{rm 3}}. Значит, на отрезке 2pi укладывается ровно 3 полных волны функции y={sin 3x}.

Рассуждая аналогично, получим, что для функции y={cos 5x} наименьший положительный период равен frac{{rm 2}pi }{{rm 5}}. На отрезке 2pi укладывается ровно 5 полных волн функции y={cos 5x}.

Числа 3 и 5 — взаимно простые. Поэтому наименьший положительный период функции fleft(xright)={sin 3x+{cos 5x}} равен 2pi.

4. Период функции fleft(xright) равен 12, а период функции gleft(xright) равен 8. Найдите наименьший положительный период функции zleft(xright)=fleft(xright)+gleft(xright).

По условию, период функции fleft(xright) равен 12. Это значит, что все значения fleft(xright) повторяются через 12, через 24, 36, 48 ... 12n . Если мы выберем любую точку x_0 на графике функции fleft(xright), то через 12, 36, 48dots 12n значение функции будет такое же, как и в точке x_0.

Аналогично, все значения функции gleft(xright) повторяются через 8, 16, 24, 32dots 8k. В этих точках значения gleft(xright) будут такие же, как и в точке x_0.

На каком же расстоянии от точки x_0 расположена точка, в которой значение функции zleft(xright)=fleft(xright)+gleft(xright) такое же, что и в точке x_0? Очевидно, на расстоянии T = 12n = 8k. Это значит, что число T делится и на 12, и на 8, то есть является их наименьшим общим кратным. Значит, T = 24 .

Наименьший положительный период суммы функций равен наименьшему общему кратному периодов слагаемых. 

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Периодические функции» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
07.05.2023

Докажем следующие утверждения:

1. Наименьший положительный период функций синус и косинус равен 2π

2. Наименьший положительный период функций тангенс и котангенс равен π

Ранее было показано, что число 2π является периодом функций y=cos(x) и y=sin(x). Остается доказать, что число, меньшее 2π, не может являться периодом этих функций.

Если Т – произвольный период косинуса, то cos(a+t)- cos(a) при любом a. Пусть a=0, следовательно cos(T)=cos(0)=1. Наименьшее положительоне число Т, для которого cos(x)=1, есть 2π

Пусть T – произвольный период синуса. Тогда sin(a+T)=sin(a) для любого a. Пусть a=π/2, получаем sin(T+π/2)=sin(π/2)=1. Но sin(x)=1 только при x=π/2+2πn, где n – целое. Следовательно T=2πn. Наименьшее положительное число вида 2πn есть 2π.

Если T – положительный период тангенса, то tg(T)=tg(0+T)=tg(0)=0. Так как на интервале (0;π) тангенс нулей не имеет, следовательно, T ≥ 2π. Ранее было доказано, что π – период функции тангенса, и, значит, π – наименьший положительный период тангенса. Аналогичное доказательство можно привести и для функции котангенса.

Обычно слова “наименьший положительный период” опускают и говорят просто “период”.

Как найти наименьший положительный период функции

Наименьший положительный период функции в тригонометрии обозначается f. Он характеризуется наименьшим значением положительного числа T, то есть меньше его значение T уже не будет являться периодом функции.

Как найти наименьший положительный период функции

Вам понадобится

  • – математический справочник.

Инструкция

Обратите внимание на то, что периодическая функция не всегда имеет наименьший положительный период. Так, к примеру, в качестве периода постоянной функции может быть абсолютно любое число, а значит, у нее может и не быть наименьшего положительного периода. Встречаются также и непостоянные периодические функции, у которых нет наименьшего положительного периода. Однако в большинстве случаев наименьший положительный период у периодических функций все же есть.

Наименьший период синуса равен 2?. Рассмотрите доказательство этого на примере функции y=sin(x). Пусть T будет произвольным периодом синуса, в таком случае sin(a+T)=sin(a) при любом значении a. Если a=?/2, получается, что sin(T+?/2)=sin(?/2)=1. Однако sin(x)=1 лишь в том случае, когда x=?/2+2?n, где n представляет собой целое число. Отсюда следует, что T=2?n, а значит, наименьшим положительным значением 2?n является 2?.

Наименьший положительный период косинуса тоже равен 2?. Рассмотрите доказательство этого на примере функции y=cos(x). Если T будет произвольным периодом косинуса, то cos(a+T)=cos(a). В том случае если a=0, cos(T)=cos(0)=1. Ввиду этого, наименьшим положительным значением T, при котором cos(x)=1, есть 2?.

Учитывая тот факт, что 2? – период синуса и косинуса, это же значение будет и периодом котангенса, а также тангенса, однако не минимальным, поскольку, как известно, наименьший положительный период тангенса и котангенса равен ?. Убедиться в этом сможете, рассмотрев следующий пример: точки, соответствующие числам (х) и (х+?) на тригонометрической окружности, имеют диаметрально противоположное расположение. Расстояние от точки (х) до точки (х+2?) соответствует половине окружности. По определению тангенса и котангенса tg(x+?)=tgx, а ctg(x+?)=ctgx, а значит, наименьший положительный период котангенса и тангенса равен ?.

Обратите внимание

Не путайте функции y=cos(x) и y=sin(x) – имея одинаковый период, эти функции изображаются по-разному.

Полезный совет

Для большей наглядности изобразите тригонометрическую функцию, у которой рассчитывается наименьший положительный период.

Источники:

  • Справочник по математике, школьная математика, высшая математика

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как найти период функции вида y=Af(kx+b), где A, k и b — некоторые числа? Поможет формула периода функции

    [{T_1} = frac{T}{{left| k right|}}]

где T — период функции y=f(x). Эта формула позволяет быстро найти период тригонометрических функций такого вида. Для функций y=sin x и y=cos x наименьший положительный период T=2п, для y=tg x и y=ctg x T=п. Рассмотрим на конкретных примерах, как найти период функции, используя данную формулу.

Найти период функции:

1) y=5sin(3x-п/8).

Здесь А=5, k=3, b=-п/8. Для нахождения периода нам нужно только k — число, стоящее перед иксом. Поскольку период синуса T=2п, то период данной функции

    [{T_1} = frac{T}{{left| k right|}} = frac{{2pi }}{{left| 3 right|}} = frac{{2pi }}{3}.]

    [2)y = frac{2}{7}cos (frac{pi }{5} - frac{x}{{11}})]

А=2/7, k=-1/11, b=п/5. Поскольку период косинуса T=2п, то

    [{T_1} = frac{T}{{left| k right|}} = frac{{2pi }}{{left| { - frac{1}{{11}}} right|}} = 2pi  cdot 11 = 22pi .]

    [3)y = 0,3tg(frac{{5x}}{9} - frac{pi }{7})]

А=0,3, k=5/9, b=п/7. Период тангенса равен п, поэтому период данной функции

    [{T_1} = frac{T}{{left| k right|}} = frac{pi }{{left| {frac{5}{9}} right|}} = frac{{9pi }}{5}.]

    [4)y = 9ctg(0,4x - 7)]

А=9, k=0,4, b=-7. Период котангенса равен п, поэтому период данной функции есть

    [{T_1} = frac{T}{{left| k right|}} = frac{pi }{{left| {0,4} right|}} = frac{{10pi }}{4} = frac{{5pi }}{2}.]

Добавить комментарий