Какая наименьшая высота у треугольника, какая — наибольшая? Как найти наименьшую (наибольшую) высоту треугольника, зная его площадь? Как найти наименьшую и наибольшую высоты по сторонам треугольника?
Площадь треугольника равна половине произведения стороны на проведенную к этой стороне высоту.
Таким образом,
то есть произведение стороны на проведенную к ней высоту равны для каждой пары множителей:
Следовательно,
наименьшая высота треугольника — та, которая проведена к его наибольшей стороне, а наибольшая высота треугольника — проведенная к наименьшей стороне.
Высота треугольника через его площадь равна частному от деления удвоенной площади на сторону, к которой эта высота проведена:
Площадь треугольника по сторонам находят по формуле Герона:
где p — полупериметр,
Значит, формулы для нахождения любой высоты треугольника по его сторонам
Наименьшая высота треугольника
Какая наименьшая высота у треугольника, какая — наибольшая? Как найти наименьшую (наибольшую) высоту треугольника, зная его площадь? Как найти наименьшую и наибольшую высоты по сторонам треугольника?
Площадь треугольника равна половине произведения стороны на проведенную к этой стороне высоту.
то есть произведение стороны на проведенную к ней высоту равны для каждой пары множителей:
наименьшая высота треугольника — та, которая проведена к его наибольшей стороне, а наибольшая высота треугольника — проведенная к наименьшей стороне.
Высота треугольника через его площадь равна частному от деления удвоенной площади на сторону, к которой эта высота проведена:
где p — полупериметр,
Значит, формулы для нахождения любой высоты треугольника по его сторонам
Формулы для нахождения высоты треугольника
В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.
Нахождение высоты треугольника
Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.
Высота в разностороннем треугольнике
Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:
1. Через площадь и длину стороны
где S – площадь треугольника.
2. Через длины всех сторон
где p – это полупериметр треугольника, который рассчитывается так:
3. Через длину прилежащей стороны и синус угла
4. Через стороны и радиус описанной окружности
где R – радиус описанной окружности.
Высота в равнобедренном треугольнике
Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:
Высота в прямоугольном треугольнике
Высота, проведенная к гипотенузе, может быть найдена:
1. Через длины отрезков, образованных на гипотенузе
2. Через стороны треугольника
Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.
Высота в равностороннем треугольнике
Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:
Примеры задач
Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.
Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:
Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.
Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:
Найдите меньшую высоту треугольника если его стороны равны 9 см 12см 15 см
Меньшая высота треугольника — это высота, опущенная на большую сторону. Опустим высоту СО на сторону АВ.
В ΔАСО по т. Пифагора:
СО² = АС²-АО²
В ΔСОВ по т. Пифагора:
СО² = ВС²-ОВ²
Отсюда следует:
АС²-АО² = ВС²-ОВ²
пусть АО=х, тогда ОВ = 15-х;
9² — х² = 12² — (15-х)²
81 — x² = 144 — (225 — 30x + x²)
81 — x² = 144 — 225 + 30x — x²
30x = 81 — 144 + 225
30x = 162
x = 5,4 (см) — АО
СО² = АС²-АО²
СО² = 9²-5,4²
СО² = 81-29,16
СО² = 51,84
СО = √51,84 = 7,2 (см)
Ответ: 7,2 см.
[spoiler title=”источники:”]
[/spoiler]
Как найти меньшую высоту треугольника
В треугольнике зависимости между сторонами и углами жестко связывают и внутренние линии фигуры – высоты, медианы и биссектрисы. Знание этих соотношений существенно упрощает решение задач.
Инструкция
Из трех высот треугольника наименьшей будет та, которая опущена на самую большую из сторон фигуры. Чтобы убедиться в этом, выразите все три высоты треугольника через размеры его сторон и сравните. Пусть из трех сторон a, b, c произвольного остроугольного треугольника сторона а — наибольшая, сторона с — наименьшая. Обозначим ha высоту, опущенную на сторону а, hb высоту, проведенную к стороне b, hc — высоту на сторону с. Высота делит любой треугольник на два прямоугольных треугольника, в которых эта высота всегда будет одним из катетов.
Высота ha, проведенная к наибольшей стороне а, может быть определена по теореме Пифагора: hа²= b² – а₁² или hа²=с² – а₂². Где а₁ и а₂ — отрезки, на которые сторона а разделена высотой hа. Также по теореме Пифагора выразите две другие высоты треугольника через его стороны:
hb ²= a²-b₁² или hb²= c²-b₂²; hc²=a²-c₁² или hc²=b²-c₂².
Из сравнения формул, определяющих высоты треугольника, очевидно, что соотношение между уменьшаемым и вычитаемым дает наименьшую разность в выражениях hа²= b² – а₁² и hа²=с²-а₂², поскольку вычитаемые а₁ и а₂ — отрезки наибольшей стороны треугольника.
Определить меньшую высоту треугольника можно также через синус известного угла треугольника. Если по условию задан наибольший из углов, то этот угол лежит против наибольшей стороны, и именно из него проведена наименьшая высота. Чтобы избежать громоздких вычислений, лучше выразите искомую высоту через тригонометрические функции двух других углов треугольника, поскольку отношение стороны треугольника к синусу противолежащего угла — величина для данного треугольника постоянная. Следовательно, наименьшая высота треугольника ha=b*SinB или ha=c*SinC, где В -угол между наибольшей стороной а и стороной b, а С — угол между наибольшей стороной а и стороной с треугольника.
Видео по теме
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
ОлегТ
[31.8K]
более месяца назад
Наименьшая высота CH будет проведена к большей стороне. Тогда AB = 7
По формуле площади треугольника: S = AB • CH / 2 = 7 • CH / 2
Откуда CH = 2 • S / 7
Надо найти площадь S, зная 3 стороны. Она ищется по формуле Герона
Найдем полупериметр p = (5 + 6 + 7) / 2 = 18 / 2 = 9
S = √(p • (p-a) • (p-b) • (p-c)) = √ ( 9 • (9-5) • (9-6) • (9-7))
S = √( 9 • 4 • 3 • 2) = 6•√6 см²
Получаем
CH = 2 • 6 • √6 / 7 ≈ 12 • 2,45 / 7 = 6 • 4,9 / 7 = 6 • 0,7 = 4,2 см
Ответ: 4,2 см
автор вопроса выбрал этот ответ лучшим
комментировать
в избранное
ссылка
отблагодарить
Наименьшая высота – это высота, проведенная к наибольшей стороне треугольника.
Высоту можно найти, зная площадь треугольника.
Применим формулу площади Герона.
Площадь треугольника по формуле Герона :
Площадь треугольника со сторонами a, b, c и полупериметром p равна выражению:
_________________
S=√{p (p−a) (p−b) (p−c) }
Находим по этой формуле площадь треугольника=360 см³
Высоту находим из классической формулы площади треугольника:
S=½ha
h=S:½ а, где а – сторона. к которой проведена высота.
h=360:(36:2)=20 см