Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.
Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a→ и b→ , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы OA→=b→ и OB→=b→
Углом между векторами a→ и b→ называется угол между лучами ОА и ОВ.
Полученный угол будем обозначать следующим образом: a→,b→^
Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.
a→,b→^=0, когда векторы являются сонаправленными и a→,b→^=π , когда векторы противоположнонаправлены.
Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π2 радиан.
Если хотя бы один из векторов является нулевым, то угол a→,b→^ не определен.
Нахождение угла между векторами
Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.
Согласно определению скалярное произведение есть a→, b→=a→·b→·cosa→,b→^.
Если заданные векторы a→ и b→ ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:
cosa→,b→^=a→,b→a→·b→
Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.
Исходные данные: векторы a→ и b→ . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно -9. Необходимо вычислить косинус угла между векторами и найти сам угол.
Решение
Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cosa→,b→^=-93·6=-12 ,
Теперь определим угол между векторами: a→,b→^=arccos (-12)=3π4
Ответ: cosa→,b→^=-12, a→,b→^=3π4
Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.
Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a→=(ax, ay), b→=(bx, by) выглядит так:
cosa→,b→^=ax·bx+ay·byax2+ay2·bx2+by2
А формула для нахождения косинуса угла между векторами в трехмерном пространстве a→=(ax, ay, az), b→=(bx, by, bz) будет иметь вид: cosa→,b→^=ax·bx+ay·by+az·bzax2+ay2+az2·bx2+by2+bz2
Исходные данные: векторы a→=(2, 0, -1), b→=(1, 2, 3) в прямоугольной системе координат. Необходимо определить угол между ними.
Решение
- Для решения задачи можем сразу применить формулу:
cosa→,b→^=2·1+0·2+(-1)·322+02+(-1)2·12+22+32=-170⇒a→,b→^=arccos(-170)=-arccos170
- Также можно определить угол по формуле:
cosa→,b→^=(a→, b→)a→·b→,
но предварительно рассчитать длины векторов и скалярное произведение по координатам: a→=22+02+(-1)2=5b→=12+22+32=14a→,b→^=2·1+0·2+(-1)·3=-1cosa→,b→^=a→,b→^a→·b→=-15·14=-170⇒a→,b→^=-arccos170
Ответ: a→,b→^=-arccos170
Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.
Исходные данные: на плоскости в прямоугольной системе координат заданы точки A(2, -1), B(3, 2), C(7, -2). Необходимо определить косинус угла между векторами AC→ и BC→.
Решение
Найдем координаты векторов по координатам заданных точек AC→=(7-2, -2-(-1))=(5, -1)BC→=(7-3, -2-2)=(4, -4)
Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cosAC→, BC→^=(AC→, BC→)AC→·BC→=5·4+(-1)·(-4)52+(-1)2·42+(-4)2=2426·32=313
Ответ: cosAC→, BC→^=313
Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы OA→=a→ и OB→=b→ , тогда, согласно теореме косинусов в треугольнике ОАВ, будет верным равенство:
AB2=OA2+OB2-2·OA·OB·cos(∠AOB) ,
что равносильно:
b→-a→2=a→+b→-2·a→·b→·cos(a→, b→)^
и отсюда выведем формулу косинуса угла:
cos(a→, b→)^=12·a→2+b→2-b→-a→2a→·b→
Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.
Хотя указанный способ имеет место быть, все же чаще применяют формулу:
cos(a→, b→)^=a→, b→a→·b→
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Уважаемые студенты!
Заказать задачи по физике, информатике, экономике, праву, химии, теормеху, сопромату и другим предметам можно здесь всего за 10 минут.
Косинус угла между векторами
Формула
Чтобы найти косинус угла между векторами нужно найти отношение скалярного произведения векторов и произведение их длин (модулей). Если векторы заданы на плоскости двумя координатами $ overline{a}=(x_1;y_1) $ и $ overline{b}=(x_2;y_2) $, то косинус угла между ними вычисляется по формуле:
$$ cos phi = frac{(overline{a},overline{b})}{|overline{a}|cdot |overline{b}|} = frac{x_1 x_2 + y_1 y_2}{sqrt{x_1 ^2 + y_1 ^2}cdot sqrt{x_2 ^2 + y_2 ^2}} $$
Если векторы будут заданы тремя координатами $ overline{a}=(x_1;y_1;z_1) $ и $ overline{b}=(x_2;y_2;z_2) $, то есть в пространстве, то нахождение косинуса угла между векторами нужно выполнить по формуле:
$$ cos phi = frac{(overline{a},overline{b})}{|overline{a}|cdot |overline{b}|} = frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{sqrt{x_1 ^2 + y_1 ^2 +z_1 ^2}cdot sqrt{x_2 ^2 + y_2 ^2 + z_2 ^2}} $$
В числителе находится скалярное произведение векторов, то есть каждая координата умножается на соответствующую координату другого вектора и при этом находится сумма всех произведений. А в знаменателе расположено произведение модулей векторов. Каждый модуль равен извлеченному квадратному корню из суммы квадратов координат вектора.
Примеры решений
Пример |
Даны два вектора $ overline{a} =(3;1) $ и $ overline{b} = (2;4) $. Требуется найти косинус угла между векторами. |
Решение |
Напомним как найти косинус угла между векторами. Необходимо определить на плоскости или в пространстве находятся векторы, то есть сколько у них координат. Затем воспользоваться подходящей формулой. Первым делом вычисляем скалярное произведение: каждую координату одного вектора умножаем на соответствующую координату другого вектора, а потом суммируем произведения: $$ (overline{a},overline{b}) = 3cdot 2 + 1 cdot 4 = 6+4=10 $$ Далее находим чему равны модули каждого из векторов: $$ |overline{a}|=sqrt{3^2+1^2} = sqrt{10} $$ $$ |overline{b}|=sqrt{2^2+4^2} = sqrt{4+16} = sqrt{20} $$ Теперь можно найти косинус угла между векторами подставив найденные значения в первую формулу: $$ cos phi = frac{(overline{a},overline{b})}{|overline{a}|cdot |overline{b}|} = frac{10}{sqrt{10}cdot sqrt{20}} = $$ $$ = frac{10}{sqrt{200}} = frac{1}{sqrt{2}} = frac{sqrt{2}}{2} $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ cos phi = frac{sqrt{2}}{2} $$ |
Нахождение угла между векторами с помощью скалярного произведения
Косинус угла между векторами a⃗=(a1;a2)vec{a}=(a_{1};a_{2}) и b⃗=(b1;b2)vec{b}=(b_{1};b_{2}) может быть вычислен по формуле
cos(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=a1⋅b1+a2⋅b2a12+a22⋅b12+b22.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}= frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}}{sqrt{a_{1}^{2}+a_{2}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}}}.
Следовательно, угол между векторами a⃗=(a1;a2)vec{a}=(a_{1};a_{2}) и b⃗=(b1;b2)vec{b}=(b_{1};b_{2}) может быть вычислен по формуле
(a⃗,b⃗^)=arccos(a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣)=arccos(a1⋅b1+a2⋅b2a12+a22⋅b12+b22).left(widehat{vec{a},vec{b}}right)=arccosleft(frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}right)=arccosleft(frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}}{sqrt{a_{1}^{2}+a_{2}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}}}right).
Пример 1
Найти угол между векторами a⃗=(1;−1)vec{a}=(1; -1) и b⃗=(1;2).vec{b}=(1; 2).
cos(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=1⋅1+(−1)⋅212+(−1)2⋅12+22=1−22⋅5=−110.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{1cdot1+(-1)cdot2}{sqrt{1^{2}+(-1)^{2}}cdot sqrt{1^{2}+2^{2}}}=frac{1-2}{sqrt{2}cdotsqrt{5}}=frac{-1}{sqrt{10}}.
(a⃗,b⃗^)=arccos(−110)=arccos(−1010).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{-1}{sqrt{10}} right )=arccosleft ( frac{-sqrt{10}}{10} right ).
Ответ: (a⃗,b⃗^)=arccos(−1010).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{-sqrt{10}}{10} right).
Пример 2
Найти угол между векторами a⃗=(2;3)vec{a}=(2; 3) и b⃗=(3;1).vec{b}=(3; 1).
cos(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=2⋅3+3⋅122+32⋅32+12=6+313⋅10=9130=9130130.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{2cdot3+3cdot1}{sqrt{2^{2}+3^{2}}cdot sqrt{3^{2}+1^{2}}}=frac{6+3}{sqrt{13}cdotsqrt{10}}=frac{9}{sqrt{130}}=frac{9sqrt{130}}{130}.
(a⃗,b⃗^)=arccos(9130130).left ( widehat{vec{a},vec{b}} right )=arccosleft ( frac{9sqrt{130}}{130} right ).
Ответ: (a⃗,b⃗^)=arccos(9130130).left ( widehat{vec{a},vec{b}} right )=arccos left ( frac{9sqrt{130}}{130} right ).
Косинус угла между векторами a⃗=(a1;a2;a3)vec{a}=(a_{1};a_{2};a_{3}) и b⃗=(b1;b2;b3)vec{b}=(b_{1};b_{2};b_{3}) может быть вычислен по формуле
cos(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=a1⋅b1+a2⋅b2+a3⋅b3a12+a22+a32⋅b12+b22+b32.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}= frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}+a_{3}cdot b_{3}}{sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}.
Следовательно, угол между векторами a⃗=(a1;a2;a3)vec{a}=(a_{1};a_{2};a_{3}) и b⃗=(b1;b2;b3)vec{b}=(b_{1};b_{2};b_{3}) может быть вычислен по формуле
(a⃗,b⃗^)=arccos(a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣)=arccos(a1⋅b1+a2⋅b2+a3⋅b3a12+a22+a32⋅b12+b22+b32).left(widehat{vec{a},vec{b}}right)=arccosleft(frac{vec{a}cdotvec{b}}{|vec{a}|cdot|vec{b}|}right)=arccosleft(frac{a_{1}cdot b_{1}+a_{2}cdot b_{2}+a_{3}cdot b_{3}}{sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}cdotsqrt{b_{1}^{2}+b_{2}^{2}+ b_{3}^{2}}}right).
Пример 3
Найти угол между векторами a⃗=(1;2;3)иb⃗=(1;−2;3).vec{a}=(1; 2; 3) и vec{b}=(1; -2; 3).
cos(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=1⋅1+2⋅(−2)+3⋅312+22+32⋅12+(−2)2+32=1−4+914⋅14=614=37.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{1cdot1+2cdot(-2)+3cdot3}{sqrt{1^{2}+2^{2}+3^{2}}cdot sqrt{1^{2}+(-2)^{2}+3^{2}}}=frac{1-4+9}{sqrt{14}cdotsqrt{14}}=frac{6}{14}=frac{3}{7}.
(a⃗,b⃗^)=arccos(37).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{3}{7} right ).
Ответ: (a⃗,b⃗^)=arccos(37).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{3}{7} right ).
Пример 4
Найти угол между векторами a⃗=(2;−1;−2)vec{a}=(2; -1; -2) и b⃗=(1;3;−2).vec{b}=(1; 3; -2).
cos(a⃗,b⃗^)=a⃗⋅b⃗∣a⃗∣⋅∣b⃗∣=2⋅1+(−1)⋅3+(−2)⋅(−2)22+(−1)2+(−2)2⋅12+32+(−2)2=2−3+49⋅14=33⋅14=114=1414.cosleft(widehat{vec{a},vec{b}}right)=frac{vec{a}cdot vec{b}}{left | vec{a} right |cdot left | vec{b} right |}=frac{2cdot1+(-1)cdot3+(-2)cdot(-2)}{sqrt{2^{2}+(-1)^{2}+(-2)^{2}}cdot sqrt{1^{2}+3^{2}+(-2)^{2}}}=frac{2-3+4}{sqrt{9}cdotsqrt{14}}=frac{3}{3cdotsqrt{14}}=frac{1}{sqrt{14}}=frac{sqrt{14}}{14}.
(a⃗,b⃗^)=arccos(1414).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{sqrt{14}}{14} right ).
Ответ: (a⃗,b⃗^)=arccos(1414).left(widehat{vec{a},vec{b}}right)=arccosleft ( frac{sqrt{14}}{14} right ).
Нахождение угла между векторами с помощью векторного произведения
Синус угла между векторами можно вычислить по формуле: sin(a⃗,b⃗^)=∣a⃗×b⃗∣∣a⃗∣⋅∣b⃗∣.sin(widehat{vec{a},vec{b}})=frac{left | vec{a}times vec{b} right |}{left | vec{a} right |cdotleft | vec{b} right |}.
Пример 1
Найти угол между векторами a⃗=(2;−1;2)vec{a}=(2;-1;2) и b⃗=(3;0;1).vec{b}=(3;0;1).
a⃗×b⃗=∣ijk2−12301∣=(−1−0)i−(2−6)j+(0+3)k=−i+4j+3k.vec{a}times vec{b}=begin{vmatrix}i&j&k\2&-1&2\3&0&1end{vmatrix}=(-1-0)i-(2-6)j+(0+3)k=-i+4j+3k.
∣a⃗×b⃗∣=(−1)2+42+32=1+16+9=26.left | vec{a}times vec{b} right |=sqrt{(-1)^{2}+4^{2}+3^{2}}=sqrt{1+16+9}=sqrt{26}.
∣a⃗∣=22+(−1)2+22=4+1+4=9=3.left | vec{a} right |=sqrt{2^{2}+(-1)^{2}+2^{2}}=sqrt{4+1+4}=sqrt{9}=3.
∣b⃗∣=32+02+12=9+0+1=10.left | vec{b} right |=sqrt{3^{2}+0^{2}+1^{2}}=sqrt{9+0+1}=sqrt{10}.
sin(a⃗,b⃗^)=26310=132325=1335=6515.sin(widehat{vec{a},vec{b}})=frac{sqrt{26}}{3sqrt{10}}=frac{sqrt{13}sqrt{2}}{3sqrt{2}sqrt{5}}=frac{sqrt{13}}{3sqrt{5}}=frac{sqrt{65}}{15}.
(a⃗,b⃗^)=arcsin(6515).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{65}}{15} right ).
Ответ: (a⃗,b⃗^)=arcsin(6515).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{65}}{15} right ).
Пример 2
Найти угол между векторами a⃗=(1;1;3)vec{a}=(1;1;3) и b⃗=(0;1;1).vec{b}=(0;1;1).
a⃗×b⃗=∣ijk113011∣=(1−3)i−(1−0)j+(1−0)k=−2i−j+k.vec{a}times vec{b}=begin{vmatrix}i&j&k\1&1&3\0&1&1end{vmatrix}=(1-3)i-(1-0)j+(1-0)k=-2i-j+k.
∣a⃗×b⃗∣=(−2)2+(−1)2+12=4+1+1=6.left | vec{a}times vec{b} right |=sqrt{(-2)^{2}+(-1)^{2}+1^{2}}=sqrt{4+1+1}=sqrt{6}.
∣a⃗∣=12+12+32=1+1+9=11.left | vec{a} right |=sqrt{1^{2}+1^{2}+3^{2}}=sqrt{1+1+9}=sqrt{11}.
∣b⃗∣=02+12+12=0+1+1=2.left | vec{b} right |=sqrt{0^{2}+1^{2}+1^{2}}=sqrt{0+1+1}=sqrt{2}.
sin(a⃗,b⃗^)=6112=32112=311=3311.sin(widehat{vec{a},vec{b}})=frac{sqrt{6}}{sqrt{11}sqrt{2}}=frac{sqrt{3}sqrt{2}}{sqrt{11}sqrt{2}}=frac{sqrt{3}}{sqrt{11}}=frac{sqrt{33}}{11}.
(a⃗,b⃗^)=arcsin(3311).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{33}}{11} right ).
Ответ: (a⃗,b⃗^)=arcsin(3311).(widehat{vec{a},vec{b}})=arcsinleft ( frac{sqrt{33}}{11} right ).
Тест по теме “Как найти угол между двумя векторами”
Марина Николаевна Ковальчук
Эксперт по предмету «Геометрия»
Задать вопрос автору статьи
Угол между векторами
Для того, чтобы мы могли ввести формулу для вычисления угла между векторами через координаты, нужно сначала разобраться с самим понятием угла между этими векторами.
Определение 1
Пусть нам даны два вектора $overline{α}$ и $overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline{α}=overline{OA}$ и $overline{β}=overline{OB}$, тогда угол $AOB$ будет носить название угол между двумя векторами. (рис. 1).
Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ
Сделаем домашку
с вашим ребенком за 380 ₽
Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online
Бесплатное пробное занятие
*количество мест ограничено
Причем мы будем считать, что если векторы $overline{α}$ и $overline{β}$ будут сонаправленными, или один или оба из них будет нулевым вектором, то угол между этими векторами будет равняться $0^circ$.
Обозначение: $∠(overline{α},overline{β})$
Нахождение угла между векторами в пространстве с помощью скалярного произведения
Вспомним сначала, что называется скалярным произведением и каким образом его можно находить.
Определение 2
Скалярным произведением двух векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.
Математически это может выглядеть следующим образом:
$overline{δ}overline{β}=|overline{δ}||overline{β}|cos∠(overline{δ},overline{β})$
Также, помимо того, как из самого определения 1, для нахождения скалярного произведения можно пользоваться следующей теоремой.
Теорема 1
Скалярное произведение двух данных векторов $overline{δ}$ и $overline{β}$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, равняется сумме произведений их соответствующих координат.
Математически выглядит следующим образом
$overline{δ}cdot overline{β}=δ_1 δ_2+β_1 β_2+γ_1 γ_2$
«Как найти угол между векторами» 👇
Обозначение: $overline{δ}cdot overline{β}$.
С помощью скалярного произведения мы можем найти косинус угла между векторами. Пусть нам даны векторы $overline{δ}$ и $overline{β}$ с координатами $(δ_1,β_1,γ_1)$ и $(δ_2,β_2,γ_2)$, соответственно. Из определения 2 получим, что
$cos∠(overline{δ},overline{β})=frac{overline{δ}cdot overline{β}}{|overline{δ}||overline{β}|}$
Из теоремы 1 мы знаем, что $overline{δ}cdot overline{β}=δ_1 δ_2+β_1 β_2+γ_1 γ_2$, следовательно
$cos∠(overline{δ},overline{β})=frac{δ_1 δ_2+β_1 β_2+γ_1 γ_2}{|overline{δ}||overline{β}|}$
Расписывая по формуле длины вектора значения $|overline{δ}|$ и $|overline{β}|$, окончательно получим
$cos∠(overline{δ},overline{β})=frac{δ_1 δ_2+β_1 β_2+γ_1 γ_2}{sqrt{δ_1^2+β_1^2+γ_1^2 } sqrt{δ_2^2+β_2^2+γ_2^2}}$
Найдя значение косинуса, мы легко найдем и значение самого угла.
Пример 1
Найти косинус угла между векторами $overline{δ}$ и $overline{β}$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.
Решение.
Найдем скалярное произведение между данными векторами через координаты:
$overline{δ}cdot overline{β}=1cdot 3+(-2)cdot 0+2cdot 4=11$
Найдем длины этих векторов:
$|overline{δ}|=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3$
$|overline{β}|=sqrt{3^2+0^2+4^2}=sqrt{25}=5$
В результате, получим
$cos∠(overline{δ},overline{β})=frac{11}{3cdot 5}=frac{11}{15}$
Ответ: $frac{11}{15}$.
Нахождение угла между векторами с помощью векторного произведения
Вспомним сначала, определение векторного произведения и каким образом его можно находить.
Определение 3
Векторным произведением двух векторов называется такой вектор, который будет перпендикулярен обоим данным векторам, и его длина равна произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.
Обозначение: $overline{δ}хoverline{β}$.
Математически это выглядит следующим образом:
- $|overline{δ}хoverline{β}|=|overline{δ}||overline{β}|sin∠(overline{δ},overline{β})$
- $overline{δ}хoverline{β}⊥overline{δ}$, $overline{δ}хoverline{β}⊥overline{β}$
- $(overline{δ}хoverline{β},overline{δ},overline{β})$ и $(overline{i},overline{j},overline{k})$ одинаково ориентированы (рис. 2)
Рисунок 2. Векторное произведение. Автор24 — интернет-биржа студенческих работ
Для нахождения вектора векторного произведения можно пользоваться следующей формулой:
$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\δ_1&δ_2&δ_3\β_1&β_2&β_3end{vmatrix}$
С помощью векторного произведения мы можем найти синус угла между данными векторами. Пусть нам даны векторы $overline{δ}$ и $overline{β}$ с координатами $(δ_1,δ_2,δ_3)$ и $(β_1,β_2,β_3)$, соответственно. Из определения 3 получим, что
${sin angle left(overrightarrow{delta },overrightarrow{beta }right) }=frac{left|overrightarrow{delta }хoverrightarrow{beta }right|}{left|overrightarrow{delta }right||overrightarrow{beta }|}$
Найдем вектор векторного произведения по формуле:
$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\δ_1&δ_2&δ_3\β_1&β_2&β_3end{vmatrix}=(δ_2 β_3-δ_3 β_2,δ_3 β_1-δ_1 β_3,δ_1 β_2-δ_2 β_1)$
Расписывая по формуле длины вектора значения $|overline{δ}|$, $|overline{β}|$ и $|overline{δ}хoverline{β}|$, окончательно получим
$sin∠(overline{δ},overline{β})=frac{sqrt{(δ_2 β_3-δ_3 β_2)^2+(δ_3 β_1-δ_1 β_3)^2+(δ_1 β_2-δ_2 β_1)^2}}{sqrt{δ_1^2+δ_2^2+δ_3^2}sqrt{β_1^2+β_2^2+β_3^2}}$
Найдя значение синуса, мы легко найдем и значение самого угла между векторами через координаты через формулу.
Пример 2
Найти синус угла между векторами $overline{δ}$ и $overline{β}$, имеющими координаты $(1,-2,2)$ и $(3,0,4)$, соответственно.
Решение.
Найдем вектор векторного произведения между данными векторами по формуле:
$overline{δ}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\1&-2&2\3&0&4end{vmatrix}=-8overline{i}+2overline{j}+6overline{k}=(-8,1,6)$
Найдем длины этих векторов:
$|overline{δ}хoverline{β}|=sqrt{(-8)^2+2^2+6^2}=sqrt{104}=2sqrt{26}$
$|overline{δ}|=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3$
$|overline{β}|=sqrt{3^2+0^2+4^2}=sqrt{25}=5$
В результате, получим
$sin∠(overline{δ},overline{β})=frac{2sqrt{26}}{3cdot 5}=frac{2sqrt{26}}{15}$
Ответ: $frac{2sqrt{26}}{15}$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
В данной публикации мы рассмотрим, что такое угол меду двумя векторами, и приведем формулу, с помощью которой можно найти его косинус. Также разберем пример решения задачи по этой теме.
- Нахождение угла между векторами
- Пример задачи
Нахождение угла между векторами
Угол между двумя векторами, берущими начало в одной и той же точке – это наименьший угол, на который можно повернуть один из данных векторов вокруг своей начальной точки до положения, при котором он будет сонаправлен со вторым вектором.
Косинус угла между двумя векторами равняется скалярному произведению векторов, разделенному на произведение длин (модулей) этих векторов.
Для расчета косинуса угла используется формула ниже:
Пример задачи
Найдем угол между векторами a = {4; 3} и b = {12; 5}.
Решение
1. Для начала рассчитаем их скалярное произведение:
a · b = 4 · 12 + 3 · 5 = 48 + 15 = 63.
2. Теперь найдем длины (модули) заданных векторов:
3. Применим формулу для нахождения косинуса угла:
4. Следовательно, угол приблизительно равняется 14,26° (arccos 0,9692).