Что такое накал лампы?
Not Found
Мудрец
(11269),
закрыт
3 года назад
Kevin Kurt
Профи
(966)
12 лет назад
накал остальных ламп увеличится. увеличиться мощность излучения.
Not FoundМудрец (11269)
12 лет назад
Ага. То есть накал это мощность. ОК. А как расчитать? Просто олимпиадная задача….ток вылетел из башки и все тут
Kevin KurtПрофи (966)
12 лет назад
Ток = напряж/сопротивление
мощность = ток * напряжение
Not Found
Мудрец
(11269)
2 уравнения – 3 неизвестных.
Нужно еще как-то найти сопротивления.
Будь другом,помоги
MwenMas
Просветленный
(44911)
12 лет назад
Накал-это яркость свечения лампы.
Not FoundМудрец (11269)
12 лет назад
блять я понимаю. Я не знал,что искать ток или мощность. Нет такой физ величины,как накал
MwenMas
Просветленный
(44911)
Найдем номинальный ток ламп до замены: I=P/U=25/110=0.227 А. Напряжение на лампах равно 550/5=110 В. Это значит, что лампы находятся под номинальным напряжением 110 В, и ток цепи равен номинальному току лампы, т.е. 0,227 А. Сопротивление каждой лампы R=U/I=110/0.227=484.6 Ом. Накал каждой лампы равен номинальному.
Найдем номинальный ток лампы мощностью 45 Вт:
I=P/U=45/110=0.409 A. Ее сопротивление:
R=U/I=110/0.409=268.9 Ом. Найдем ток в цепи после замены ламп: R=484.6*4+268.9=2207.3 Ом. I=550/2207.3=0.249 А. Проанализируем полученные данные. Ток в лампах мощностью 25 Вт увеличился с 0,227 А до 0,249 А. Их сопротивление не изменилось, след, их накал увеличился. Ток в лампе 45 Вт 0,249 А ниже номинального 0,409 А, поэтому она будет гореть с накалом меньше нормального.
Довольна ли теперь ваша душенька?
Работа и мощность электрического тока. Лампы накаливания
Пишу для школьников (для лучшего понимания ими основ физики). Материал излагаю в соответствии с признанной ныне научной трактовкой физических явлений. Критике существующей теории и глубоким теоретическим рассуждениям здесь не место.
При прохождении тока по проводнику совершается работа , её совершают электрические силы (или электрическое поле). Кратко эту работу называют работой тока .
Рассматривая участок цепи, по которому проходит ток, получим следующее выражение для работы тока :
Работа тока равна произведению напряжения между концами участка на протекающий ток и время его протекания.
В случае, если участок цепи однородный (не содержит источника тока), то
тогда получим ещё две формулы для работы тока:
Если ток проходит через неподвижный проводник, то единственным результатом работы тока является его н агревание . Тогда количество выделившейся теплоты
Это запись закона Джоуля — Ленца.
Если кроме нагревания ток совершает ещё механическую работу , например, приводя в действие электродвигатель (мотор), то работа
лишь частично переходит в тепло .
В этом случае работа тока больше количества выделившейся теплоты , но закон Джоуля — Ленца выполняется .
Работа, совершаемая током в единицу времени , называется мощностью тока:
Единицей мощности тока является 1 Вт:
1 Вт — мощность выделяемая током 1 А в проводнике, между концами которого поддерживается напряжение 1 В.
Основная формула мощности для участка цепи:
Мощность постоянного тока на любом участке цепи выражается произведением силы тока на напряжение между концами участка цепи.
Так как для однородного участка цепи
то мощность можно найти ещё по формулам:
Обычно говорят не о работе , а о потребляемой из сети некоторым прибором (электроплитка, лампочки и др.) или двигателем (мотором) мощности электрического тока. Говоря о мощности (например, электродвигателя), отмечают, что работа двигателя совершается за счёт тока.
На приборах часто отмечается потребляемая ими мощность — мощность, необходимая для нормальной работы этого прибора.
Прежде поговорим об электрических лампочках , в работе которых применяется тепловое действие тока.
Всем знакомая л ампа накаливания представляет собой стеклянный баллон с откачанным воздухом, в который вмонтирована спиральная вольфрамовая нить. Через металлический цоколь концы нити соединяются с проводами осветительной сети.
Нагреваясь до очень высокой температуры (до белого каления), нить лампы становится источником света .
На лампе указывается потребляемая ею мощность и напряжение , на которое она рассчитана.
Поставим себе ВОПРОСЫ и ответим на них.
Какое количество теплоты выделяется лампой мощностью 100 Вт за секунду?
Какое сопротивление имеет нить лампы мощностью 100 Вт, рассчитанная на напряжение 220 В, и какой ток она потребляет?
Ответ : Воспользуемся формулами для мощности:
Сопротивление лампы найдём, разделив квадрат напряжения( на которое лампа рассчитана ) на мощность лампы. Получается, что сопротивление нити лампы равно 484 Ом. Ток, протекающий по нити лампы найдём из первого равенства, то есть лампа потребляет ток 0,45 А.
Можно ли включить последовательно две лампы одинаковой мощности, рассчитанные на 110 В, в сеть с напряжением 220 В?
Ответ : Так как лампы имеют одинаковые мощности и рассчитаны на одинаковое напряжение, то они имеют и о динаковые сопротивления . Общее напряжение 220 В распределится между ними поровну, и на каждую лампу придётся напряжение 110 В, на которое они и рассчитаны. Таким образом, лампы последовательно включить можно. При этом они будут «гореть полным накалом».
Что произойдёт, если в сеть с напряжением 220 В включить последовательно две лампы рассчитанные на одинаковое напряжение (110 В), но имеющие разные мощности , например 40 Вт и 100 Вт?
Ответ : Сопротивление нити каждой лампы находится через отношение квадрата напряжения, на которое она рассчитана , к мощности лампы.
Обе лампы рассчитаны на одинаковое напряжение , значит более мощная лампа (100 Вт) имеет меньшее сопротивление .
Ток через лампы идёт один и тот же , тогда согласно формуле
напряжение на более мощной лампе будет меньше , чем на менее мощной лампе.
Надо ориентироваться на р асчётное напряжения ламп (в нашем случае это 110 В).
Если напряжение на лампе окажется меньше 110 В, то она будет гореть тускло (с недокалом). В данном случае это относится к лампе мощностью 100 Вт. Лампа же мощностью 40 Вт будет гореть ярко (с перекалом) и быстро перегорит. Вывод : лампы разной мощности последовательно включать нельзя.
Итак, работа ламп накаливания основана на тепловом действии света, то есть на превращении электрической энергии в тепло и свет.
Природа тепла и света одна — это электромагнитные волны. Наш глаз воспринимает их как свет только в узком диапазоне длин волн, а в широком диапазоне длин волн ощущаем их как тепло.
Это значит, что при освещении помещений лампами накаливания значительная часть энергии теряется в виде тепла.
Существуют более экономичные осветительные приборы — это люминесцентные и светодиодные лампы. Они работают не на тепловом действии тока, принцип их работы совсем другой. О принципе работы люминесцентных ламп кратко будет сказано в теме «Электрический ток в газах», а о принципе работы светодиодных ламп — в теме «Электрический ток в полупроводниках».
Вернёмся к тепловому действию тока.
Ответьте на такой вопрос : Сколько тепла выделяется в утюге за секунду, если сопротивление утюга, работающего от сети с напряжением 220 В, равно 1210 Ом? Ответ: 403 Дж.
Источник
От чего зависит накал лампы от тока или напряжения
Два плоских воздушных конденсатора подключены к одинаковым источникам постоянного напряжения и одинаковым лампам, как показано на рисунках а и б. Пластины конденсаторов имеют разную площадь, но расстояние между пластинами в конденсаторах одинаковое (см. рисунок). В некоторый момент времени ключи К в обеих схемах переводят из положения 1 в положение 2. Опираясь на законы электродинамики, объясните, в каком из приведённых опытов при переключении ключа лампа вспыхнет ярче. Сопротивлением соединяющих проводов пренебречь.
При переводе ключа из положения 1 в положение 2 конденсатор очень быстро разрядится через лампу. Яркость вспышки лампы зависит от величины тока протекающей через неё. Следовательно, чем больший заряд накопится в конденсаторе, тем ярче будет вспышка. Заряд на конденсаторе Следовательно, чем больше ёмкость, тем больше заряд на конденсаторе. Ёмкость плоского конденсатора рассчитывается по формуле где S — площадь пластин конденсатора, а d — расстояние между пластинами. Значит, ёмкость конденсатора а больше ёмкости конденсатора б. В силу того, что оба конденсатора заряжаются от одинаковых источников постоянного напряжения, заряд, накопленный на конденсаторе а, будет больше заряда, накопленного на конденсаторе б. Следовательно, и вспышка лампы для системы а будет ярче.
Критерии оценивания выполнения задания | Баллы |
---|---|
Приведено полное правильное решение, включающее правильный ответ (в данном случае п. 1–2) и исчерпывающие верные рассуждения с указанием наблюдаемых явлений и закономерностей
(в данном случае — формула ёмкости плоского конденсатора и рассуждения о зависимости величины силы тока от заряда, накопленного на конденсаторе). |
3 |
Дан правильный ответ, и приведено объяснение, но в решении имеются следующие недостатки.
В объяснении не указано одно из физических явлений, свойств, определений или не назван один из законов (формул), необходимых для полного верного объяснения. (Утверждение, лежащее в основе объяснения, не подкреплено указанием на соответствующий закон, свойство, явление, определение и т. п.) Объяснения представлены не в полном объёме, или в них содержится один логический недочёт. |
2 |
Представлено решение, соответствующее одному из следующих случаев.
Дан правильный ответ на вопрос задания, и приведено объяснение, но в нём не указаны два явления или физических закона, необходимых для полного верного объяснения. Указаны все необходимые для объяснения явления и законы, закономерности, но имеющиеся рассуждения, направленные на получение ответа на вопрос задания, не доведены до конца. Указаны все необходимые для объяснения явления и законы, закономерности, но имеющиеся рассуждения, при водящие к ответу, содержат ошибки. Источник Постоянный и переменный ток в освещенииПостоянный и переменный ток в освещении Без электричества невозможно представить современный мир. Всё, к чему мы так привыкли: освещение, бытовые приборы, компьютеры, телевизоры – так или иначе связано с электропитанием. Но одни приборы работают от переменного тока, а другие – питаются от источников постоянного тока. От этого зависит возможность их работы, а иногда и целостность, если подключение неправильное.
Электрический заряд или электроны движутся в одном направлении, всегда начиная с генератора, который является началом линии, и до конца линии, которая является электрическим оборудованием.
Переменный – это ток, который меняет величину и направление. Причем, в равные промежутки времени. В случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное. Применение постоянного тока: · Различные виды техники (бытовая, промышленная) · Автономные системы (бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов, общественный транспорт: трамваи и троллейбусы) · Электронные устройства (электрофонари, игрушки, аккумуляторные электроинструменты и др.) Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного. Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Переменный ток чаще всего используется тогда, когда присутствует необходимость его передачи на большие расстояния. Применение переменного тока: · Инфраструктурные и транспортные объекты ФОТО 3 · У лампочки Ильича на постоянном токе не будет пульсаций света и шума от работы. На переменном — лампа может гудеть из-за того, что спираль работает как электромагнит, сжимаясь и растягиваясь дважды за период. · Эти приборы нельзя включать напрямую в сеть. Для нормальной работы лампе нужен пуско-регулирующий аппарат (ПРА). В простейшем случае он состоит из трёх деталей: стартёра, дросселя и конденсатора. Последний нужен не самой лампе, а остальным потребителям в сети, так как он улучшает коэффициент мощности и фильтрует помехи, создаваемые лампой. · Прибор питается от переменного напряжения 220 вольт, которое находится в бытовой сети, но токи в ней протекают разные. Можно запитать лампу и постоянным (с ограничением тока). Но предпочитают переменный. Он проще в реализации и электроды при этом изнашиваются равномерно. · Светодиод требует для работы небольшое постоянное напряжение (около 3.5 В) и ограничитель тока. Схемы светодиодных ламп весьма разнообразны: от простых до довольно сложных. Самое простое — последовательно со светодиодами поставить гасящий резистор. На нём упадёт лишнее напряжение, он же будет ограничивать ток. Такая схема имеет низкий КПД, поэтому на практике вместо резистора ставят гасящий конденсатор. Он также обладает сопротивлением (для переменного тока), но на нём не рассеивается тепловая мощность. По такой схеме собраны самые дешёвые лампы. Светодиоды в них мерцают с частотой 100 Гц. На постоянном токе такая лампа работать не будет, так как для него конденсатор имеет бесконечное сопротивление.
Для создания яркого направленного освещения используются специальные устройства – прожекторы. Они комплектуются мощными источниками света и поставляются в прочных корпусах из металла и пластика. Предназначены для равномерного освещения крупных сооружений: домов, стадионов, сцен Используются для подсветки и выделения светом объектов и их частей Служат для передачи информации на расстоянии · Дальнего действия с параболическими отражателями Изделия выпускаются в основном для военных нужд В прожекторах устанавливают разные лампы: галогенные, натриевые, металлогалогенные и светодиодные. Бывают модели со сменными лампами, но в некоторых заменить световой элемент не получится.
Светодиодные лампы для уличного освещения имеют различную конфигурацию. Они могут быть выполнены в форме квадрата, прямоугольника, круга, овала или линейки. · Широкий диапазон электропитания – от 100 до 240 Вольт Если напряжение падает, то светодиодный прожектор продолжает работать в обычном режиме. · Работа как при переменном, так и при постоянном токе · Определенное количество диодов · Различный цвет света – горячий или холодный, разная температура · Возможность смены угла светорассеивания Чаще всего угол установки прожекторов для освещения на улице равен 50° и более. Лампы со светодиодами обладают высоким качеством, экономным потреблением электроэнергии, надежностью и долгим сроком службы. Прежде, чем выбрать осветительные приборы, внимательно ознакомьтесь с их описанием. И не стесняйтесь задавать вопросы специалистам! Источник ➤ Adblock |
Формула зависимости напряжения и мощности лампочки
Это основная формула статьи, вывод которой будет приведён ниже. Формула выглядит так:
Для любой лампы накаливания существует параметр, стабильный в широком диапазоне электрических режимов. Этим параметром является отношение куба напряжения к квадрату мощности.
Методика использования формулы проста.
Берем лампочку, читаем на колбе или на цоколе параметры, на которые она расчитана – напряжение и мощность, рассчитываем константу, потом вставляем в формулу любое произвольное напряжение и вычисляем мощность, которая выделится на лампочке.
Зная мощность, несложно вычислить ток.
Зная ток, несложно вычислить сопротивление нити накаливания.
Вот и рассмотрим вопросы, связанные с правильной эксплуатацией формулы, а так же с теми ограничениями, котрые неизбежны ввиду того что «абсолютных» формул просто не бывает.
Однако, сначала немножко «теории»…
Подключаем светодиоды
Как правильно подключить лампочку на 12 вольт в авто своими руками? Неважно, мигающую или нет, в фару или панель приборов, об этом мы расскажем далее.
Рассмотрим пример подключения своими руками на модуле, учитывая несколько нюансов (схемы вы найдете ниже):
- Панельки, то есть кластеры, рассчитываются на питание 12 вольт, такие устройства можно без проблем подключить к проводке авто и наслаждаться мигающими или просто яркими огоньками. Однако такие устройства обладают определенным недостатком — когда обороты мотора будут изменяться, яркость также будет то снижаться, то увеличиваться. Пусть это не критично, но глазу все же будет заметно. Но также нужно учесть, что такие кластеры хорошо светят тогда, когда напряжение в сети составляет 12.5 вольт, то есть если у вашем авто напряжение низкое, то светить лампочки будут слабо.
- Сам по своей конструкции кластер состоит из самих диодов, а также резистора. Резисторы — это важный элемент любого кластера. На каждые три лампочки устанавливается один резистор, предназначенный для гашения лишнего напряжения. Если вы приобретаете ленту для фар, то, возможно, вам придется ее подрезать. При установке в фары нужно учитывать, что обрезать ленту необходимо в определенных местах.
- Подключение светодиодов 12 вольт с резисторами в фары авто осуществляется последовательно. Вам необходимо сделать кластер, то есть подключить по очереди необходимое число лампочек друг к другу, а два вывода, которые будут находиться по краям — к сети авто. В этом случае речь идет о белых диодах, мощность которых составляет 3.5 W. То есть для сети с напряжением 12-14 вольт понадобится три лампочки, которые в общем будут потреблять не 12, а 10.5 вольт. Поскольку диоды обладают плюсом и минусом, последовательное соединение осуществляется таким образом, чтобы плюс одного элемента соединился с минусом другого (автор видео — Роман Щербань).
Базовые «теоретические» предпосылки
Формула была получена в предположении того, что в металле (из которого состоит нить накаливания) ток и сопротивление имеют единую физическую сущность.
В упрощенном виде это можно рассуждать примерно так.
Сообразно современным воззрениям, ток представляет собой упорядоченное движение носителей заряда. Для металла это будут электроны.
Было сделано предположение, что электрическое сопротивление металла определяется ХАОТИЧЕСКИМ движением тех же самых электронов.
С возрастанием температуры нити, хаотическое движение электронов возрастает, что, в конечном итоге, и приводит к возрастанию электрического сопротивления.
Еще раз. Ток и сопротивление в нити накаливания – суть одно и тоже. С той лишь разницей, что ток – это упорядоченное движение под действием электрического поля, а сопротивление – это хаотическое движение электронов.
Немножко «алгебраической схоластики»
Теперь, когда с “теорией” покончено (улыбнулся), приведу алгебраические выкладки для вывода «главной» формулы.
Каноническая запись закона Ома выглядит:
I * R = U
Самые общие соображения подвигают к мысли, что эти коэффициенты должны быть взаимно обратными величинами, а значит:
В этом случае, попарно перемножая правые и левые части (в системе уравнений), мы возвращаемся к исходной записи закона Ома:
I * R = U
Окончательный вывод формулы
Рассмотрим подробнее систему уравнений:
Возведем в квадрат первое уравнение и попарно перемножим их.
В левой части мы видим выражение для мощности, а так же памятуя о том, что произведение коэффициентов равно единице, окончательно перепишем:
Отсюда получим выражение для токового коэффициента:
И для резистивного коэффициента (они взаимообратны):
Осталось подставить эти значения коэффициентов в “РАСЩЕПЛЕННУЮ” формулу Закона Ома, и мы получим окончательные выражения для тока и сопротивления.
Домножая последнее соотношение на Ux, получим:
Чтобы не забивать себе голову этими квадратами, кубами и корнями, достаточно запомнить простую зависимость, которая вытекает из последнего соотношения . Возводя последнее соотношение в квадрат, мы получаем ясную и понятную формулу:
Для любой лампочки с вольфрамовой нитью накала отношение куба напряжения к квадрату мощности является величиной ПОСТОЯННОЙ.
Полученные соотношения показали прекрасное соответствие практическим результатам (измерениям) в широком диапазоне изменения параметров напряжения и для весьма различных типов ламп накаливания, начиная от комнатных, автомобильных и заканчивая лампочками для карманных фонариков…
Какое сопротивление у лампочки?
Решил я как-то проверить закон Ома. Применительно к лампе накаливания. Измерил сопротивление лампочки Лисма 230 В 60 Вт, оно оказалось равным 59 Ом. Это в несколько раз больше заявленной мощности! Я было удивился, но потом вспомнил слово, которое всё объясняло – бареттер
.
Дело в том, что сопротивление вольфрамовой нити лампы накаливания сильно зависит от температуры (следствие протекания тока). В моем случае, если это бы был не вольфрам, а обычный резистор, его рассеиваемая мощность при напряжении 230 Вольт была бы P = U2/R = 896. Почти 900 Ватт!
Кстати, именно поэтому производители датчиков с транзисторным выходом рекомендуют соблюдать осторожность при подключении датчиков.
Как же измерить рабочее сопротивление нити лампы накаливания? А никак. Его можно только определить косвенным путем, из закона знаменитого Ома. (Строго говоря, все омметры используют тот же закон – прикладывают напряжение и меряют ток). И мультиметром тут не обойдешься.
Используя косвенный метод и лампочку Лисма 24 В с мощностью 40 Вт, я составил вот такую табличку:
Зависимость сопротивления нити лампы накаливания от напряжения
Сопротивление лампочки
(Номинальные параметры выделены)
Как видно из таблицы, зависимость сопротивления лампочки от напряжения нелинейная. Это может проиллюстрировать график, приведенный ниже. Рабочая точка на графике выделена.
Сопротивление нити лампы накаливания в зависимости от напряжения
Кстати, сопротивление подопытной лампочки, измеренное с помощью цифрового мультиметра – около 1 Ома. Предел измерения – 200 Ом, при этом выходное напряжение вольтметра – 0,5 В. Эти данные также укладываются в полученные ранее.
Зависимость мощности от напряжения:
Зависимость мощности от напряжения
Для ламп на напряжение 230 В на основании экспериментальных данных была составлена вот такая табличка:
Мощность и сопротивление
Из этой таблицы видно, что сопротивление нити лампы накаливания в холодном и горячем состоянии отличается в 12-13 раз. А это значит, что во столько же раз увеличивается потребляемая мощность в первоначальный момент.
Можно говорить о пусковом токе для ламп накаливания.
Стоит отметить, что сопротивление в холодном состоянии измерялось мультиметром на пределе 200 Ом при выходном напряжении мультиметра 0,5 В. При измерении сопротивления на пределе 2000 Ом (выходное напряжение 2 В) показания сопротивления увеличиваются более чем в полтора раза, что опять же укладывается в идею статьи.
“Горячее” сопротивление измерялось косвенным методом.
Сопротивление нити накаливания люминесцентных ламп
Дополнение к статье, чтобы получился ещё более полный материал.
Лампы с цоколем Т8, сопротивление спирали в зависимости от мощности :
10 Вт – 8,0…8,2 Ом
15 Вт – 3,3…3,5 Ом
18 Вт – 2,7…2,8 Ом
36 Вт – 2,5 Ом.
Сопротивление измерялось цифровым омметром на пределе 200 Ом.
Формула мощности и напряжения
Обновление статьи. У меня на блоге появилась статья автора Станислава Матросова, который развил тему сопротивления спирали лампочки с теоретической стороны. Он вывел формулу, согласно которой:
Для любой лампы накаливания существует параметр, стабильный в широком диапазоне электрических режимов. Этим параметром является отношение куба напряжения к квадрату мощности:
Я решил на основе данных, полученных в статье, посчитать эту величину в Экселе. Вот что у меня получилось:
Зависимость
Действительно, константа, которая с некоторой погрешностью во всём диапазоне равна 8,2±0,2. Её размерность – “Вольт в кубе на Ватт в квадрате”.
Константа для расчета лампы накаливания = 8,2
Низкое значение константы в начале диапазона объяснено автором в приведенной по ссылке статье.
Теперь, зная значение этой константы (8,2), можем записать формулу зависимости мощности от напряжения лампочки накаливания 40Вт 24В:
Зависимость мощности лампочки накаливания от напряжения
Формула для сопротивления
Но вернёмся к теме статьи. Проверим вывод Станислава Матросова о том, что сопротивление лампочки пропорционально корню из напряжения. Из предыдущих выводов можно вывести формулу для конкретной лампочки 40Вт 24В:
Зависимость сопротивления от напряжения, формула для лампы накаливания
Теперь проверим, как эта формула соотносится с полученными мною экспериментальным данным (см. таблицу в начале статьи). Составим такую таблицу:
Таблица требует пояснений. Чтобы была соблюдена размерность, я нормировал экспериментально заданное напряжение (столбец 2) и рассчитанное сопротивление (столбец 4).
Колонка 5 – это корень из нормированного напряжения, и видно, что значения этой колонки отлично совпадают с колонкой 4!
Но давайте вернемся в реальному сопротивлению, и рассчитаем его по приведенной выше формуле (Зависимость сопротивления от напряжения). Это – 6-я колонка. Хорошо видно, что расчет по формуле практически идеально совпадает с расчетом из экспериментальных данных!
Зависимость сопротивления от напряжения. Квадратичная зависимость.
Кто хочет проверить мои расчеты, прикладываю файл: •Файл с расчетами и графиками
/ Файл с расчетами и графиками к статье про лампу накаливания, xlsx, 19.51 kB, скачан: 430 раз./
Всё, учебник физики можно переписывать!
В этой заметке разберем очень популярную задачу по началам электричества. Аналоги этой задачи можно встретить в различных экзаменах по физике. В том числе ВПР, ОГЭ, ЕГЭ.
Задача
На первой электролампе написано, что она рассчитана на напряжение 110 В и потребляет при этом мощность 20 Вт, а на второй — что она рассчитана на напряжение 220 В и потребляет при этом мощность 50 Вт. Две эти лампы соединили последовательно и включили в сеть с напряжением 110 В.
1) Определите сопротивление первой лампы.
2) Найдите при таком подключении отношение мощности, потребляемой второй лампой, к мощности, которую потребляет первая лампа.
3) Какая из ламп при таком подключении горит ярче и почему?
Решение:
1. Определим сопротивления обоих лампочек, пользуясь законом Ома и определением мощности, выделяемой на элементе.
2. Найдем отношение мощностей P₂/P₁ . Здесь стоит обратить внимание на тип подключения. Лампочки соединены последовательно, следовательно, через них протекает общий ток, то есть I₂ = I₁ = I. А значит отношение мощностей совпадает с отношением сопротивлений: P₂/P₁ = R₂/R₁.
3. Мы уже нашли отношение мощностей, поэтому знаем, что на второй лампе выделяется больше мощности, а следовательно она отдает больше тепловой энергии, которая проявляется в излучении, т.е. и горит вторая лампочка ярче.
А теперь, давайте мысленно немного изменим условие задачи. Что будет, если те же самые лампочки подключить в сеть параллельно ? Какая лампочка будет гореть ярче? Как поменяется отношение мощностей? Напишите ваши предположения в комментариях.
Полное решение:
Если Вам нужен репетитор по физике, математике или информатике/программированию, Вы можете написать мне или в мою группу Репетитор IT mentor в VK
Библиотека с книгами для физиков, математиков и программистов
Репетитор IT mentor в VK
Репетитор IT mentor в Instagram
Репетитор IT mentor в telegram
Разработка схемы и расчет осложняется еще одним обстоятельством. Ни один производитель не может определить точные параметры для каждого диода, поэтому они определяют среднее напряжение при оптимальном уровне электрического тока для выпускаемой партии. Это означает, что для определения точных значений при проектировании схем и расчете формул лучше всего использовать мультиметр.
Как рассчитать сопротивление лампочки?
Светодиоды пришли на смену традиционным системам освещения – лампам накаливания и энергосберегающим лампам. Чтобы светодиод работал правильно и не перегорал, его нельзя подключать непосредственно к электросети. Идея заключается в том, что он имеет низкое внутреннее сопротивление, поэтому если вы подключите его напрямую, ток будет высоким, и он сгорит. Вы можете ограничить ток с помощью резисторов. Однако необходимо выбрать правильный резистор для светодиода. Для этого производятся специальные расчеты.
Из этой таблицы видно, что сопротивление нити накала лампы накаливания в холодном и горячем состоянии отличается в 12-13 раз. Это означает, что потребляемая мощность в начальный момент времени увеличивается в тот же фактор.
Зависимость сопротивления нити накала лампы накаливания от напряжения
Напряжение | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
% напряжения | 8.3 | 16.7 | 25.0 | 33.3 | 41.7 | 50.0 | 58.3 | 66.7 |
Текущая сторона | 0.55 | 0.7 | 0.84 | 0.97 | 1.08 | 1.19 | 1.29 | 1.38 |
Сопротивление | 3.6 | 5.7 | 7.1 | 8.2 | 9.3 | 10.1 | 10.9 | 11.6 |
Мощность | 1.1 | 2.8 | 5.04 | 7.76 | 10.8 | 14.28 | 18.06 | 22.08 |
Напряжение | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
% напряжения | 75.0 | 83.3 | 91.7 | 100.0 | 108.3 | 116.7 | 125.0 | 133.3 |
Текущая страница | 1.47 | 1.55 | 1.63 | 1.7 | 1.77 | 1.84 | 1.92 | 2 |
Сопротивление | 12.2 | 12.9 | 13.5 | 14.1 | 14.7 | 15.2 | 15.6 | 16.0 |
Мощность | 26.46 | 31 | 35.86 | 40.8 | 46.02 | 51.52 | 57.6 | 64 |
Как видно из таблицы, зависимость сопротивления лампочки от напряжения нелинейна. Это можно проиллюстрировать на графике ниже. Рабочая точка на графике выделяется.
Сопротивление нити накала лампы накаливания в зависимости от напряжения
Кстати, сопротивление тестовой лампочки, измеренное цифровым мультиметром, составляет около 1 Ом. Предел измерения составляет 200 Ом, выходное напряжение вольтметра – 0,5 В. Эти данные также находятся в пределах, полученных ранее.
Зависимость мощности от напряжения:
Зависимость мощности от напряжения
Для ламп 230 В следующая таблица основана на экспериментальных данных:
Мощность лампочки, W |
25 | 40 | 60 | 75 | 100 |
R холодной нити накаливания, Ом | 150 | 90-100 | 60-65 | 45-50 | 37-40 |
R hot нить накала, Ом |
1930 | 1200 | 805 | 650 | 490 |
R gore./Rhool. | 12 | 12 | 13 | 13 | 12 |
Из этой таблицы видно, что сопротивление холодной и горячей нити накала лампочки отличается в 12-13 раз. Это означает, что потребляемая мощность в начальный момент времени увеличивается в такой же раз.
Следует отметить, что сопротивление в холодном состоянии измерялось мультиметром на пределе 200 Ом при выходном напряжении мультиметра 0,5 В. При измерении сопротивления на пределе 2000 Ом (выходное напряжение 2 В) показания сопротивления увеличиваются более чем в полтора раза, что опять же соответствует идее статьи.
“Горячее” сопротивление измерялось косвенным методом.
Получаем значение 100 Ом для резистора. Найдите рассеиваемую мощность для него (отнимите ток от Imax):
Онлайн-калькулятор сопротивления
Задача усложняется, если необходимо подключить более одного диода.
Чтобы вам было проще самостоятельно выполнять расчеты, мы подготовили онлайн-калькулятор для расчета сопротивления резисторов. Если вы подключаете несколько светодиодов, вам придется выбирать между параллельным и последовательным соединением между ними. И для этих схем нужны дополнительные расчеты для источника питания. Эти данные можно легко найти в Интернете, но мы рекомендуем использовать наш калькулятор.
Вам необходимо знать:
- Напряжение источника питания.
- Вольтамперная характеристика диода.
- Токовая характеристика диода.
- Количество диодов.
Вам также нужно будет выбрать параллельное или последовательное подключение. Мы рекомендуем изучить различия между соединениями в подготовленных ниже разделах.
Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложных пускорегулирующих аппаратов, необходимых в светодиодных и люминесцентных светильниках.
Полезная информация для начинающих электриков
Как использовать закон Ома на практике
Почти два столетия назад, в далеком 1827 году, Георг Ом распознал взаимосвязь между фундаментальными характеристиками электричества.
Он изучил и опубликовал данные о влиянии сопротивления участка цепи на величину тока, создаваемого напряжением. Удобно представить это с помощью изображения.
Любая работа всегда создается рабочим электрическим током. Он вращает ротор электродвигателя, заставляет светиться лампочку, сваривает или режет металлы и делает другие вещи.
Поэтому ему должны быть созданы оптимальные условия: значение электрического тока должно поддерживаться на номинальном уровне. Это зависит от:
- значение напряжения, приложенного к цепи;
- сопротивление среды, через которую протекает ток.
Здесь напряжение, как разность потенциалов приложенной энергии, является силой, которая создает электрический ток.
Если нет напряжения, то из-за отсутствия тока в подключенной электрической цепи не может быть совершена полезная работа. Такая ситуация часто возникает, когда кабель питания сломан, перетерт или перегорел.
С другой стороны, сопротивление решает противоположную проблему для напряжения. При очень высоком значении он ограничивает ток так, что он не может совершить никакой работы. Этот режим работы используется для хороших диэлектриков.
Примеры из реальной жизни
Между контактами образуется воздушный зазор. Это отличный изолятор, который препятствует прохождению тока через светильник.
Ток короткого замыкания может пережечь провода, что приведет к пожару в квартире. Поэтому из таких ситуаций есть только один выход: использование защитных устройств, способных как можно быстрее отключить напряжение питания.
В случае бытовой сети эту функцию выполняют автоматические выключатели или предохранители, работу которых я рассмотрю в других статьях.
При использовании резистора важно помнить, что сам по себе он не вечен: имея запас, чтобы выдержать приложенную энергию, он может износиться, выйти из строя и перегореть.
По этой причине в сопротивление вводится понятие диссипативной мощности, которая надежно рассеивается во внешнюю среду. Если тепловая энергия, создаваемая протекающим током, превысит это значение, резистор сгорит.
Что такое участок цепи
Рассмотрим простейшую электрическую цепь, состоящую из батареи, лампочки и нескольких проводов. В нем циркулирует электрический ток.
Показанная схема, или полная цепь, состоит из двух контуров:
- Внутренний источник напряжения.
- Внешняя область: лампочка с подключенными проводами.
Эти процессы, происходящие внутри аккумулятора, интересуют нас в основном как когнитивные процессы. Мы можем сделать их только хуже, если используем их неправильно.
Например, мы не можем контролировать электроэнергию, которая поступает в наш дом из трансформаторной подстанции. Мы просто используем его. Автоматические выключатели, УЗО, реле, разрядники или ограничители перенапряжения и другие современные модули защиты защищают нас от неисправностей и аварийных ситуаций.
Внешняя цепь, подключенная к источнику напряжения, является той частью цепи, в которой, используя закон Ома, мы совершаем полезную для себя работу.
Как использовать треугольник закона Ома
Простой мнемонический принцип представлен тремя частями треугольника. Это облегчает запоминание взаимосвязи между током, сопротивлением и напряжением.
Напряжение всегда находится на самом верху. Ток и сопротивление находятся внизу. Когда мы вычисляем одно значение из двух других, мы выводим его из треугольника и выполняем арифметическую операцию: деление или умножение.
Руководство для начинающих электриков
Треугольник закона Ома легко запомнить, но он не позволяет учитывать потребляемую мощность электроприбора. Этот четвертый параметр, важный для каждого домашнего электрика, всегда должен быть принят во внимание. .
Все бытовые электроприборы показывают потребляемую мощность в ваттах или киловаттах. Его формулу вместе с предыдущими значениями можно прочитать на рисунке ниже.
Этот справочник электрика позволит вам произвести простые расчеты в голове или на бумаге. Формулы из него встроены в алгоритм, по которому работает мой онлайн-калькулятор закона Ома.
Я предлагаю вам провести те же расчеты, используя оба метода, и сравнить результаты. Если вы обнаружили несоответствия, пожалуйста, укажите их в комментариях. Это будет вашей помощью для моего проекта.
Я постарался кратко и просто изложить принципы закона Ома в применении к домашней работе. Я считаю это достаточным и не рассматриваю закон Ома для полной цепи в его обычной форме, комплексные числа или что-то еще.
Однако если вы хотите получить видеоурок по этой теме, воспользуйтесь уроком владельца Физика – Закон Ома.
Возможно, у вас остались вопросы о том, как работает калькулятор? Ответьте на них, и я отвечу. Используйте раздел комментариев.
Наконец, я напоминаю вам, что сейчас самое время поделиться этим материалом со своими друзьями в социальных сетях и подписаться на рассылку. Это позволит вам быть в курсе новых статей.
<t^circ>_1)” />,
<t^circ>_2)” />,
Задача 40: Определение сопротивления нити накала электрической лампы
Для лампы накаливания мощностью сто пятьдесят ватт и напряжением двести двадцать вольт определите сопротивление вольфрамовой нити при температуре двадцать пять градусов Цельсия. Известно, что температура нити лампы составляет две тысячи пятьсот градусов Цельсия. Температурный коэффициент сопротивления вольфрама составляет 5,1×10 -3 град -1 .
Напишем формулы для расчета сопротивления нити накала при комнатной и рабочей температуре
,
,
где R1 – Сопротивление нити накала при 25 градусах Цельсия;
R2 – сопротивление нити накала при температуре 2500 градусов Цельсия.
,
.
Сопротивление нити накала при рабочей температуре определяется по формуле
тогда
Формула для расчета сопротивления нити накала при температуре 25 градусов Цельсия имеет вид
Ом.
Ответ: сопротивление вольфрамовой нити электрической лампы при температуре двадцать пять градусов Цельсия составляет двадцать шесть целых пять ом.
Из этой таблицы видно, что сопротивление нити накала лампы накаливания в холодном и горячем состоянии отличается в 12-13 раз. Это означает, что потребляемая мощность в начальный момент времени увеличивается в тот же фактор.
Каково сопротивление лампочки?
Однажды я решил проверить закон Ома. Я применил его к лампочке. Я измерил сопротивление лампы Лисма 230В 60Вт и оно составило 59 Ом. Он в несколько раз мощнее, чем заявлено! Я удивился, но потом вспомнил слово, которое все объяснило. бареттер
Дело в том, что сопротивление вольфрамовой нити лампы накаливания сильно зависит от температуры (следствие протекания тока). В моем случае, если бы это был не вольфрам, а обычный резистор, его рассеиваемая мощность при 230 В была бы P = U2/R = 896. Почти 900 ватт!
Кстати, именно поэтому производители датчиков с транзисторным выходом рекомендуют соблюдать осторожность при их подключении.
Как же измерить рабочее сопротивление нити накала? Ты не можешь. Вы можете определить его только косвенно, основываясь на знаменитом законе Ома. (Строго говоря, все омметры используют один и тот же закон – прикладывают напряжение и измеряют ток). Без мультиметра тоже не обойтись.
Используя косвенный метод и лампочку Лисма 24 В мощностью 40 Вт, я составил следующую таблицу:
Зависимость сопротивления нити накала лампы накаливания от напряжения
(Номинальные значения отмечены).
Как видно из таблицы, зависимость сопротивления лампочки от напряжения нелинейная. Это можно проиллюстрировать на графике ниже. Рабочая точка на графике выделяется.
Сопротивление нити накала лампы накаливания в зависимости от напряжения
Кстати, сопротивление тестовой лампочки, измеренное цифровым мультиметром, составляет около 1 Ом. Предел измерения составляет 200 Ом, выходное напряжение вольтметра – 0,5 В. Эти данные также находятся в пределах, полученных ранее.
Зависимость мощности от напряжения:
Зависимость мощности от напряжения
Для ламп на 230 В эта таблица составлена на основе экспериментальных данных:
Сила и сопротивление
Из этой таблицы видно, что сопротивление нити накала холодной и горячей лампочки отличается в 12-13 раз. Это означает, что потребление энергии при включении увеличивается в 12 раз.
Можно говорить о пусковом токе для ламп накаливания.
Стоит отметить, что холодное сопротивление было измерено мультиметром на пределе 200 Ом при выходном напряжении мультиметра 0,5 В. При измерении сопротивления на пределе 2000 Ом (выходное напряжение 2 В) показания сопротивления увеличиваются более чем в полтора раза, что опять же соответствует идее статьи.
“Горячее” сопротивление измерялось косвенным методом.
Сопротивление нити накала лампы накаливания
Дополнение к статье, чтобы сделать ее еще более полной.
Лампы с цоколем T8, сопротивление нити накала зависит от мощности:
Сопротивление измеряется цифровым омметром на пределе 200 Ом.
Формула для мощности и напряжения
Обновление статьи. У меня в блоге есть статья автора Станислава Матросова, который разработал тему сопротивления катушки лампы накаливания с теоретической стороны. Он вывел формулу, согласно которой:
Для каждой лампы существует параметр, который стабилен в широком диапазоне электрических условий. Этот параметр представляет собой отношение куба напряжения к квадрату мощности:
Я решил рассчитать это значение в Excel, используя данные из статьи. Вот что я получил:
Действительно, константа, которая с некоторой погрешностью по всему диапазону равна 8,2±0,2. Ее размерность – “вольт на куб на ватт в квадрате”.
Расчетная постоянная для лампочки = 8,2
Низкое значение константы в начале диапазона объясняется автором в статье по ссылке.
Теперь, зная значение этой константы (8.2), мы можем написать формулу зависимости мощности от напряжения для лампы накаливания 40 Вт 24 В:
Зависимость мощности лампы накаливания от напряжения
Формула сопротивления
Но давайте вернемся к теме статьи. Проверим вывод Станислава Матросова о том, что сопротивление лампочки пропорционально корню из напряжения. Исходя из предыдущих рассуждений, можно вывести формулу для конкретной лампы накаливания 40 Вт 24 В:
Зависимость сопротивления от напряжения, формула для электрической лампочки
Давайте теперь проверим, как эта формула соотносится с полученными мной экспериментальными данными (см. таблицу в начале статьи). Давайте создадим такую таблицу:
Таблица требует пояснений. Для сохранения размерности я нормализовал экспериментально определенное напряжение (колонка 2) и рассчитанное сопротивление (колонка 4).
Столбец 5 – это корень из нормализованного напряжения, и вы можете видеть, что значения этого столбца идеально совпадают со столбцом 4!
Но давайте вернемся к фактическому сопротивлению и рассчитаем его по приведенной выше формуле (зависимость сопротивление/напряжение). Это столбец 6. Вы можете ясно видеть, что расчет по формуле почти идеально совпадает с расчетом по экспериментальным данным!
Зависимость сопротивления от напряжения. Квадратичная зависимость.
Кто хочет проверить мои расчеты, прилагаю файл: •Файл с расчетами и графиками
/ Файл с расчетами и графиками для статьи о лампочках, xlsx, 19.51 kB, скачан: 430 раз
</t^circ></t^circ>
- 5 причин, почему лампочки часто перегорают в вашей квартире и что делать?.
- Основные параметры выпрямительных диодов; Школа для инженеров-электриков: Электротехника и электроника.
- Правильное переключение светодиодов; STC ORBITA.
- Полупроводниковые диоды.
- Обратный ток. Что такое возвратный ток?.
- Важен ли для вас индикатор уведомлений?.
- Основы электроники. Урок 4: Расчет резистора для светодиода.