Как найти наклонную асимптоту функции через предел

  1. Понятие асимптоты
  2. Вертикальная асимптота
  3. Горизонтальная асимптота
  4. Наклонная асимптота
  5. Алгоритм исследования асимптотического поведения функции
  6. Примеры

п.1. Понятие асимптоты

Асимптота прямая, расстояние от которой до точки кривой стремится к нулю при удалении точки вдоль ветви кривой на бесконечность.

Различают вертикальные, горизонтальные и наклонные асимптоты.
Например:

п.2. Вертикальная асимптота

Вертикальная асимптота кривой (y=f(x)) имеет вид: (x=a)
где (a) – точка разрыва 2-го рода функции (f(x)), для которой хотя бы один односторонний предел существует и равен бесконечности.

Таким образом, практически каждой точке разрыва 2-го рода (см. §40 данного справочника) соответствует вертикальная асимптота.
Вертикальных асимптот может быть сколько угодно, в том числе, бесконечное множество (например, как у тангенса – см. §6 данного справочника).

Например:
Исследуем непрерывность функции (y=frac{1}{(x-1)(x+3)})
ОДЗ: (xne left{-3;1right})
(left{x_0=-3, x_1=1right}notin D) – точки не входят в ОДЗ, подозрительные на разрыв.
Исследуем (x_0=-3). Найдем односторонние пределы: begin{gather*} lim_{xrightarrow -3 -0}frac{1}{(x-1)(x+3)}=frac{1}{(-3-0-1)(-3-0+3)}=frac{1}{-4cdot(-0)}=+infty\ lim_{xrightarrow -3 +0}frac{1}{(x-1)(x+3)}=frac{1}{(-3+0-1)(-3+0+3)}=frac{1}{-4cdot(+0)}=-infty end{gather*} Односторонние пределы не равны и бесконечны.
Точка (x_0=-3) – точка разрыва 2-го рода.
Исследуем (x_1=1). Найдем односторонние пределы: begin{gather*} lim_{xrightarrow 1 -0}frac{1}{(x-1)(x+3)}=frac{1}{(1-0-1)(1-0+3)}=frac{1}{-0cdot 4}=-infty\ lim_{xrightarrow 1 +0}frac{1}{(x-1)(x+3)}=frac{1}{(1+0-1)(1+0+3)}=frac{1}{+0cdot 4}=+infty end{gather*} Односторонние пределы не равны и бесконечны.
Точка (x_1=1) – точка разрыва 2-го рода.
Вывод: у функции (y=frac{1}{(x-1)(x+3)}) две точки разрыва 2-го рода (left{x_0=-3, x_1=1right}), соответственно – две вертикальные асимптоты с уравнениями (x=-3) и (x=1).

п.3. Горизонтальная асимптота

Горизонтальная асимптота кривой (y=f(x)) имеет вид: (y=b)
где (b) – конечный предел функции (f(x)) на бесконечности: (b=lim{xrightarrow pminfty}f(x), bneinfty)

Число горизонтальных асимптот не может быть больше двух.

Например:
Исследуем наличие горизонтальных асимптот у функции (y=frac{1}{(x-1)(x+3)})
Ищем предел функции на минус бесконечности: begin{gather*} lim_{xrightarrow -infty}frac{1}{(x-1)(x+3)}=frac{1}{(-infty)(-infty)}=+0 end{gather*} На минус бесконечности функция имеет конечный предел (b=0) и стремится к нему сверху (о чем свидетельствует символическая запись +0).
Ищем предел функции на плюс бесконечности: begin{gather*} lim_{xrightarrow +infty}frac{1}{(x-1)(x+3)}=frac{1}{(+infty)(+infty)}=+0 end{gather*} На плюс бесконечности функция имеет тот же конечный предел (b=0) и также стремится к нему сверху.
Вывод: у функции (y=frac{1}{(x-1)(x+3)}) одна горизонтальная асимптота (y=0). На плюс и минус бесконечности функция стремится к асимптоте сверху.

Итоговый график асимптотического поведения функции (y=frac{1}{(x-1)(x+3)}): Горизонтальная асимптота

п.4. Наклонная асимптота

Наклонная асимптота кривой (y=f(x)) имеет вид: (y=kx+b) begin{gather*} k=lim_{xrightarrow pminfty}frac{f(x)}{x}, kne 0, kneinfty\ b=lim_{xrightarrow pminfty}(f(x)=kx) end{gather*}

Число наклонных асимптот не может быть больше двух.

Например:
Исследуем наличие наклонных асимптот у функции (y=frac{x^2+3}{x-1})
Найдем угловой коэффициент: begin{gather*} k_1=lim_{xrightarrow -infty}frac{y}{x}=lim_{xrightarrow -infty}frac{x^2+3}{x(x-1)}= lim_{xrightarrow -infty}frac{x^2+3}{x^2-x}=left[frac{infty}{infty}right]= lim_{xrightarrow -infty}frac{x^2left(1+frac{3}{x^2}right)}{x^2left(1-frac 1xright)}=\ =lim_{xrightarrow -infty}frac{1+frac{3}{x^2}}{1-frac1x}=frac{1+0}{1-0}=1\ k_2=lim_{xrightarrow +infty}frac{y}{x}=lim_{xrightarrow +infty}frac{x^2+3}{x(x-1)}=k_1=1 end{gather*} На плюс и минус бесконечности отношение функции к аргументу имеет один и тот же конечный предел (k=1).
Найдем свободный член: begin{gather*} b=lim_{xrightarrow pminfty}(y-kx)=lim_{xrightarrow pminfty}left(frac{x^2+3}{x-1}-1cdot xright)= lim_{xrightarrow pminfty}left(frac{x^2+3-x(x-1)}{x-1}right)=\ =lim_{xrightarrow pminfty}frac{x+3}{x-1}=left[frac{infty}{infty}right]=lim_{xrightarrow pminfty}frac{xleft(1+frac3xright)}{xleft(1-frac1xright)}=frac{1+0}{1-0}=1 end{gather*} Вывод: у функции (y=frac{x^2+3}{x-1}) одна наклонная асимптота (y=x+1). Функция стремится к асимптоте на плюс и минус бесконечности.

Чтобы построить график асимптотического поведения, заметим, что у функции (y=frac{x^2+3}{x-1}), очевидно, есть вертикальная асимптота x=1. При этом: begin{gather*} lim_{xrightarrow -1-0}frac{x^2+3}{x-1}=-infty, lim_{xrightarrow -1+0}frac{x^2+3}{x-1}=+infty end{gather*}

График асимптотического поведения функции (y=frac{x^2+3}{x-1}): Наклонная асимптота

п.5. Алгоритм исследования асимптотического поведения функции

На входе: функция (y=f(x))
Шаг 1. Поиск вертикальных асимптот
Исследовать функцию на непрерывность. Если обнаружены точки разрыва 2-го рода, у которых хотя бы один односторонний предел существует и бесконечен, сопоставить каждой такой точке вертикальную асимптоту. Если таких точек не обнаружено, вертикальных асимптот нет.
Шаг 2. Поиск горизонтальных асимптот
Найти пределы функции на плюс и минус бесконечности. Каждому конечному пределу сопоставить горизонтальную асимптоту. Если оба предела конечны и равны, у функции одна горизонтальная асимптота. Если оба предела бесконечны, горизонтальных асимптот нет.
Шаг 3. Поиск наклонных асимптот
Найти пределы отношения функции к аргументу на плюс и минус бесконечности.
Каждому конечному пределу k сопоставить наклонную асимптоту, найти b. Если только один предел конечен, у функции одна наклонная асимптота. Если оба значения k конечны и равны, и оба значения b равны, у функции одна наклонная асимптота. Если оба предела для k бесконечны, наклонных асимптот нет .
На выходе: множество всех асимптот данной функции.

п.6. Примеры

Пример 1. Исследовать асимптотическое поведение функции и построить схематический график:
a) ( y=frac{4x}{x^2-1} )
1) Вертикальные асимптоты
Точки, подозрительные на разрыв: (x=pm 1)
Односторонние пределы в точке (x=-1) begin{gather*} lim_{xrightarrow -1-0}frac{4x}{(x+1)(x-1)}=frac{4(-1-0)}{(-1-0+1)(-1-0-1)}=frac{-4}{-0cdot(-2)}=-infty\ lim_{xrightarrow -1+0}frac{4x}{(x+1)(x-1)}=frac{4(-1+0)}{(-1+0+1)(-1+0-1)}=frac{-4}{+0cdot(-2)}=+infty end{gather*} Точка (x=-1) – точка разрыва 2-го рода
Односторонние пределы в точке (x=1) begin{gather*} lim_{xrightarrow -1-0}frac{4x}{(x+1)(x-1)}=frac{4(1-0)}{(1-0+1)(1-0-1)}=frac{4}{2cdot(-0)}=-infty\ lim_{xrightarrow -1+0}frac{4x}{(x+1)(x-1)}=frac{4(1+0)}{(1+0+1)(1+0-1)}=frac{4}{2cdot(+0)}=+infty end{gather*} Точка (x=1) – точка разрыва 2-го рода
Функция имеет две вертикальные асимптоты (x=pm 1)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin{gather*} b_1=lim_{xrightarrow -infty}frac{4x}{x^2-1}=left[frac{infty}{infty}right]=lim_{xrightarrow -infty}frac{x^2cdot frac4x}{x^2(1-frac{1}{x^2})}=lim_{xrightarrow -infty}frac{frac4x}{1-frac{1}{x^2}}=frac{-0}{1}=-0\ b_2=lim_{xrightarrow +infty}frac{4x}{x^2-1}=left[frac{infty}{infty}right]=lim_{xrightarrow +infty}frac{frac4x}{1-frac{1}{x^2}}=frac{+0}{1}=+0 end{gather*} Функция имеет одну горизонтальную асимптоту (y=0). На минус бесконечности функция стремится к асимптоте снизу, не плюс бесконечности – сверху.

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin{gather*} k=lim_{xrightarrow pminfty}frac{4x}{x(x^2-1)}=lim_{xrightarrow pminfty}frac{4}{x^2-1}=frac{4}{infty}=0 end{gather*} Наклонных асимптот нет.

График асимптотического поведения функции (y=frac{4x}{x^2-1})
Пример 1а

б) ( y=e^{frac{1}{x+3}} )
1) Вертикальные асимптоты
Точка, подозрительная на разрыв: (x=-3)
Односторонние пределы: begin{gather*} lim_{xrightarrow -3-0}e^{frac{1}{x+3}}=e^{frac{1}{-3-0)+3}}=e^{frac{1}{-0}}=e^infty=0\ lim_{xrightarrow -3+0}e^{frac{1}{x+3}}=e^{frac{1}{-3+0)+3}}=e^{frac{1}{+0}}=e^{+infty}=+infty end{gather*} Точка (x=-3) – точка разрыва 2-го рода
Функция имеет одну вертикальную асимптоту (x=2)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin{gather*} b_1=lim_{xrightarrow -infty}e^{frac{1}{x+3}}=e^0=1\ b_2=lim_{xrightarrow +infty}e^{frac{1}{x+3}}=e^0=1\ b=b_1=b_2=1 end{gather*} Функция имеет одну горизонтальную асимптоту (y=1). Функция стремится к этой асимптоте на минус и плюс бесконечности.

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin{gather*} k_1=lim_{xrightarrow -infty}frac{e^{frac{1}{x+3}}}{x}=frac{e^0}{-infty}=0\ k_2=lim_{xrightarrow +infty}frac{e^{frac{1}{x+3}}}{x}=frac{e^0}{+infty}=0 end{gather*} Наклонных асимптот нет.

График асимптотического поведения функции (y=e^{frac{1}{x+3}})
Пример 1б

в) ( y=frac{x^3+x^2+x+1}{x^2-1} )
Заметим, что ( frac{x^3+x^2+x+1}{x^2-1}=frac{x^2(x+1)+(x+1)}{(x+1)(x-1)}=frac{(x^2)(x+1)}{(x+1)(x-1)}=frac{x^2+1}{x-1} ) $$ y=frac{x^3+x^2+x+1}{x^2-1}Leftrightarrow begin{cases} y=frac{x^2+1}{x-1}\ xne -1 end{cases} $$ График исходной функции совпадает с графиком функции (y=frac{x^2+1}{x-1}), из которого необходимо выколоть точку c абсциссой (x=-1).

1) Вертикальные асимптоты
Точки, подозрительные на разрыв: (x=pm 1)
Односторонние пределы в точке (x=-1) begin{gather*} lim_{xrightarrow -1-0}frac{x^3+x^2+x+1}{x^2-1}=lim_{xrightarrow -1-0}frac{x^2+1}{x-1}=frac{2}{-2}=-1\ lim_{xrightarrow -1+0}frac{x^3+x^2+x+1}{x^2-1}=lim_{xrightarrow -1-0}frac{x^2+1}{x-1}=frac{2}{-2}=-1 end{gather*} Точка (x=-1) – точка разрыва 1-го рода, устранимый разрыв («выколотая» точка).
Односторонние пределы в точке (x=1) begin{gather*} lim_{xrightarrow 1-0}frac{x^3+x^2+x+1}{x^2-1}=lim_{xrightarrow 1-0}frac{x^2+1}{x-1}=frac{2}{1-0-1}=frac{2}{-0}=-infty\ lim_{xrightarrow 1-0}frac{x^3+x^2+x+1}{x^2-1}=lim_{xrightarrow 1-0}frac{x^2+1}{x-1}=frac{2}{1+0-1}=frac{2}{+0}=+infty end{gather*} Точка (x=1) – точка разрыва 2-го рода
Функция имеет одну вертикальную асимптоту (x=1)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin{gather*} b_1=lim_{xrightarrow -infty}frac{x^2+1}{x-1}=left[frac{infty}{infty}right]=lim_{xrightarrow -infty}frac{x^2left(1+frac{1}{x^2}right)}{x^2left(frac1x-frac{1}{x^2}right)}=frac{1+0}{-0-0}=-infty\ b_2=lim_{xrightarrow +infty}frac{x^2+1}{x-1}=left[frac{infty}{infty}right]=lim_{xrightarrow +infty}frac{x^2left(1+frac{1}{x^2}right)}{x^2left(frac1x-frac{1}{x^2}right)}=frac{1+0}{0-0}=+infty end{gather*} Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin{gather*} k_1=lim_{xrightarrow -infty}frac{x^2+1}{x(x-1)}=left[frac{infty}{infty}right]=lim_{xrightarrow -infty}frac{x^2left(1+frac{1}{x^2}right)}{x^2left(1-frac1xright)}=frac{1+0}{1-0}=1\ k_2=lim_{xrightarrow +infty}frac{x^2+1}{x(x-1)}=left[frac{infty}{infty}right]=lim_{xrightarrow +infty}frac{x^2left(1+frac{1}{x^2}right)}{x^2left(1-frac1xright)}=frac{1+0}{1-0}=1\ k=k_1=k_2=1 end{gather*} У функции есть одна наклонная асимптота с (k=1).
Ищем свободный член: begin{gather*} b=lim_{xrightarrow infty}(y-kx)= lim_{xrightarrow infty}left(frac{x^2+1}{x-1}-2right)= lim_{xrightarrow infty}frac{x^2+1-x^2+x}{x-1}= lim_{xrightarrow infty}frac{x+1}{x-1}=left[frac{infty}{infty}right]=\ =lim_{xrightarrow infty}frac{xleft(1+frac1xright)}{xleft(1-frac1xright)}=frac{1+0}{1-0}=1 end{gather*} Функция имеет одну наклонную асимптоту (y=x+1).
График асимптотического поведения функции (y=frac{x^3+x^2+x+1}{x^2-1})
Пример 1в

г*) ( y=xe^{frac{1}{2-x}} )
1) Вертикальные асимптоты
Точка, подозрительная на разрыв: (x=2)
Односторонние пределы: begin{gather*} lim_{xrightarrow 2-0}xe^{frac{1}{2-x}}=(2-0)e^{frac{1}{2-(2-0)}}=2e^{frac{1}{+0}}=2e^{+infty}=+infty\ lim_{xrightarrow 2+0}xe^{frac{1}{2-x}}=(2+0)e^{frac{1}{2-(2+0)}}=2e^{frac{1}{-0}}=2e^{-infty}=-infty end{gather*} Точка (x=2) – точка разрыва 2-го рода.
Функция имеет одну вертикальную асимптоту (x=2)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin{gather*} b_1=lim_{xrightarrow -infty}xe^{frac{1}{2-x}}=-inftycdot e^0=-infty\ b_2=lim_{xrightarrow +infty}xe^{frac{1}{2-x}}=+inftycdot e^0=+infty end{gather*} Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin{gather*} k_1=lim_{xrightarrow -infty}frac{xe^{frac{1}{2-x}}}{x}=lim_{xrightarrow -infty}e^{frac{1}{2-x}}=e^0=1\ k_2=lim_{xrightarrow +infty}frac{xe^{frac{1}{2-x}}}{x}=lim_{xrightarrow +infty}e^{frac{1}{2-x}}=e^0=1\ k=k_1=k_2=1 end{gather*} У функции есть одна наклонная асимптота с (k=1).
Ищем свободный член: begin{gather*} b=lim_{xrightarrow infty}(y-kx)= lim_{xrightarrow infty}left(xe^{frac{1}{2-x}}-xright)=lim_{xrightarrow infty}xleft(e^{frac{1}{2-x}}-1right)=left[inftycdot 0right] end{gather*} Используем одно из следствий второго замечательного предела (см. §39 данного справочника): begin{gather*} lim_{xrightarrow 0}frac{e^x-1}{x}=1\ b=lim_{xrightarrow infty}xleft(e^{frac{1}{2-x}}-1right)= left[ begin{array}{l} t=frac{1}{2-x}\ trightarrow 0\ x=2-frac1t=frac{2t-1}{t} end{array} right]=\ =lim_{trightarrow 0}left(left(frac{2t-1}{t}right)(e^t-1)right)=lim_{trightarrow 0}(2t-1)cdot lim_{trightarrow 0}frac{e^t-1}{t}=-1cdot 1=-1 end{gather*} Функция имеет одну наклонную асимптоту (y=x-1).

График асимптотического поведения функции (y=xe^{frac{1}{2-x}})
Пример 1г

Асимптоты графика функции

Часто задание на нахождение асимптот функции встречается в курсе математического анализа, в частности при решении задач на тему исследования функции. Для того, чтобы успешно ответить на вопрос: как найти асимптоты функции? необходимо уметь вычислять пределы, понимать что они собой представляют, знать основные методы решения пределов. Если всё это вы умеете на должном уровне, тогда найти асимптоты для вас не будет проблемой. Итак, что такое асимптота? Асимптота это линия, к которой бесконечно приближается ветвь графика функции. Чтобы было наглядно, посмотрите на изображения представленные ниже.

как найти асимптоты функции

Обратите внимание, что соприкосновения между асимптотой и графиками нет, и не должно быть. Асимптота бесконечно приближается к графику функции. Давайте рассмотрим какие виды асимптоты функции бывают и как их находить, но о последнем будет рассказано далее.

асимптоты функции

Из таблицы узнаем, что асимптоты у функции бывают трех видов: вертикальные, горизонтальные, наклонные. Каждую найти асимптоту функции нужно по своему. Для этого нужны лимиты. Сколько бывает асимптот всего у функции? Ответ: ни одной, одна, две, три… и бесконечно много. У каждой функции по разному.

Вертикальные асимптоты

Чтобы найти данный вид асимптот необходимо найти область определения заданной функции и отметить точки разрыва. В этих точках предел функции будет равен бесконечности, а это значит, что функция в этой точке бесконечно приближается к линии асимптоты.

Горизонтальные асимптоты

Необходимо устремить аргумент лимита функции к бесконечности. Если предел существует и равен числу, то горизонтальная асимптота будет найдена и равна $ y=y_0 $ как показано во втором столбце таблицы

Наклонные асимптоты

Наклонная асимптота представляется в виде $ y = kx+b $. Где $ k $ – это коэффициент наклона асимптоты. Сначала находится коэффициент $ k $, затем $ b $. Если какой либо из них равен $ infty $, тогда наклонной асимптоты нет. А если $ k = 0 $, то получаем горизонтальную асимптоту. Так что для экономии времени лучше сразу находить наклонную асимптоту, а горизонтальная проявится сама собой в случае её существования.

Примеры решений

Пример 1
Найти все асимптоты графика функции $$ f(x) = frac{5x}{3x+2} $$
Решение

Для начала решения найдем вертикальные асимптоты, но прежде найдем область определения функции $ f(x) $. По определению знаменатель не должен быть равен нулю. Поэтому имеем, $ 3x+2 neq 0; 3x neq -2; x neq -frac{2}{3} $. Получили точку разрыва $ x = -frac{2}{3} $. Вычислим в ней предел функции и убедимся окончательно, что вертикальная асимптота это $ x = -frac{2}{3} $.

$$ limlimits_{{x rightarrow -frac{2}{3}}} frac{5x}{3x+2} = (-frac{10}{infty}) = -infty $$.

Теперь найдем горизонтальные асимптоты, но прежде рассчитаем коэффициенты $ k $ и $ b $.

$$ k = limlimits_{x rightarrow infty} frac{f(x)}{x} =limlimits_{x rightarrow infty} frac{5}{3x+2}=frac{5}{infty}=0 $$

Так как $ k = 0 $, то мы уже понимаем то, что наклонных асимптот нет, а есть горизонтальные. Найдем теперь коэффициент $ b $.

$$ b = limlimits_{x rightarrow infty} [f(x)-kx] = limlimits_{x rightarrow infty} frac{5x}{3x+2} = frac{infty}{infty} =frac{5}{3} $$

Подставляем найденные коэффициенты в формулу $ y = kx + b $, получаем, что $ y = frac{5}{3} $ – горизонтальная асимптота.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y = frac{5}{3} $$
Пример 2
Найти все асимптоты графика функции $ f(x) = frac{1}{1-x} $
Решение

Найдем область определения данного примера, чтобы определить вертикальные асимптоты. $ 1-x neq 0; x neq 1; $. Точка разрыва $ x = 1 $, а это значит что это и есть вертикальная асимптота. Найдем для доказательства предположения предел в этой точке. $$ limlimits_{x rightarrow 1} frac{1}{1-x} = frac{1}{0} = infty $$

Приступим к поиску наклонных асимптот.

$$ k = limlimits_{x rightarrow infty}frac{f(x)}{x}=limlimits_{x rightarrow infty}frac{1}{x(1-x)} = frac{1}{infty}=0 $$

$$ b =limlimits_{x rightarrow infty}[f(x)-kx]=limlimits_{x rightarrow infty}frac{1}{1-x} = frac{1}{infty}=0 $$

Итого, $ y=0 $ – горизонтальная асимптота.

Ответ
$$ y=0 $$
Пример 3
Найти все асимптоты графика функции $ f(x) = frac{x^3}{3x^2+5} $
Решение

Замечаем, что знаменатель не обращается в ноль при любом значении икса. А это значит, что нет точек разрыва и следовательно нет вертикальных асимптот. Остается найти горизонтальные асимптоты.

$$ k = limlimits_{x rightarrow infty} frac{f(x)}{x} =limlimits_{x rightarrow infty}frac{x^2}{3x^2+5} =limlimits_{x rightarrow infty} frac{2x}{6x} = frac{1}{3} $$

Так как $ k $ конечное число, не равное $ 0 $ или бесконечности, то существует наклонная асимптота. Вычислим недостающее число $ b $.

$$ b =limlimits_{x rightarrow infty} [f(x)-kx] =limlimits_{x rightarrow infty} [frac{x^3}{3x^2+5}-frac{x}{3}] =limlimits_{x rightarrow infty} -frac{5x}{3(3x^2+5)}= $$ $$ = -frac{5}{3}limlimits_{x rightarrow infty} frac{x}{3x^2+5} =-frac{5}{3}limlimits_{x rightarrow infty} frac{1}{6x} =-frac{5}{3}frac{1}{infty} = 0 $$

$ y =frac{1}{3}x $ – наклонная асимптота к функции с углом наклона одна третья.

Ответ
$$ y =frac{1}{3}x $$
Пример 4
Найти асимптоты $ f(x) = xe^{-x} $
Решение

Нет точек разрыва, а это значит, нет вертикальных асимптот.

$$ k=limlimits_{x rightarrow infty} frac{1}{e^x} = frac{1}{infty} = 0 $$

$$ b=limlimits_{x rightarrow infty} frac{x}{e^x} =limlimits_{x rightarrow infty} frac{1}{e^x} = frac{1}{infty} = 0 $$

$ y = 0 $ – горизонтальная асимптота

Ответ
$$ y = 0 $$

Если в задачах даются элементарные функции, то заранее известно сколько и есть ли асимптоты. Например, у параболы, кубической параболы, синусоиды вообще нет никаких. У графиков функций таких как логарифмическая или экспоненциальная есть по одной. А у функций тангенса и котангенса бесчисленное множество асимптот, но арктангенс и арккатангенс имеет по две штуки.

Во всех приведенных примерах пределы вычислялись с помощью правило Лопиталя, которое очень ускоряет процесс вычисления и создает меньше ошибок.

Построение графика
функции значительно облегчается, если
знать его асимптоты.

Определение.

Асимптотой
кривой называется прямая, расстояние
до которой от точки, лежащей на кривой,
стремится к нулю при неограниченном
удалении от начала координат этой точки
по кривой (рис.5.10).

Асимптоты бывают
вертикальные (параллельные оси Оу),
горизонтальные (параллельные оси Ох)
и наклонные.

Рис. 5.10

Вертикальные асимптоты

Определение.

Прямая
называетсявертикальной
асимптотой
графика
функции
,
если выполнено одно из условий:

или
(рис.5.11)

Рис. 5.11

Вертикальные
асимптоты, уравнение которых х=x0
, следует
искать в точках, где функция терпит
разрыв второго рода, или на концах ее
области определения, если концы не равны
.
Если таких точек нет, то нет и вертикальных
асимптот.

Например, для
кривой
,
вертикальной асимптотой будет прямая,
так как,.
Вертикальной асимптотой графика функцииявляется прямая(осьОу),
поскольку

.

Горизонтальные асимптоты

Определение.

Если при
()
функцияимеет конечный предел, равный числуb:

,

то прямая
есть горизонтальная асимптота графика
функции.

Например, для
функции
имеем

,
.

Соответственно,
прямая
− горизонтальная асимптота для правой
ветви графика функции,
а прямая− для левой ветви.

В том случае, если

,

график функции не
имеет горизонтальных асимптот, но может
иметь наклонные.

Наклонные асимптоты

Определение.

Прямая
называетсянаклонной
асимптотой

графика функции
при(),
если выполняется равенство

.

Наличие наклонной
асимптоты устанавливают с помощью
следующей теоремы.

Теорема.

Для того, чтобы
график функции
имел при()
наклонную асимптоту,
необходимо и достаточно, чтобы существовали
конечные пределы

и
.

Если хотя бы один
из этих пределов не существует или равен
бесконечности, то кривая
наклонной асимптоты не имеет.

Замечания.

1. При отыскании
асимптот следует отдельно рассматривать
случаи
и.

2. Если

и
,

то график функции
имеет горизонтальную асимптоту.

3. Если

и
,

то прямая
(осьОх)
является горизонтальной асимптотой
графика функции
.

Из замечаний
следует, что горизонтальную асимптоту
можно рассматривать как частный случай
наклонной асимптоты при
.
Поэтому при отыскании асимптот графика
функции рассматривают лишь два случая:

1) вертикальные
асимптоты,

2) наклонные
асимптоты.

Пример

Найти асимптоты
графика функции
.

.

1)
− точка разрыва второго рода:

,
.

Прямая
− вертикальная асимптота.

2)
,

,

.

Прямая
− горизонтальная асимптота. Наклонной
асимптоты нет.

5.6. Общая схема исследования функции и построение графика

В предыдущих
параграфах было показано, как с помощью
производных двух первых порядков
изучаются общие свойства функции.
Пользуясь результатами этого изучения,
можно составить представление о характере
функции и, в частности, построить ее
график.

Исследование
функции
целесообразно проводить по следующей
схеме.

  1. Найти область
    определения функции.

  2. Исследовать
    функцию на четность и нечетность.

  3. Исследовать
    функцию на периодичность.

  4. Найти точки
    пересечения графика функции с осями
    координат.

  5. Найти интервалы
    знакопостоянства функции (интервалы,
    на которых
    или).

  6. Найти асимптоты
    графика функции.

  7. Найти интервалы
    монотонности и точки экстремума функции.

  8. Найти интервалы
    выпуклости и вогнутости и точки перегиба
    графика функции.

  9. Построить график
    функции.

Пример

Исследовать функцию
и построить ее график.

  1. Область определения
    функции
    .

  2. Функция нечетная:
    .
    График функции симметричен относительно
    начала координат

  3. Функция
    непериодическая.

  4. Точки пересечения
    с осями координат:

С осью Оу:
,
точка.

С осью Ох:
,,,.

  1. Точки
    ,иразбивают осьОх
    на четыре интервала.

при
;

при
;

при
;

при
.

  1. Так как функция
    является непрерывной, то ее график не
    имеет вертикальных асимптот.

.

Наклонной и
горизонтальной асимптот нет.

  1. ,

,
,− критические точки.

для
«↑»,

для
«↓»,

для
«↑».

Сведем данные в
таблицу.

х

-1

1

+

0

0

+

(возрастает)

mах

2

(убывает)

min

-2

(возрастает)

,
;

точка
− максимум;

точка
− минимум.

  1. ,
    ,,.

при
«»;

при
«».

х

0

0

+

(выпуклый)

0

(точка перегиба)

(вогнутый)

Точка
− точка перегиба.

  1. График функции
    (рис.5.12)

Рис. 5.12

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Асимптоты

п.1. Понятие асимптоты

Различают вертикальные, горизонтальные и наклонные асимптоты.
Например:

п.2. Вертикальная асимптота

Таким образом, практически каждой точке разрыва 2-го рода (см. §40 данного справочника) соответствует вертикальная асимптота.
Вертикальных асимптот может быть сколько угодно, в том числе, бесконечное множество (например, как у тангенса – см. §6 данного справочника).

Например:
Исследуем непрерывность функции (y=frac<1><(x-1)(x+3)>)
ОДЗ: (xne left<-3;1right>)
(left\notin D) – точки не входят в ОДЗ, подозрительные на разрыв.
Исследуем (x_0=-3). Найдем односторонние пределы: begin lim_frac<1><(x-1)(x+3)>=frac<1><(-3-0-1)(-3-0+3)>=frac<1><-4cdot(-0)>=+infty\ lim_frac<1><(x-1)(x+3)>=frac<1><(-3+0-1)(-3+0+3)>=frac<1><-4cdot(+0)>=-infty end Односторонние пределы не равны и бесконечны.
Точка (x_0=-3) – точка разрыва 2-го рода.
Исследуем (x_1=1). Найдем односторонние пределы: begin lim_frac<1><(x-1)(x+3)>=frac<1><(1-0-1)(1-0+3)>=frac<1><-0cdot 4>=-infty\ lim_frac<1><(x-1)(x+3)>=frac<1><(1+0-1)(1+0+3)>=frac<1><+0cdot 4>=+infty end Односторонние пределы не равны и бесконечны.
Точка (x_1=1) – точка разрыва 2-го рода.
Вывод: у функции (y=frac<1><(x-1)(x+3)>) две точки разрыва 2-го рода (left\), соответственно – две вертикальные асимптоты с уравнениями (x=-3) и (x=1).

п.3. Горизонтальная асимптота

Число горизонтальных асимптот не может быть больше двух.

Например:
Исследуем наличие горизонтальных асимптот у функции (y=frac<1><(x-1)(x+3)>)
Ищем предел функции на минус бесконечности: begin lim_frac<1><(x-1)(x+3)>=frac<1><(-infty)(-infty)>=+0 end На минус бесконечности функция имеет конечный предел (b=0) и стремится к нему сверху (о чем свидетельствует символическая запись +0).
Ищем предел функции на плюс бесконечности: begin lim_frac<1><(x-1)(x+3)>=frac<1><(+infty)(+infty)>=+0 end На плюс бесконечности функция имеет тот же конечный предел (b=0) и также стремится к нему сверху.
Вывод: у функции (y=frac<1><(x-1)(x+3)>) одна горизонтальная асимптота (y=0). На плюс и минус бесконечности функция стремится к асимптоте сверху.

Итоговый график асимптотического поведения функции (y=frac<1><(x-1)(x+3)>):

п.4. Наклонная асимптота

Число наклонных асимптот не может быть больше двух.

Чтобы построить график асимптотического поведения, заметим, что у функции (y=frac), очевидно, есть вертикальная асимптота x=1. При этом: begin lim_frac=-infty, lim_frac=+infty end

График асимптотического поведения функции (y=frac):

п.5. Алгоритм исследования асимптотического поведения функции

На входе: функция (y=f(x))
Шаг 1. Поиск вертикальных асимптот
Исследовать функцию на непрерывность. Если обнаружены точки разрыва 2-го рода, у которых хотя бы один односторонний предел существует и бесконечен, сопоставить каждой такой точке вертикальную асимптоту. Если таких точек не обнаружено, вертикальных асимптот нет.
Шаг 2. Поиск горизонтальных асимптот
Найти пределы функции на плюс и минус бесконечности. Каждому конечному пределу сопоставить горизонтальную асимптоту. Если оба предела конечны и равны, у функции одна горизонтальная асимптота. Если оба предела бесконечны, горизонтальных асимптот нет.
Шаг 3. Поиск наклонных асимптот
Найти пределы отношения функции к аргументу на плюс и минус бесконечности.
Каждому конечному пределу k сопоставить наклонную асимптоту, найти b. Если только один предел конечен, у функции одна наклонная асимптота. Если оба значения k конечны и равны, и оба значения b равны, у функции одна наклонная асимптота. Если оба предела для k бесконечны, наклонных асимптот нет .
На выходе: множество всех асимптот данной функции.

п.6. Примеры

Пример 1. Исследовать асимптотическое поведение функции и построить схематический график:
a) ( y=frac<4x> )
1) Вертикальные асимптоты
Точки, подозрительные на разрыв: (x=pm 1)
Односторонние пределы в точке (x=-1) begin lim_frac<4x><(x+1)(x-1)>=frac<4(-1-0)><(-1-0+1)(-1-0-1)>=frac<-4><-0cdot(-2)>=-infty\ lim_frac<4x><(x+1)(x-1)>=frac<4(-1+0)><(-1+0+1)(-1+0-1)>=frac<-4><+0cdot(-2)>=+infty end Точка (x=-1) – точка разрыва 2-го рода
Односторонние пределы в точке (x=1) begin lim_frac<4x><(x+1)(x-1)>=frac<4(1-0)><(1-0+1)(1-0-1)>=frac<4><2cdot(-0)>=-infty\ lim_frac<4x><(x+1)(x-1)>=frac<4(1+0)><(1+0+1)(1+0-1)>=frac<4><2cdot(+0)>=+infty end Точка (x=1) – точка разрыва 2-го рода
Функция имеет две вертикальные асимптоты (x=pm 1)

График асимптотического поведения функции (y=frac<4x>)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin b_1=lim_e^<frac<1>>=e^0=1\ b_2=lim_e^<frac<1>>=e^0=1\ b=b_1=b_2=1 end Функция имеет одну горизонтальную асимптоту (y=1). Функция стремится к этой асимптоте на минус и плюс бесконечности.

График асимптотического поведения функции (y=e^<frac<1>>)

в) ( y=frac )
Заметим, что ( frac=frac<(x+1)(x-1)>=frac<(x^2)(x+1)><(x+1)(x-1)>=frac ) $$ y=fracLeftrightarrow begin y=frac\ xne -1 end $$ График исходной функции совпадает с графиком функции (y=frac), из которого необходимо выколоть точку c абсциссой (x=-1).

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin k_1=lim_frac=left[frac<infty><infty>right]=lim_fracright)>=frac<1+0><1-0>=1\ k_2=lim_frac=left[frac<infty><infty>right]=lim_fracright)>=frac<1+0><1-0>=1\ k=k_1=k_2=1 end У функции есть одна наклонная асимптота с (k=1).
Ищем свободный член: begin b=lim_(y-kx)= lim_left(frac-2right)= lim_frac= lim_frac=left[frac<infty><infty>right]=\ =lim_frac=frac<1+0><1-0>=1 end Функция имеет одну наклонную асимптоту (y=x+1).
График асимптотического поведения функции (y=frac)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin b_1=lim_xe^<frac<1><2-x>>=-inftycdot e^0=-infty\ b_2=lim_xe^<frac<1><2-x>>=+inftycdot e^0=+infty end Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.

График асимптотического поведения функции (y=xe^<frac<1><2-x>>)

Асимптоты графика функций: их виды, примеры решений

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Понятие асимптоты

Если предварительно построить асимптоты кривой, то многих случаях построение графика функции облегчается.

Судьба асимптоты полна трагизма. Представьте себе, каково это: всю жизнь двигаться по прямой к заветной цели, подойти к ней максимально близко, но так и не достигнуть её. Например, стремиться соединить свой жизненный путь с путём желанного человека, в какой-то момент приблизиться к нему почти вплотную, но даже не коснуться его. Или стремиться заработать миллиард, но до достижения этой цели и записи в книгу рекордов Гиннеса для своего случая не достаёт сотых долей цента. И тому подобное. Так и с асимптотой: она постоянно стремится достигнуть кривой графика функции, приближается к нему на минимальное возможное расстояние, но так и не касается его.

Определение 1. Асимптотами называются такие прямые, к которым сколь угодно близко приближается график функции, когда переменная стремится к плюс бесконечности или к минус бесконечности.

Определение 2. Прямая называется асимптотой графика функции, если расстояние от переменной точки М графика функции до этой прямой стремится к нулю при неограниченном удалении точки М от начала координат по какой-либо ветви графика функции.

Различают три вида асимптот: вертикальные, горизонтальные и наклонные.

Вертикальные асимптоты

Первое, что нужно узнать о вертикальных асимптотах: они параллельны оси Oy .

Определение. Прямая x = a является вертикальной асимптотой графика функции, если точка x = a является точкой разрыва второго рода для этой функции.

Из определения следует, что прямая x = a является вертикальной асимптотой графика функции f(x) , если выполняется хотя бы одно из условий:

  • (предел функции при значении аргумента, стремящимся к некоторому значению a слева, равен плюс или минус бесконечности)
  • (предел функции при значении аргумента, стремящимся к некоторому значению a справа, равен плюс или минус бесконечности).
  • символом обозначается стремление x к a справа, причём x остаётся больше a;
  • символом обозначается стремление x к a слева, причём x остаётся меньше a.

Из сказанного следует, что вертикальные асимптоты графика функции можно искать не только в точках разрыва, но и на границах области определения. График функции, непрерывной на всей числовой прямой, вертикальных асимптот не имеет.

Пример 1. График функции y=lnx имеет вертикальную асимптоту x = 0 (т.е. совпадающую с осью Oy ) на границе области определения, так как предел функции при стремлении икса к нулю справа равен минус бесконечности:

Найти асимптоты графика функции самостоятельно, а затем посмотреть решения

Пример 2. Найти асимптоты графика функции .

Пример 3. Найти асимптоты графика функции

Пример 4. Найти асимптоты график функции .

Горизонтальные асимптоты

Первое, что нужно узнать о горизонтальных асимптотах: они параллельны оси Ox .

Если (предел функции при стремлении аргумента к плюс или минус бесконечности равен некоторому значению b), то y = bгоризонтальная асимптота кривой y = f(x ) (правая при иксе, стремящимся к плюс бесконечности, левая при иксе, стремящимся к минус бесконечности, и двусторонняя, если пределы при стремлении икса к плюс или минус бесконечности равны).

Пример 5. График функции

при a > 1 имеет левую горизонтальную асимпототу y = 0 (т.е. совпадающую с осью Ox ), так как предел функции при стремлении “икса” к минус бесконечности равен нулю:

Правой горизонтальной асимптоты у кривой нет, поскольку предел функции при стремлении “икса” к плюс бесконечности равен бесконечности:

Наклонные асимптоты

Вертикальные и горизонтальные асимптоты, которые мы рассмотрели выше, параллельны осям координат, поэтому для их построения нам требовалось лишь определённое число – точка на оси абсцисс или ординат, через которую проходит асимптота. Для наклонной асимптоты необходимо больше – угловой коэффициент k, который показывает угол наклона прямой, и свободный член b, который показывает, насколько прямая находится выше или ниже начала координат. Не успевшие забыть аналитическую геометрию, а из неё – уравнения прямой, заметят, что для наклонной асимптоты находят уравнение прямой с угловым коэффициентом. Существование наклонной асимптоты определяется следующей теоремой, на основании которой и находят названные только что коэффициенты.

Теорема. Для того, чтобы кривая y = f(x) имела асимптоту y = kx + b , необходимо и достаточно, чтобы существовали конечные пределы k и b рассматриваемой функции при стремлении переменной x к плюс бесконечности и минус бесконечности:

(1)

(2)

Найденные таким образом числа k и b и являются коэффициентами наклонной асимптоты.

В первом случае (при стремлении икса к плюс бесконечности) получается правая наклонная асимптота, во втором (при стремлении икса к минус бесконечности) – левая. Правая наклонная асимптота изображена на рис. снизу.

При нахождении уравнения наклонной асимптоты необходимо учитывать стремление икса и к плюс бесконечности, и к минус бесконечности. У некоторых функций, например, у дробно-рациональных, эти пределы совпадают, однако у многих функций эти пределы различны а также может существовать только один из них.

При совпадении пределов при иксе, стремящемся к плюс бесконечности и к минус бесконечности прямая y = kx + b является двусторонней асимптотой кривой.

Если хотя бы один из пределов, определяющих асимптоту y = kx + b , не существует, то график функции не имеет наклонной асимптоты (но может иметь вертикальную).

Нетрудно видеть, что горизонтальная асимптота y = b является частным случаем наклонной y = kx + b при k = 0 .

Поэтому если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример 6. Найти асимптоты графика функции

Решение. Функция определена на всей числовой прямой, кроме x = 0 , т.е.

Поэтому в точке разрыва x = 0 кривая может иметь вертикальную асимптоту. Действительно, предел функции при стремлении икса к нулю слева равен плюс бесконечности:

Следовательно, x = 0 – вертикальная асимптота графика данной функции.

Горизонтальной асимптоты график данной функции не имеет, так как предел функции при стремлении икса к плюс бесконечности равен плюс бесконечности:

Выясним наличие наклонной асимптоты:

Получили конечные пределы k = 2 и b = 0 . Прямая y = 2x является двусторонней наклонной асимптотой графика данной функции (рис. внутри примера).

Пример 7. Найти асимптоты графика функции

Решение. Функция имеет одну точку разрыва x = −1 . Вычислим односторонние пределы и определим вид разрыва:

,

.

Заключение: x = −1 – точка разрыва второго рода, поэтому прямая x = −1 является вертикальной асимптотой графика данной функции.

Ищем наклонные асимптоты. Так как данная функция – дробно-рациональная, пределы при и при будут совпадать. Таким образом, находим коэффициенты для подстановки в уравнение прямой – наклонной асимптоты:

Подставляя найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты:

На рисунке график функции обозначен бордовым цветом, а асимптоты – чёрным.

Пример 8. Найти асимптоты графика функции

.

Решение. Так как данная функция непрерывна, её график не имеет вертикальных асимптот. Ищем наклонные асимптоты:

.

Таким образом, график данной функции имеет асимптоту y = 0 при и не имеет асиптоты при .

Пример 9. Найти асимптоты графика функции

.

Решение. Сначала ищем вертикальные асимптоты. Для этого найдём область определения функции. Функция определена, когда выполняется неравенство и при этом . Знак переменной x совпадает со знаком . Поэтому рассмотрим эквивалентное неравенство . Из этого получаем область определения функции: . Вертикальная асимптота может быть только на границе области определения функции. Но x = 0 не может быть вертикальной асимптотой, так как функция определена при x = 0 .

Рассмотрим правосторонний предел при (левосторонний предел не существует):

.

Точка x = 2 – точка разрыва второго рода, поэтому прямая x = 2 – вертикальная асимптота графика данной функции.

Ищем наклонные асимптоты:

Итак, y = x + 1 – наклонная асимптота графика данной функции при . Ищем наклонную асимптоту при :

Итак, y = −x − 1 – наклонная асимптота при .

Пример 10. Найти асимптоты графика функции

Решение. Функция имеет область определения . Так как вертикальная асимптота графика этой функции может быть только на границе области определения, найдём односторонние пределы функции при :

,

.

Оба предела нашли, используя первый замечательный предел. Заключение: x = 0 – точка устранимого разрыва, поэтому у графика функции нет вертикальных асимптот.

Ищем наклонные асимптоты:

Таким образом, при наклонной асимптотой графика данной функции является прямая y = x . Но при найденные пределы не изменяются. Поэтому при наклонной асимптотой графика данной функции также является y = x .

Пример 11. Найти асимптоты графика функции

.

Решение. Сначала найдём вертикальные асимптоты. Для этого найдём точки разрыва функции и их виды. Знаменатель не может быть равным нулю, поэтому должно соблюдаться условие . Функция имеет две точки разрыва: , . Чтобы установить вид разрыва, найдём односторонние пределы:

Так как все пределы равны бесконечности, обе точки разрыва – второго рода. Поэтому график данной функции имеет две вертикальные асимптоты: x = 2 и x = −2 .

Ищем наклонные асимптоты. Так как данная функция является дробно-рациональной, пределы при и при совпадают. Поэтому, определяя коэффициенты прямой, ищем просто пределы:

Подставляем найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты y = 2x . Таким образом, график данной функции имеет три асимптоты: x = 2 , x = −2 и y = 2x .

Найти асимптоты графика функции самостоятельно, а затем посмотреть решения

Пример 12. Найти асимптоты графика функции .

Пример 13. Найти асимптоты графика функции .

Уравнение наклонной асимптоты через пределы

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

[spoiler title=”источники:”]

http://function-x.ru/derivative4.html

http://yukhym.com/ru/issledovanie-funktsii/primery-nakhozhdeniya-naklonnykh-asimptot.html

[/spoiler]

Содержание:

  • Виды асимптот
  • Нахождение наклонной асимптоты

Виды асимптот

Определение

Прямая $x=x_{0}$ называется вертикальной асимптотой
графика функции $y=f(x)$, если хотя бы одно из предельных
значений $lim _{x rightarrow x_{0}-0} f(x)$ или
$lim _{x rightarrow x_{0}+0} f(x)$ равно
$+infty$ или
$-infty$ .

Замечание. Прямая $x=x_{0}$ не может
быть вертикальной асимптотой, если функция
непрерывна в точке $x=x_{0}$ .
Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Определение

Прямая $y=y_{0}$ называется
горизонтальной асимптотой графика функции $y=f(x)$, если
хотя бы одно из предельных значений $lim _{x rightarrow+infty} f(x)$ или
$lim _{x rightarrow-infty} f(x)$ равно
$y_{0}$ .

Замечание. График функции может иметь только правую горизонтальную асимптоту или только левую.

Определение

Прямая $y=k x+b$ называется наклонной асимптотой
графика функции $y=f(x)$, если
$lim _{x rightarrow infty}[f(x)-k x-b]=0$

Нахождение наклонной асимптоты

Теорема

(условиях существования наклонной асимптоты)

Если для функции $y=f(x)$
существуют пределы $lim _{x rightarrow infty} frac{f(x)}{x}=k$ и
$lim _{x rightarrow infty}[f(x)-k x]=b$, то функция имеет наклонную асимптоту
$y=k x+b$ при
$x rightarrow infty$ .

Замечание

Горизонтальная асимптота является частным случаем наклонной при
$k=0$ .

Замечание

Если при нахождении горизонтальной асимптоты получается, что
$lim _{x rightarrow infty} f(x)=infty$, то функция может иметь наклонную асимптоту.

Замечание

Кривая $y=f(x)$ может пересекать свою асимптоту, причем неоднократно.

Пример

Задание. Найти асимптоты графика функции $y(x)=frac{x^{2}-3 x+2}{x+1}$

Решение. Область определения функции:

$D[f] : x in(-infty ;-1) cup(-1 ;+infty)$

а) вертикальные асимптоты: прямая $x=-1$ – вертикальная асимптота, так как

$lim _{x rightarrow-1} y(x)=lim _{x rightarrow-1} frac{x^{2}-3 x+2}{x+1}left[frac{6}{0}right]=infty$

б) горизонтальные асимптоты: находим предел функции на бесконечности:

$lim _{x rightarrow infty} frac{x^{2}-3 x+2}{x+1}=infty$

то есть, горизонтальных асимптот нет.

в) наклонные асимптоты $y=k x+b$:

$k=lim _{x rightarrow infty} frac{y(x)}{x}=lim _{x rightarrow infty} frac{x^{2}-3 x+2}{x(x+1)}=1$

$b=lim _{x rightarrow infty}[y(x)-k x]=lim _{x rightarrow infty}left[frac{x^{2}-3 x+2}{x+1}-xright]=$

$=lim _{x rightarrow infty} frac{x^{2}-3 x+2-x^{2}-x}{x+1}=lim _{x rightarrow infty} frac{-4 x+2}{x+1}=-4$

Таким образом, наклонная асимптота: $y=x-4$ .

Ответ. Вертикальная асимптота – прямая $x=-1$ .

Наклонная асимптота – прямая $y=x-4$ .

Читать дальше: исследование функции и построение ее графика.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Добавить комментарий