Если присоединить катушку, в которой возникает индукционный ток, к гальванометру, можно обнаружить, что направление этого тока зависит от того, приближается ли магнит к катушке, или удаляется от нее. Причем возникающий индукционный ток взаимодействует с магнитом — притягивает или отталкивает его.
Катушка с протекающей по ней током подобна магниту с двумя полюсами — северным и южным. Направление индукционного тока определяет, какой конец катушки играет роль северного полюса, из которого выходят линии магнитной индукции. В каких случаях катушка будет притягивать магнит, а в каких отталкивать, можно предсказать, опираясь на закон сохранения энергии.
Взаимодействие индукционного тока с магнитом
Если магнит приближать к катушке, то в ней появится индукционный ток такого направления, что магнит обязательно отталкивается. Для сближения магнита и катушки при этом нужно совершить положительную работу. Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту. Одноименные же полюсы отталкиваются. При удалении магнита, наоборот, в катушке возникает ток такого направления, чтобы появилась притягивающая магнит сила.
Представьте, что все было бы иначе. Тогда при введении магнита в катушку он сам бы устремлялся в нее. Это противоречит закону сохранения энергии, так как при этом увеличилась бы кинетическая энергия при одновременном возникновении индукционного тока, который также затрачивает часть энергии. Кинетическая энергия и энергия тока в этом случае возникали бы из ничего, без затрат энергии, что невозможно.
Справедливость вывода можно подтвердить с помощью следующего опыта. Пусть на свободно вращающемся стержне закреплены два алюминиевых кольца: с разрезом и без разреза. Если поднести магнит к кольцу без разреза, оно будет отталкиваться. Если поднести его к кольцу с разрезом, ничего не произойдет. Это связано с тем, что в нем не возникает индукционный ток. Этому препятствует разрез. Но если отдалять магнит от кольца без разреза, то оно начнет притягиваться.
Опыты показывают, что притягивание или отталкивание кольца с индукционным током зависит от того, удаляется магнит, или притягивается. А различаются они характером изменения линий магнитной индукции, пронизывающих поверхность, ограниченную кольцом. В первом случае (рис. а) магнитный поток увеличивается, во втором (рис. б) — уменьшается. То же самое можно наблюдать в опытах с магнитом и проводящей катушкой.
Причем в первом случае линии индукции B’ магнитного поля, созданного возникшем в катушке индукционным током, выходят из верхнего конца катушки, та как катушка отталкивает магнит. Во втором же случае напротив, они входят в этот конец.
Правило Ленца
Описанные выше опыты позволяют делать вывод, что при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с такой индукцией, которая увеличивает магнитный поток через витки катушки.
Правило направления индукционного тока носит название правила Ленца.
Правило Ленца
Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.
Применять правило Ленца для нахождения направления индукционного тока Ii в контуре надо так:
- Установить направление линий магнитной индукции →B внешнего магнитного поля.
- Выяснить, увеличивается ли поток магнитной индукции этого поля через поверхность, ограниченную контуром (ΔΦ>0), или уменьшается (ΔΦ<0).
- Установить направление линий магнитной индукции →B‘ магнитного поля индукционного тока Ii. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям →B при ΔΦ>0 и иметь одинаковое с ними направление при ΔΦ<0.
- Зная направление линий магнитной индукции →B‘, найти направление индукционного тока Ii, пользуясь правилом правой руки.
Пример №1. Найти направление индукционного тока, возникающего в кольце во время приближения к нему магнита (см. рисунок).
Линии магнитной индукции магнита обращены в сторону кольца, так как он направлен к нему северным полюсом. Так как магнит приближается к кольцу, магнитный поток увеличивается. Следовательно, кольцо отталкивается. Тогда оно обращено к магниту одноименным — северным — полюсом. Применим правило правой руки. Так как линии магнитной индукции выходят из северного полюса, направим к нему большой палец. Теперь четыре пальца руки покажут направление индукционного тока. В нашем случае он будет направлен против направления хода часовой стрелки.
Задание EF17577
Медное кольцо на горизонтальном коромысле поворачивается вокруг вертикальной оси ОВ под действием движущегося магнита С. Установите соответствие между направлением движения магнита, вращением коромысла с кольцом и направлением индукционного тока в кольце.
К каждой позиции первого столбца подберите соответствующую позицию второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
МАГНИТ | ПОВОРОТ КОРОМЫСЛА И ТОК В КОЛЬЦЕ | ||
А) | движется по направлению к кольцу, северный полюс обращён к кольцу | 1) | коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт по часовой стрелке |
Б) | движется к кольцу, к кольцу обращён южный полюс |
2) | коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт против часовой стрелки |
3) | коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт по часовой стрелке | ||
4) | коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт против часовой стрелки |
Алгоритм решения
- Записать правило Ленца.
- В соответствии с правилом Ленца установить, что произойдет, если к кольцу поднести магнит северным полюсом.
- В соответствии с правилом Ленца установить, что произойдет, если к кольцу поднести магнит южным полюсом.
Решение
Запишем правило Ленца:
Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.
Следовательно, если поднести к кольцу магнит северным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется северный полюс. Используем правило правой руки и расположим большой палец правой руки так, чтобы он указывал в сторону северного полюса кольца с индукционным током. Тогда четыре пальца покажут направление этого тока. Следовательно, индукционный ток направлен по часовой стрелке.
Если поднести к кольцу магнит южным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону от кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется южный полюс. Используем правило правой руки и получим, что в этом случае индукционный ток будет направлен против часовой стрелки.
Так как магнит подносят к кольцу, а не отодвигают от него, то кольцо всегда будет отталкиваться, поскольку в нем возникают силы противодействия. Следовательно, позиции А соответствует строка 1, а позиции Б — строка 2.
Ответ: 12
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18621
На рисунке запечатлён тот момент демонстрации по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится вблизи сплошного металлического кольца. Если магнит выдвигать из алюминиевого кольца, то кольцо перемещается вслед за магнитом. Это движение кольца – результат действия
Ответ:
а) силы гравитационного взаимодействия между кольцом и магнитом
б) силы Ампера, действующей со стороны магнитного поля магнита на кольцо, по которому идёт индукционный ток
в) кулоновских (электростатических) сил, которые возникают при движении магнита относительно кольца
г) воздушных потоков, вызванных движением руки и магнита
Алгоритм решения
- Проанализировать предложенные варианты ответа.
- Установить природу взаимодействия магнита и кольца.
- Выбрать верный ответ.
Решение
Гравитационные силы между магнитом и кольцом ничтожно малы при данных массах и расстояниях, поэтому они не могли вызвать притяжения кольца к магниту.
Кулоновские силы характеризуют силу электростатического взаимодействия зарядов. Поскольку магнит не имеет заряда, между ним и кольцом такие силы не возникают.
Металлическое кольцо достаточно тяжелое для того, чтобы заставить его стремительно двигаться вслед за магнитом.
Но вариант с силой Ампера подходит, так как сила Ампера — это сила, с которой действует магнитное поле на проводник с током. В момент, когда магнит двигают в стороны от кольца, магнитный поток, пронизывающий его, меняется. Это вызывает образование в кольце индукционного тока, который также порождает магнитное поле, противодействующее магнитному полю постоянного магнита.
Ответ: б
pазбирался: Алиса Никитина | обсудить разбор
Задание EF19032
Катушка №1 включена в электрическую цепь, состоящую из источника напряжения и реостата. Катушка № 2 помещена внутрь катушки № 1 и замкнута (см. рисунок).
Из приведённого ниже списка выберите два правильных утверждения, характеризующих процессы в цепи и катушках при перемещении ползунка реостата вправо.
Ответ:
А) Сила тока в катушке № 1 увеличивается.
Б) Вектор индукции магнитного поля, созданного катушкой № 1, всюду увеличивается.
В) Магнитный поток, пронизывающий катушку № 2, увеличивается.
Г) Вектор индукции магнитного поля, созданного катушкой № 2, в центре этой катушки направлен от наблюдателя.
Д) В катушке № 2 индукционный ток направлен по часовой стрелке.
Алгоритм решения
- Проверить истинность каждого утверждения.
- Выбрать только истинные утверждения.
Решение
Согласно утверждению А, при перемещении ползунка реостата вправо сила тока в катушке №1 увеличивается. Перемещая ползунок реостата вправо, мы увеличиваем сопротивление. Следовательно, сила тока уменьшается. Утверждение А — неверно.
Согласно утверждению Б, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №1, всюду увеличивается. Так как сила тока уменьшается, вектор индукции магнитного поля ослабевает. Утверждение Б — неверно.
Согласно утверждению В, при перемещении ползунка реостата вправо магнитный поток, пронизывающий катушку №2, увеличивается. Так как магнитное поле ослабевает, будет уменьшаться и магнитный поток, пронизывающий катушку № 2. Утверждение В — неверно.
Согласно утверждению Г, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки направлен от наблюдателя. В катушке №1 ток течёт по часовой стрелке, и по правилу буравчика эта катушка будет создавать магнитное поле, направленное от наблюдателя. В силу того, что сила тока в цепи уменьшается, будет уменьшаться и магнитный поток, пронизывающий вторую катушку. При этом согласно правилу Ленца во второй катушке будет создаваться индукционный ток, который направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван. В этом случае вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки сонаправлен с внешним полем и направлен от наблюдателя. Утверждение Г — верно.
Согласно утверждению Д, при перемещении ползунка реостата вправо в катушке №2 индукционный ток направлен по часовой стрелке. По правилу правой руки, индукционный ток в катушке 2 направлен по часовой стрелке. Утверждение Д — верно.
Ответ: ГД
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 7.9k
«Искусство
экспериментатора состоит в том,
чтобы
уметь задавать природе вопросы,
и
понимать ее ответы»
Майкл
Фарадей
В данной теме разговор пойдёт о том, как определить
направление индукционного тока. Рассмотрим правило Ленца.
В прошлой теме говорилось о таком явлении, как
электромагнитная индукция и магнитном потоке. Магнитный поток через плоскую
поверхность — это скалярная физическая величина, численно равная
произведению модуля магнитной индукции на площадь поверхности, ограниченной
контуром, и на косинус угла между нормалью к поверхности и магнитной индукцией.
Явление электромагнитной индукции
состоит в том, что в замкнутом контуре при изменении магнитного потока в нем
возникает электрический ток, который мы с вами называли индукционным.
Закон электромагнитной индукции
гласит: среднее значение ЭДС индукции в проводящем контуре пропорционально скорости
изменения магнитного потока через поверхность, ограниченную контуром.
Знак «минус» в формуле показывает, что индукционный
ток противодействует изменению магнитного потока. Поэтому ЭДС индукции и
скорость изменения магнитного потока имеют разные знаки.
Теперь настало время поговорить об этом более
подробно и дать физическое обоснование этого явления.
Как было показано в прошлых опытах в катушке, при
приближении или удалении от нее магнита, возникает индукционный ток разного
направления.
Индукционный ток в катушке, как и любой другой ток,
создает собственное магнитное поле, которое взаимодействует с магнитным полем
постоянного магнита. Задача сводится к тому, что бы разобраться в механизме
этого взаимодействия.
Для определения направления линий магнитного поля
внутри катушки с индукционным током, будем пользоваться правилом буравчика,
которое гласит, что если вращать головку правого винта по току в витке, то
тогда поступательное движение острия винта укажет направление магнитного поля
соленоида, а следовательно, и его северного полюса.
Если приближать магнит к катушке, например северным
полюсом, то в ней возникнет индукционный ток такого направления, что на
ближайшем конце катушки появится одноименный магнитный полюс.
Из рисунка видно, что вектор магнитной индукции поля
постоянного магнита направлен вниз, а вектор магнитной индукции поля возникшего
индукционного тока — вверх, так как линии магнитной индукции поля катушки
выходят из северного полюса. Это значит, что в данном случае, т.е. при
увеличении магнитного потока, пронизывающего катушку, в ней возникает
индукционный ток такого направления, что его магнитное поле направлено
навстречу магнитному полю, порождающему этот ток.
Получается два магнита, обращенных друг к другу
одноименными полюсами, а известно, что одноименные полюса отталкиваются. Это
приводит к тому, что в этом случае постоянный магнит будет всегда
отталкиваться от катушки.
Если же удалять магнит от катушки, то на ближайшем
ее полюсе возникнет магнитный полюс, противоположный полюсу постоянного
магнита. Получается, что опять магнитное поле индукционного тока будет
препятствовать изменению магнитного поля, порождающего этот индукционный ток.
Т.е. имеются два магнита, обращенных друг к другу
разноименными полюсами, а известно, что разноименные полюса притягиваются, что
приводит к тому, что постоянный магнит, в этом случае, будет всегда
притягиваться к катушке.
Аналогично будет происходить, если поменять полюс
магнита с северного на южный.
Таким образом, проследив за взаимодействием между
полюсами катушки и магнита во всех случаях и сравнив его с направлением
движения магнита, можно легко заметить, что взаимодействие между полюсами
всегда препятствует движению магнита.
К аналогичным выводам в 1833 году пришел прославленный
российский физик, один из основоположников электротехники, Эмилий Христианович
Ленц.
Однако, в своих опытах, Ленц использовал не катушку,
а прибор, состоящий из узкой алюминиевой пластины с алюминиевыми кольцами на
концах. Одно кольцо было сплошное, а другое — с разрезом. Данный прибор был
помещен на стойку и мог свободно вращаться вокруг вертикальной оси. Ленц брал
полосовой магнит и вносил его в кольца.
При подносе магнита к кольцу с разрезом, никаких
изменений в установке не наблюдалось. Однако, пытаясь внести этот же магнит в
сплошное кольцо, Ленц наблюдал, как оно начинало «убегать» от магнита,
поворачивая при этом всю пластинку. Убирая магнит от кольца, оно возвращалось в
первоначальное положение. Ленц объяснял эти явления так: при приближении
к кольцу магнита, поле которого является неоднородным, проходящий сквозь кольцо
магнитный поток увеличивается. При этом в сплошном кольце возникает
индукционный ток, а в кольце с разрезом ток циркулировать не может.
Отталкивание сплошного кольца показывает, что
индукционный ток в нем имеет такое направление, что линии индукции магнитного
поля, порожденного индукционным током, направлены противоположно линиям
индукции внешнего поля магнита. Т.е. кольцо и магнит будут обращены друг к
другу одноименными полюсами.
При уменьшении магнитного потока (выдвигание
магнита), индукционный ток имеет в нем такое направление, что линии индукции
его магнитного поля совпадают по направлению с линиями индукции внешнего
магнитного поля. Т.е. кольцо и магнит будут обращены друг к другу
разноименными полюсами.
Таким образом, проследив за взаимодействием между
кольцом и магнитом во всех случаях и сравнив его с направлением движения
магнита, можно видеть, что взаимодействие между полюсами всегда препятствует
движению магнита.
Эмилий Христианович Ленц обобщил найденные им
закономерности и сформулировал общее правило. Найденную им связь называют его
именем, правилом Ленца. Оно гласит, что электромагнитная индукция
создает в контуре индукционный ток такого направления, что созданное им
магнитное поле препятствует изменению магнитного потока, вызывающего этот ток.
С помощью правила Ленца всегда можно определить
направление индукционного тока. Для этого необходимо:
– Выяснить причину возникновения индукционного тока
(увеличивается или уменьшается магнитный поток через контур);
– Определить направление вектора магнитной индукции
индуцирующего магнитного поля;
– Найти направление индукции магнитного поля
индукционного тока (если DF > 0,
то ;
DF < 0,
то );
– По направлению вектора магнитной индукции
индукционного тока определить, пользуясь правилом буравчика, направление
индукционного тока.
Сформулируем закон электромагнитной индукции:
среднее значение ЭДС индукции в проводящем контуре пропорционально скорости изменения
магнитного потока через поверхность, ограниченную контуром.
Изучив правило Ленца, можем сказать, что знак минус,
в математической записи закона, учитывает именно его.
Согласно этому правилу, если магнитный поток будет
увеличиваться (т.е. скорость изменения магнитного потока будет больше нуля), то
ЭДС индукции будет отрицательна и, наоборот, при уменьшении магнитного потока
(когда скорость его изменения будет меньше нуля) ЭДС индукции будет
положительна.
Индукционный ток, а, следовательно, и ЭДС индукции,
возникает не только в линейных проводниках, но и в массивных сплошных
проводниках, помещенных в переменное магнитное поле.
Единственное отличие состоит в том, что эти токи оказываются замкнутыми в толще
проводника, и поэтому их называют вихревыми, а также токами Фуко, которые
вызывают нагревание проводников. Однако и они полностью подчиняются правилу
Ленца.
Основные выводы:
– Направление индукционного тока определяется с
помощью закона сохранения энергии.
– Правило Ленца: индукционный ток во всех
случаях направлен так, что бы своим магнитным полем препятствовать изменению
магнитного потока, вызывающего данный индукционный ток.
В этой статье мы рассмотрим, что такое правило Ленца и какого его практическое применение. Это правило позволяет быстро определить направление индукционного тока. На самом деле, правило Ленца тесно связано с принципом сохранения энергии — об этом также читайте в этой статье.
Формулировка
Правило Ленца обычно формулируется следующим образом:
Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.
Википедия
Давайте расшифруем это предложение.
Давайте расшифруем это предложение. Давайте начнем с причины. Причиной протекания индукционного тока является изменяющийся поток магнитной индукции B через поверхность, охватываемую контуром, в котором должен протекать электрический ток.
Противодействие причине здесь заключается в том, что когда поток увеличивается, магнитное поле Bind, создаваемое индукционным током, направлено так, чтобы уменьшить поток. И наоборот, когда поток уменьшается, индуцированное магнитное поле направлено так, чтобы усилить поток. В общем, если поле B перпендикулярно плоской поверхности, охватывающей замкнутый проводник, то
Когда ФB уменьшается, то Вind параллельно В.
Когда ФB увеличивается, то Bind антипараллельно B.
В более общем случае необходимо задать условие для углов между этими векторами.
Как только мы установили, как направлен вектор магнитной индукции Bind (внутри контура), мы должны связать индукционный ток с этим вектором и определить его направление.
Пример правила Ленца в действии
Теперь мы покажем правило Ленца в действии; вот конкретный пример.
В магнитном поле, создаваемом прямолинейным проводником с током, имеется круговой контур (кольцо), лежащий в одной плоскости с проводником (рис. 2а.). Ток в прямолинейном проводнике течет вверх. В каком направлении будет течь электрический ток в кольце, если мы прижмем его к проводнику?
Ток в прямолинейном проводнике создает вокруг себя магнитное поле. Для определения направления вектора магнитной индукции в кольце мы используем хорошо известный метод правой руки. Мы располагаем большой палец так, как направлен электрический ток, а пальцы покажут нам магнитное поле, «оборачивающееся» вокруг этого электрического тока. Справа от проводника, где находится кольцо, линии поля идут «внутрь», как показано на рис. 2б.
Сближение кольца вызывает увеличение потока магнитного поля, проникающего через кольцо (увеличивается значение магнитной индукции B). Согласно правилу Ленца, ток в кольце должен протекать таким образом, чтобы вектор магнитного поля Bind, создаваемого этим током, был направлен противоположно вектору, вызывающему явление индукции B. То есть, вектор Bind направлен «в нашу сторону». (рис. 2в).
Снова применим правило правой руки. На этот раз мы укажем большим пальцем вектор индукции Bind, а остальные пальцы покажут нам направление индукционного тока. Он будет протекать против часовой стрелки.
Правило Ленца и закон сохранения энергии
То, что «скрывается» под правилом Ленца — это фундаментальный принцип сохранения энергии в физике. Вы узнаете об этом, прочитав данный подраздел.
Посмотрите на следующую экспериментальную установку (см. рисунок 3).
Для эксперимента подвесьте качели проводника в магнитном поле подковообразного магнита. Подковообразный магнит располагается так, чтобы северный полюс находился внизу, а южный — вверху. Вы подключаете проводник к амперметру вне магнитного поля, поэтому во всей цепи нет источника.
В эксперименте мы теперь перемещаем качели проводника в направлении, перпендикулярном силовым линиям магнитного поля, в нашем случае «из подковообразного магнита». Для перемещения качающегося проводника нужна сила F. Когда частицы движутся в магнитном поле, действует сила Лоренца, происходит разделение зарядов, а значит, и возникает индукционный ток. Это можно наблюдать по отклонению стрелки амперметра.
Для определения направления индукционного тока применяется правило левой руки. Большой палец указывает направление, в котором электроны перемещаются под действием силы F, т.е. «из подковы». Ваш указательный палец указывает направление магнитного поля, от северного к южному полюсу. Наконец, средний палец указывает направление, в котором электроны притягиваются силой Лоренца. На конце проводника, в сторону которого указывает ваш средний палец, образуется избыток электронов и это приводит к изменению направления тока.
Однако, в силу правила Ленца, точно в тот же момент должна действовать противодействующая сила F‘, направленная в противоположную сторону от причины F. Эта противодействующая сила создается индукционным током, который, так сказать, пытается восстановить исходное состояние.
Вы можете еще раз проверить направление силы F‘ с помощью правила левой руки. На этот раз большой палец указывает направление движения электронов. Итак, в проводнике, который перемещается под действием силы F внутри магнита , большой палец направлен в плоскость рисунка, а указательный палец снова направлен от северного полюса к южному. Затем средний палец указывает направление силы F’. Это направление согласуется с правилом Ленца и действует в направлении, противоположном направлению движения проводника. Чтобы проиллюстрировать это, мы провели эти рассуждения одно за другим. В реальном эксперименте, однако, все это происходит параллельно.
Можно также сравнить правило Ленца с поведением детей (аналог индукционного тока). Когда их родители (аналог причины) говорят им что-то, они сначала хотят сделать прямо противоположное. Если вы будете помнить об этой мнемонике, вы гарантированно не забудете правило Ленца.
Сохранение энергии для индукции также может быть соблюдено только с помощью правила Ленца.
Чтобы проверить это, вы можете провести следующий мысленный эксперимент. Если бы сила из F‘ была направлена в противоположную сторону, то есть равна силе F, раскачивание качелей ускорялось бы все больше и больше. И это без добавления дополнительной энергии извне. Таким образом, можно было бы создать вечный двигатель, что противоречит закону сохранения энергии.
Применение
Правило Ленца необходимо для многих применений в технике. Например, в вихретоковом тормозе. Этот тормоз не изнашивается, поскольку отсутствует трение. Тормозная сила генерируется магнитными полями. Например, такие тормоза есть у поездов и грузовиков. Электродвигатели также работают по этому принципу.
Правило Ленца защитит вас, даже если в вашу машину ударит молния. Клетка Фарадея также основана на этом принципе.
Все металлодетекторы, которые вы знаете по аэропортам или магазинам, работают одинаково. Они генерируют магнитное поле с помощью катушки. Если в магнитном поле находится металлический предмет, в нем индуцируются вихревые токи. Согласно правилу Ленца, эти токи направлены таким образом, что противодействуют причине возникновения тока. Поэтому магнитное поле детектора становится слабее. Это также уменьшает ток в металлодетекторе, эта разница измеряется, что приводит, например, к сигналу тревоги.
Металлодетекторы также используются в некоторых светофорах, только здесь катушка расположена в асфальте под машинами. Таким образом, светофор, так сказать, замечает, что автомобиль ждет, и по возможности переключает его на зеленый. Как видите, правило Ленца важно для многих областей электротехники, а также в повседневной жизни.
Список использованной литературы
- Мякишев Г. Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. – М.: Просвещение, 2010.
- Касьянов В. А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. – М.: Дрофа, 2005.
- Сивухин Д. В. § 64. Электромагнитная индукция // Общий курс физики. — М.: Наука, 1977. — Т. III. Электричество. — С. 265. — 688 с.
Электромагнитная индукция
Содержание
- Явление электромагнитной индукции
- Магнитный поток
- Закон электромагнитной индукции Фарадея
- Правило Ленца
- Самоиндукция
- Индуктивность
- Энергия магнитного поля
- Основные формулы раздела «Электромагнитная индукция»
Явление электромагнитной индукции
Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.
Явление электромагнитной индукции было открыто М. Фарадеем.
Опыты Фарадея
- На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
- Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
- Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.
Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.
Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.
Объяснения возникновения индукционного тока
Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.
Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.
Свойства вихревого электрического поля:
- источник – переменное магнитное поле;
- обнаруживается по действию на заряд;
- не является потенциальным;
- линии поля замкнутые.
Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.
Магнитный поток
Магнитным потоком через площадь ( S ) контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ( B ), площади поверхности ( S ), пронизываемой данным потоком, и косинуса угла ( alpha ) между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):
Обозначение – ( Phi ), единица измерения в СИ – вебер (Вб).
Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:
Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.
В зависимости от угла ( alpha ) магнитный поток может быть положительным (( alpha ) < 90°) или отрицательным (( alpha ) > 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.
Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).
В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.
Закон электромагнитной индукции Фарадея
Закон электромагнитной индукции (закон Фарадея):
ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:
Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.
Если контур состоит из ( N ) витков, то ЭДС индукции:
Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ( R ):
При движении проводника длиной ( l ) со скоростью ( v ) в постоянном однородном магнитном поле с индукцией ( vec{B} ) ЭДС электромагнитной индукции равна:
где ( alpha ) – угол между векторами ( vec{B} ) и ( vec{v} ).
Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.
Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.
Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:
- магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
- вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.
Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:
- в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
- в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
Правило Ленца
Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.
Алгоритм решения задач с использованием правила Ленца:
- определить направление линий магнитной индукции внешнего магнитного поля;
- выяснить, как изменяется магнитный поток;
- определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
- по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.
Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.
Самоиндукция
Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.
При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.
В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.
Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.
При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.
Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.
Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.
При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.
ЭДС самоиндукции ( varepsilon_{is} ), возникающая в катушке с индуктивностью ( L ), по закону электромагнитной индукции равна:
ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.
Индуктивность
Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ( Phi ) через контур из этого проводника пропорционален модулю индукции ( vec{B} ) магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.
Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:
Индуктивность – коэффициент пропорциональности ( L ) между силой тока ( I ) в контуре и магнитным потоком ( Phi ), создаваемым этим током:
Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.
Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:
Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.
Энергия магнитного поля
При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.
Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.
Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:
Основные формулы раздела «Электромагнитная индукция»
Алгоритм решения задач по теме «Электромагнитная индукция»:
1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.
2. Записать формулу:
- закона электромагнитной индукции;
- ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.
3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.
4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).
5. Решить полученную систему уравнений относительно искомой величины.
6. Решение проверить.
Электромагнитная индукция
3.2 (63.33%) 96 votes
Направление индукционного тока. Правило Ленца
- Подробности
- Обновлено 21.07.2018 12:01
- Просмотров: 1376
«Физика – 11 класс»
Направление индукционного тока
Направление индукционного тока, возникающего в катушке, зависит от того, приближается магнит к катушке или удаляется от нее.
Возникающий индукционный ток может притягивать или отталкивать магнит, т.к. катушка становится подобной магниту с двумя полюсами — северным и южным.
На основе закона сохранения энергии можно предсказать, в каких случаях катушка будет притягивать магнит, а в каких отталкивать его.
Взаимодействие индукционного тока катушки с магнитом.
В чем состоит различие двух опытов: приближение магнита к катушке и его удаление?
Если магнит приближать к катушке
Число линий магнитной индукции, пронизывающих витки катушки, или, что то же самое, магнитный поток, увеличивается.
Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту.
Линии индукции ‘ магнитного поля, созданного возникшим в катушке индукционным током, выходят из верхнего конца катушки.
В катушке появляется индукционный ток такого направления, что магнит обязательно отталкивается.
Для сближения магнита и катушки нужно совершить положительную работу.
Если магнит удалять от катушки
Число линий магнитной индукции, пронизывающих витки катушки, или, что то же самое, магнитный поток, уменьшается.
Линии индукции ‘ магнитного поля, созданного возникшим в катушке индукционным током, входят в верхний конец катушки.
Катушка с током становится аналогична магниту, северный полюс которого находится снизу.
В катушке возникает ток такого направления, что проявляется притягивающая магнит сила.
Аналогично можно рассмотреть опыт, когда на концах стержня, который может свободно вращаться вокруг вертикальной оси, закреплены два проводящих алюминиевых кольца (одно из них с разрезом).
С разрезанным кольцом магнит не взаимодействует, так как разрез препятствует возникновению в кольце индукционного тока.
Отталкивает или притягивает другое кольцо магнит, зависит от направления индукционного тока, возникающего в кольце.
Поэтому закон сохранения энергии позволяет сформулировать правило, определяющее направление индукционного тока.
Правило Ленца
Существует правило, позволяющее определить направление индукционного тока, которое было установлено русским физиком Э. X. Ленцем:
Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.
или более кратко:
Индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.
При увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует усилению магнитного потока через витки катушки.
Ведь линии индукции ‘ этого поля направлены против линий индукции поля, изменение которого порождает электрический ток.
Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с индукцией ‘ увеличивающее магнитный поток через витки катушки.
Применение правила Ленца:
1. Определить направление линий магнитной индукции внешнего магнитного поля.
2. Выяснить, увеличивается ли поток вектора магнитной индукции этого поля через поверхность, ограниченную контуром (ΔФ > 0), или уменьшается (ΔФ < 0).
3. Установить направление линий магнитной индукции ‘ магнитного поля индукционного тока. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям магнитной индукции В при ΔФ > 0 и иметь одинаковое с ними направление при ΔФ <0.
4. Зная направление линий магнитной индукции ‘, найти направление индукционного тока, пользуясь правилом буравчика.
Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин
Электромагнитная индукция. Физика, учебник для 11 класса – Класс!ная физика
Электромагнитная индукция. Магнитный поток —
Направление индукционного тока. Правило Ленца —
Закон электромагнитной индукции —
ЭДС индукции в движущихся проводниках. Электродинамический микрофон —
Вихревое электрическое поле —
Самоиндукция. Индуктивность. Энергия магнитного поля тока —
Электромагнитное поле —
Примеры решения задач —
Краткие итоги главы