Магнитное поле представляет собой особую форму материи, которая существует вокруг движущихся электрических зарядов, или электрических токов. Если внести магнитную стрелку в магнитное поле, то мы увидим, что она будет ориентироваться в нём.
В магнитном поле вокруг проводника с током магнитные стрелки и мелкие железные опилки расположатся по концентрическим окружностям вдоль линий магнитного поля. При этом если направление тока в проводнике изменить на противоположное, то все стрелки повернутся на (180°).
Рисунок (1). Действие магнитного поля проводника с током на магнитную стрелку
Рисунок (2). Правило буравчика
С помощью правила буравчика (правого винта) по направлению тока можно определить направление линий магнитного поля, а по направлению линий магнитного поля — направление тока.
Рисунок (3). Направление тока и направление линий его магнитного поля
Для определения направления линий магнитного поля соленоида применяют правило правой руки.
Если направления четырех пальцев правой руки совпадают с направлением тока в витках соленоида, то направление большого пальца совпадает с направлением линий магнитной индукции внутри соленоида.
Соленоид подобен магниту, когда по нему протекает электрический ток. Также как и магнит, соленоид имеет полюсы: северный и южный. Северным полюсом является тот конец соленоида, из которого выходят магнитные линии. В данном случае северным полюсом является левый конец. Значит, правый конец будет южным полюсом.
Таким образом, используя правило правой руки, можно определить магнитные полюсы соленоида, если известно направление тока в его витках. И наоборот, если известны полюсы, то можно определить направление тока.
Источники:
http://school-collection.edu.ru/, Единая коллекции цифровых образовательных ресурсов.
Изображения:
Рисунок 1. Действие магнитного поля проводника с током на магнитную стрелку.
https://ds04.infourok.ru/uploads/ex/08fa/0018ad91-29af6560/hello_html_mec6ce57.gif
https://slide-share.ru/napravlenie-toka-i-linij-ego-magnitnogo-polya-pravilo-buravchikaissledovaniya-1638
Магнитное поле. Линии
-
Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током.
-
Взаимодействие магнитов
-
Линии магнитного поля
-
Опыт Эрстеда
-
Магнитное поле прямого провода с током
-
Магнитное поле витка с током
-
Магнитное поле катушки с током
-
Гипотеза Ампера. Элементарные токи
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током.
Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.
Взаимодействие магнитов
На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим. Об этом свидетельствуют следующие опытные факты.
• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.
• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.
• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).
Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.
• Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд ,вне зависимости от того, покоится он или движется.
По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.
Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.
Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.
к оглавлению ▴
Линии магнитного поля
Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.
Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий —так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.
1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии.
2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии.
3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства.
Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.
Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1).
Рис. 1. Поле постоянного магнита
Северный полюс магнита обозначается синим цветом и буквой ; южный полюс — красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.
к оглавлению ▴
Опыт Эрстеда
Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.
Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году — в знаменитом опыте Эрстеда.
Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и — северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи.
Рис. 2. Опыт Эрстеда
Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.
к оглавлению ▴
Магнитное поле прямого провода с током
Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3).
Рис. 3. Поле прямого провода с током
Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.
Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас.
Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.
Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).
На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля, или магнитной индукцией. Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.
О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).
Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции. Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .
к оглавлению ▴
Магнитное поле витка с током
Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.
Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4).
Рис. 4. Поле витка с током
Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.
Правило часовой стрелки. Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки.
Правило винта. Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока.
Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.
к оглавлению ▴
Магнитное поле катушки с током
Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 – изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом.
Рис. 5. Катушка (соленоид)
Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6).
Рис. 6. поле катушки с током
На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец — к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.
1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля — параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.
2. Вне катушки поле близко к нулю. Чем больше витков в катушке — тем слабее поле снаружи неё.
Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.
Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.
А теперь — главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6) с линиями поля магнита на рис. 1. Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!
к оглавлению ▴
Гипотеза Ампера. Элементарные токи
Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита — полюса всегда присутствуют в магните парами.
Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.
Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него.
Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.
Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.
Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).
Рис. 7. Элементарные токи магнита
Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).
Гипотеза Ампера оказалась справедливой — это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке — почти через сто лет после гениальной догадки Ампера.
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Магнитное поле. Линии» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
07.05.2023
Исследования Ампера…
принадлежат к числу самых
блестящих работ, которые
проведены когда-либо в науке.
Джеймса Клерка Максвелла
Магнитное
поле
— это силовое поле, действующее на движущиеся электрические заряды.
Для
наглядного представления магнитного поля пользуются магнитными линиями Магнитные
линии — это воображаемые линии, вдоль которых расположились бы маленькие
магнитные стрелки, помещенные в магнитное поле.
Замкнутость
линий магнитного поля представляет собой фундаментальное свойство магнитного
поля. Оно свидетельствует о том, что магнитных зарядов,
подобных электрическим, в природе нет.
За
направление магнитной линии в какой-либо ее точке условно принимают
направление, которое указывает северный полюс магнитной стрелки, помещенной в
эту точку.
Теперь
разберём, от чего зависит направление линий магнитного поля тока более
подробно.
Известно,
что для получения спектра магнитного поля прямого проводника с током, его можно
пропустить через лист картона, а на картон насыпать железные опилки. Под
действием магнитного поля железные опилки располагаются по концентрическим
окружностям. Поместим вдоль линий магнитного поля магнитные стрелки.
На
рисунке показано расположение магнитных стрелок вокруг проводника с током,
перпендикулярного плоскости чертежа. Если изменить направление тока в
проводнике, то можно увидеть, что изменение направления тока приводит к
повороту всех магнитных стрелок на 1800. Причем оси стрелок
располагаются по касательной к магнитным линиям.
Т.о.
можно сделать вывод, что направление линий магнитного поля будет зависеть от
направления тока в проводнике.
Эта
связь может быть выражена простым правилом, которое называют правилом буравчика
(или правилом правого винта).
Правило
буравчика заключается в следующем: если поворачивать
головку винта так, чтобы поступательное движение острия винта происходило вдоль
тока в проводнике, то направление вращения головки указывает направление линий
магнитного поля тока.
С
помощью правила буравчика по направлению тока можно определить направление
линий магнитного поля, создаваемого этим током, а по направлению линий
магнитного поля — направление тока, создающего это поле.
Для
определения направления линий магнитного поля соленоида удобнее пользоваться
другим правилом, которое иногда называют правилом правой руки.
Соленоид
— это катушка цилиндрической формы из проволоки, витки которой
намотаны вплотную друг к другу в одном направлении, а длина катушки значительно
больше радиуса витка. Магнитное поле соленоида можно представить как
результат сложения полей, создаваемых несколькими круговыми токами, имеющими
общую ось.
На
рисунке видно, что внутри соленоида линии магнитного поля каждого отдельного
витка имеют одинаковое направление, тогда как между соседними витками они имеют
противоположное направление. Поэтому, при достаточно плотной намотке соленоида,
противоположно направленные участки линий магнитного поля соседних витков
взаимно уничтожаться, а одинаково направленные участки сольются в общую линию.
Изучение
этого поля с помощью железных опилок показало, что внутри соленоида
магнитные линии поля представляют собой прямые, параллельные оси соленоида,
которые расходятся на его концах и замыкаются вне соленоида.
Зная
направление тока в витке, полюсы соленоида можно определить с помощью правила
правой руки: если обхватить соленоид, ладонью правой руки, направив четыре
пальца по направлению тока в витках, то отставленный большой палец покажет
направление линий магнитного поля внутри соленоида.
Правило
правой руки можно применять и для определения направления линий магнитного поля
в центре одиночного витка с током.
Из
курса физики 8 класса известно, что на всякий проводник с током, помещенный в
магнитное поле и не совпадающий с его магнитными линиями, это поле действует с
некоторой силой.
Наличие
такой силы можно показать с помощью установки. Проволочная трехсторонняя рамка
ABCD подвешена на крюках так, что может свободно отклоняться от вертикали.
Сторона
ВС находится в области наиболее сильного поля дугообразного магнита,
располагаясь между его полюсами. Рамка присоединена к источнику тока
последовательно с реостатом и ключом. При замыкании ключа в цепи возникает
электрический ток, и сторона ВС втягивается в пространство между полюсами.
Если
убрать магнит, то при замыкании цепи проводник ВС двигаться не будет. Значит,
со стороны магнитного поля на проводник с током действует некоторая сила,
отклоняющая его от первоначального положения.
Таким
образом, магнитное поле создается электрическим током и обнаруживается по
его действию на электрический ток.
Если
изменить направление тока в цепи, поменяв местами провода в гнездах
изолирующего штатива, то, при этом, изменится и направление движения
проводника, а значит, и направление действующей на него силы.
Направление
силы изменится и в том случае, если, не меняя направления тока, поменять местами
полюсы магнита (т. е. изменить направление линий магнитного поля).
Следовательно,
направление тока в проводнике, направление линий магнитного поля и
направление силы, действующей на проводник, связаны между собой.
Направление
силы, действующей на проводник с током в магнитном поле, можно определить,
пользуясь правилом левой руки, которое заключается в следующем: если
левую руку расположить так, чтобы линии магнитного поля входили в ладонь
перпендикулярно к ней, а четыре вытянутых пальца были направлены по току, то
отставленный на 90° большой палец покажет направление действующей на проводник
силы.
Пользуясь
правилом левой руки, следует помнить, что за направление тока во внешней
части электрической цепи (т. е. вне источника тока) принимается направление
от положительного полюса источника тока к отрицательному. Другими словами,
четыре пальца левой руки должны быть направлены против движения электронов в
электрической цепи.
С
помощью правила левой руки можно определить направление силы, с
которой магнитное поле действует на отдельно взятую движущуюся в нем частицу,
как положительно, так и отрицательно заряженную. Для наиболее простого случая,
когда частица движется в плоскости, перпендикулярной магнитным линиям, это правило
формулируется следующим образом: если левую руку расположить так, чтобы
линии магнитного поля входили в ладонь перпендикулярно к ней, а четыре пальца
были направлены по движению положительно заряженной частицы (или против
движения отрицательно заряженной), то отставленный на 90° большой палец покажет
направление действующей на частицу силы.
Следует
отметить, что сила действия магнитного поля на проводник с током или
движущуюся заряженную частицу равна нулю, если направление тока в проводнике или
скорость частицы совпадают с линией магнитной индукции или параллельны ей.
Основные
выводы:
– Направление линий магнитного поля будет зависеть
от направления тока в проводнике.
– Эта связь может быть выражена с помощью правила
буравчика (или правила правого винта): если поворачивать головку
винта так, чтобы поступательное движение острия винта происходило вдоль тока в
проводнике, то направление вращения головки указывает направление линий
магнитного поля тока.
– Для определения направления линий магнитного поля соленоида
удобнее пользоваться правилом правой руки: если обхватить соленоид
ладонью правой руки, направив четыре пальца по направлению тока в витках, то
отставленный большой палец покажет направление линий магнитного поля внутри
соленоида.
– Магнитное поле действует с некоторой силой на
любой проводник с током, находящийся в этом поле.
Направление этой силы можно определить с помощью правила левой руки: если левую
руку расположить так, чтобы линии магнитного поля входили в ладонь
перпендикулярно к ней, а четыре вытянутых пальца были направлены по току, то
отставленный на 90° большой палец покажет направление действующей на проводник
силы.
Закон Био-Савара-Лапласа. Магнитное поле прямого тока и витка с током
Элемент
проводника с током
создает в точке А магнитную индукцию
(рисунок 3).
Модуль вектора магнитной индукции
,
где
– угол между векторами
и
.
Рисунок 3. К закону Био-Савара-Лапласа
Для магнитного поля справедлив принцип
суперпозиции:
Магнитная индукция результирующего
поля, создаваемого несколькими токами
или движущимися зарядами, равна векторной
сумме магнитных индукций полей,
создаваемых каждым током или движущимися
зарядами в отдельности.
Расчет
и
довольно сложен, но для симметричных
токов можно довольно просто получить
расчетные формулы, используя закон
Био-Савара-Лапласа и принцип суперпозиции.
-
Магнитное поле прямого тока (рисунок
4)
;
.
Угол меняется от
0 до . Поэтому:
.
Рисунок 4. Магнитное поле прямого тока
Рисунок 5. Направление линий магнитной
индукции прямого провода
-
Магнитное поле в центре кругового
проводника с током (рисунок 6)
s
R
in
= 1
dB =
Рисунок 6. Магнитное поле кругового
тока
Контрольные вопросы
-
Что такое магнитное поле и чем оно
создается? -
Как образуется магнитное поле постоянного
магнита? -
Как определить направление магнитного
поля с помощью плоского контура с током
(правило правого винта)? -
Чему равен вращающий момент сил,
действующих на рамку с током? -
Чему равен вектор магнитного момента
рамки с током? -
Что Вы знаете о векторе магнитной
индукции? -
Что изображают линии магнитной индукции
и как определить их направление (правило
правого винта для проводника с током)? -
Каким соотношением связаны магнитная
индукция и напряженность магнитного
поля? -
Приведите размерности магнитной
индукции и напряженности магнитного
поля.
Закон Ампера
А
мпер
установил, что сила
,
с которой магнитное поле действует на
элемент проводника
с током
:
М
одуль
.
a – угол между
векторами
и
.
Для прямого проводника длиной
сила Ампера:
, где a – угол
между
вектором
и направлением тока.
Рисунок 7. Правило левой руки
Направление силы Ампера
определяется по правилу левой
руки: Если ладонь левой руки
расположена так, чтобы в нее входил
вектор
,
а четыре вытянутых пальца расположить
по направлению тока (направлению движения
положительных зарядов) в проводнике,
то отогнутый большой палец покажет
направление силы, действующей на ток
(рисунок 7).
Сила взаимодействия двух параллельных токов
sin
= 1.
А
Рисунок 8. Сила взаимодействия двух
параллельных токов
налогично:
.
Очевидно, что:
Два параллельных тока одинакового
направления, протекающих по проводам,
распложенным на расстоянии
друг от друга, с длиной каждого из
проводов
,
притягиваются с силой:
Для вакуума:
При противоположном направлении
токов согласно правилу левой руки
проводники будут отталкиваться.
М
агнитное
поле движущегося заряда
П
Рисунок 9. Магнитное поле движущегося
заряда
усть положительный заряд движется
с постоянной скоростью
C
– скорости света в вакууме (рисунок 8).
Тогда в точке наблюдения М магнитная
индукция:
Модуль индукции
.
Д
вижущийся заряд по своим магнитным
свойствам эквивалентен элементу тока.
Отсюда:
Для кругового постоянного тока:
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.
Основные свойства магнитного поля
- Магнитное поле порождается электрическим током (движущимися зарядами).
- Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
- Магнитное поле существует независимо от нас, от наших знаний о нем.
Вектор магнитной индукции
Определение
Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как→B. Единица измерения — Тесла (Тл).
За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.
Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:
B=FAmaxIl
За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.
Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.
Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.
Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.
Напряженность магнитного поля
Определение
Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как →H. Единица измерения — А/м.
→H=→Bμμ0
μ — магнитная проницаемость среды (у воздуха она равна 1), μ0 — магнитная постоянная, равная 4π·10−7 Гн/м.
Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: →H↑↑→B.
Направление вектора магнитной индукции и способы его определения
Чтобы определить направление вектора магнитной индукции, нужно:
- Расположить в магнитном поле компас.
- Дождаться, когда магнитная стрелка займет устойчивое положение.
- Принять за направление вектора магнитной индукции направление стрелки компаса «север».
В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:
При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:
При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора →B магнитной индукции.
Отсюда следует, что:
- Если по витку ток идет против часовой стрелки, то вектор магнитной индукции →B направлен вверх.
- Если по витку ток идет по часовой стрелке, то вектор магнитной индукции →B направлен вниз.
Способы обозначения направлений векторов:
Вверх | |
Вниз | |
Влево | |
Вправо | |
На нас перпендикулярно плоскости чертежа | |
От нас перпендикулярно плоскости чертежа |
Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?
Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.
Магнитное поле прямолинейного тока
Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.
Вид сверху:
Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:
Правило буравчика (правой руки)
Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.
Модуль вектора магнитной индукции на расстоянии r от оси проводника:
B=μμ0I2πr
Модуль напряженности:
H=I2πr
Магнитное поле кругового тока
Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.
Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:
Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.
Модуль вектора магнитной индукции в центре витка, радиус которого равен R:
B=μμ0I2R
Модуль напряженности в центре витка:
H=I2R
Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?
Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.
Магнитное поле электромагнита (соленоида)
Определение
Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.
Число витков в соленоиде N определяется формулой:
N=ld
l — длина соленоида, d — диаметр проволоки.
Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.
Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции →B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.
Модуль вектора магнитной индукции в центральной области соленоида:
B=μμ0INl=μμ0Id
Модуль напряженности магнитного поля в центральной части соленоида:
H=INl=Id
Алгоритм определения полярности электромагнита
- Определить полярность источника.
- Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
- Определить направление вектора магнитной индукции.
- Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).
Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.
Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.
Задание EF17530
На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен
Ответ:
а) вертикально вверх в плоскости витка
б) вертикально вниз в плоскости витка
в) вправо перпендикулярно плоскости витка
г) влево перпендикулярно плоскости витка
Алгоритм решения
1.Определить правило, по которому можно определить направление вектора магнитной индукции в данном случае.
2.Применить выбранное правило и определить направление вектора магнитной индукции относительно рисунка.
Решение
По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора →B магнитной индукции мы будем использовать правило правой руки.
Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.
Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18109
Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?
Ответ:
а) повернётся на 180°
б) повернётся на 90° по часовой стрелке
в) повернётся на 90° против часовой стрелки
г) останется в прежнем положении
Алгоритм решения
- Вспомнить, как взаимодействуют магниты.
- Определить исходное положение полюсов.
- Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.
Решение
Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18266
Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.
Алгоритм решения
- Определить направление тока в соленоиде.
- Определить полюса соленоида.
- Установить, как будет взаимодействовать соленоид с магнитом.
- Установить, как будет себя вести магнит после замыкания электрической цепи.
Решение
Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.
Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.
Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 22.2k