Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.
Основные свойства магнитного поля
- Магнитное поле порождается электрическим током (движущимися зарядами).
- Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
- Магнитное поле существует независимо от нас, от наших знаний о нем.
Вектор магнитной индукции
Определение
Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как→B. Единица измерения — Тесла (Тл).
За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.
Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:
B=FAmaxIl
За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.
Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.
Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.
Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.
Напряженность магнитного поля
Определение
Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как →H. Единица измерения — А/м.
→H=→Bμμ0
μ — магнитная проницаемость среды (у воздуха она равна 1), μ0 — магнитная постоянная, равная 4π·10−7 Гн/м.
Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: →H↑↑→B.
Направление вектора магнитной индукции и способы его определения
Чтобы определить направление вектора магнитной индукции, нужно:
- Расположить в магнитном поле компас.
- Дождаться, когда магнитная стрелка займет устойчивое положение.
- Принять за направление вектора магнитной индукции направление стрелки компаса «север».
В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:
При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:
При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора →B магнитной индукции.
Отсюда следует, что:
- Если по витку ток идет против часовой стрелки, то вектор магнитной индукции →B направлен вверх.
- Если по витку ток идет по часовой стрелке, то вектор магнитной индукции →B направлен вниз.
Способы обозначения направлений векторов:
Вверх | |
Вниз | |
Влево | |
Вправо | |
На нас перпендикулярно плоскости чертежа | |
От нас перпендикулярно плоскости чертежа |
Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?
Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.
Магнитное поле прямолинейного тока
Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.
Вид сверху:
Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:
Правило буравчика (правой руки)
Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.
Модуль вектора магнитной индукции на расстоянии r от оси проводника:
B=μμ0I2πr
Модуль напряженности:
H=I2πr
Магнитное поле кругового тока
Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.
Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:
Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.
Модуль вектора магнитной индукции в центре витка, радиус которого равен R:
B=μμ0I2R
Модуль напряженности в центре витка:
H=I2R
Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?
Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.
Магнитное поле электромагнита (соленоида)
Определение
Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.
Число витков в соленоиде N определяется формулой:
N=ld
l — длина соленоида, d — диаметр проволоки.
Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.
Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции →B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.
Модуль вектора магнитной индукции в центральной области соленоида:
B=μμ0INl=μμ0Id
Модуль напряженности магнитного поля в центральной части соленоида:
H=INl=Id
Алгоритм определения полярности электромагнита
- Определить полярность источника.
- Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
- Определить направление вектора магнитной индукции.
- Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).
Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.
Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.
Задание EF17530
На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен
Ответ:
а) вертикально вверх в плоскости витка
б) вертикально вниз в плоскости витка
в) вправо перпендикулярно плоскости витка
г) влево перпендикулярно плоскости витка
Алгоритм решения
1.Определить правило, по которому можно определить направление вектора магнитной индукции в данном случае.
2.Применить выбранное правило и определить направление вектора магнитной индукции относительно рисунка.
Решение
По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора →B магнитной индукции мы будем использовать правило правой руки.
Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.
Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18109
Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?
Ответ:
а) повернётся на 180°
б) повернётся на 90° по часовой стрелке
в) повернётся на 90° против часовой стрелки
г) останется в прежнем положении
Алгоритм решения
- Вспомнить, как взаимодействуют магниты.
- Определить исходное положение полюсов.
- Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.
Решение
Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18266
Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.
Алгоритм решения
- Определить направление тока в соленоиде.
- Определить полюса соленоида.
- Установить, как будет взаимодействовать соленоид с магнитом.
- Установить, как будет себя вести магнит после замыкания электрической цепи.
Решение
Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.
Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.
Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 22.2k
Если в центре витка с током поместить магнитную стрелку, то она укажет направление линий магнитного поля вдоль оси симметрии витка (рис. (1)).
Рис. (1). Распределение силовых линий магнитного поля витка с током относительно оси симметрии
Обрати внимание!
Две противоположные стороны обтекаемой током поверхности можно сопоставить с двумя полюсами магнитной стрелки: сторону, из которой линии магнитной индукции выходят, — с северным полюсом магнитной стрелки, а сторону, в которую они входят, — с южным.
Направление магнитного поля витка с током можно определить также по правилу правого винта (правилу правого буравчика) (рис. (2)).
Если поместить острие винта в центре витка и вращать винт в направлении тока, то его поступательное движение укажет направление линий магнитного поля.
Рис. (2). Изображение витка с током и острия винта
Таким образом, существует взаимная связь направлений тока в замкнутом проводнике и его магнитного поля.
Обрати внимание!
Если направление тока в витке изменить на противоположное, то направление магнитных линий магнитного поля, возникающего вокруг витка, также изменится на противоположное.
Источники:
Рис. 1. Распределение силовых линий магнитного поля витка с током относительно оси симметрии. © ЯКласс.
Рис. 2. Изображение витка с током и острия винта. © ЯКласс.
Закон Био-Савара-Лапласа. Магнитное поле прямого тока и витка с током
Элемент
проводника с током
создает в точке А магнитную индукцию
(рисунок 3).
Модуль вектора магнитной индукции
,
где
– угол между векторами
и
.
Рисунок 3. К закону Био-Савара-Лапласа
Для магнитного поля справедлив принцип
суперпозиции:
Магнитная индукция результирующего
поля, создаваемого несколькими токами
или движущимися зарядами, равна векторной
сумме магнитных индукций полей,
создаваемых каждым током или движущимися
зарядами в отдельности.
Расчет
и
довольно сложен, но для симметричных
токов можно довольно просто получить
расчетные формулы, используя закон
Био-Савара-Лапласа и принцип суперпозиции.
-
Магнитное поле прямого тока (рисунок
4)
;
.
Угол меняется от
0 до . Поэтому:
.
Рисунок 4. Магнитное поле прямого тока
Рисунок 5. Направление линий магнитной
индукции прямого провода
-
Магнитное поле в центре кругового
проводника с током (рисунок 6)
s
R
in
= 1
dB =
Рисунок 6. Магнитное поле кругового
тока
Контрольные вопросы
-
Что такое магнитное поле и чем оно
создается? -
Как образуется магнитное поле постоянного
магнита? -
Как определить направление магнитного
поля с помощью плоского контура с током
(правило правого винта)? -
Чему равен вращающий момент сил,
действующих на рамку с током? -
Чему равен вектор магнитного момента
рамки с током? -
Что Вы знаете о векторе магнитной
индукции? -
Что изображают линии магнитной индукции
и как определить их направление (правило
правого винта для проводника с током)? -
Каким соотношением связаны магнитная
индукция и напряженность магнитного
поля? -
Приведите размерности магнитной
индукции и напряженности магнитного
поля.
Закон Ампера
А
мпер
установил, что сила
,
с которой магнитное поле действует на
элемент проводника
с током
:
М
одуль
.
a – угол между
векторами
и
.
Для прямого проводника длиной
сила Ампера:
, где a – угол
между
вектором
и направлением тока.
Рисунок 7. Правило левой руки
Направление силы Ампера
определяется по правилу левой
руки: Если ладонь левой руки
расположена так, чтобы в нее входил
вектор
,
а четыре вытянутых пальца расположить
по направлению тока (направлению движения
положительных зарядов) в проводнике,
то отогнутый большой палец покажет
направление силы, действующей на ток
(рисунок 7).
Сила взаимодействия двух параллельных токов
sin
= 1.
А
Рисунок 8. Сила взаимодействия двух
параллельных токов
налогично:
.
Очевидно, что:
Два параллельных тока одинакового
направления, протекающих по проводам,
распложенным на расстоянии
друг от друга, с длиной каждого из
проводов
,
притягиваются с силой:
Для вакуума:
При противоположном направлении
токов согласно правилу левой руки
проводники будут отталкиваться.
М
агнитное
поле движущегося заряда
П
Рисунок 9. Магнитное поле движущегося
заряда
усть положительный заряд движется
с постоянной скоростью
C
– скорости света в вакууме (рисунок 8).
Тогда в точке наблюдения М магнитная
индукция:
Модуль индукции
.
Д
вижущийся заряд по своим магнитным
свойствам эквивалентен элементу тока.
Отсюда:
Для кругового постоянного тока:
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Сила и закон Ампера:
Действие магнитного поля на проводник с током в 1820 г. исследовал экспериментально Андре Мари Ампер. Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь ее назвали силой Ампера.
Исследуем с помощью динамометра модуль силы Ампера, действующей на участок прямолинейного проводника длиной I с током силой l со стороны магнитного поля индукцией В (рис. 150).
Согласно экспериментальным данным и результатам вычислений модуль силы:
- пропорционален длине проводника, находящегося в магнитном поле (F ~ l)
- пропорционален модулю индукции магнитного поля (F ~ В); пропорционален силе тока в проводнике (F ~ l);
- зависит от ориентации проводника в магнитном поле, т. е. от угла
Обобщая полученные результаты, запишем выражение для силы Ампера
в виде
где В — индукция магнитного поля, l — длина участка проводника, находящегося в магнитном поле, I — сила тока в проводнике, — угол, образованный направлением тока и
Закон Ампера
Это выражение называют законом Ампера:
- модуль силы, с которой магнитное поле действует на находящийся в нем прямолинейный проводник с током, равен произведению индукции В этого поля, силы тока I, длины участка проводника l и синуса угла между направлениями тока и индукции магнитного поля.
Сила Ампера всегда перпендикулярна направлению тока в проводнике и вектору индукции магнитного поля. Для определения направления силы
Правило левой руки
Ампера используют правило левой руки (рис. 151):
если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора индукции магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление тока, то отогнутый на 90° большой палец укажет направление силы Ампера.
Магнитное взаимодействие проводников с током используется для определения в СИ одной из основных единиц — единицы силы тока — ампера.
Один ампер есть сила постоянного тока, поддерживаемого в каждом из двух прямолинейных параллельных проводниках бесконечной длины и ничтожно малого кругового сечения, расположенных на расстоянии 1 м один от другого в вакууме, который вызывает между этими проводниками силу взаимодействия, равную Н на каждый метр длины проводников.
Магнитное поле
Обобщение учеными результатов теоретических и экспериментальных исследований различных взаимодействий в природе привело к выводу, что материя может существовать не только в форме вещества, по и в форме поля. Изучая физику в предыдущих классах, вы узнали о существовании электрического и магнитного полей, благодаря которым взаимодействуют наэлектризованные тела. Работы Дж. Максвелла, М. Фарадея и других ученых показали, что эти поля взаимосвязаны и фактически являются проявлениями более универсального электромагнитного поля. И только выбор системы отсчета определяет, что мы наблюдаем – электрическое или магнитное поле. Изучить все свойства электромагнитного поля довольно сложно. Поэтому в физике изучают постепенно отдельные проявления этого ноля. Одним из этапов изучения электромагнитного поля является изучение магнитного поля, которое проявляется в случае, когда заряженные частицы или тела в определенной системе отсчета движутся равномерно. В этом разделе рассматриваются не только условия, при которых магнитное поле наблюдается, но и физические величины, которые описывают его свойства, законы, по которым взаимодействуют магнитные поля и вещественные объекты. Знание этих законов позволяет производить важные для практики расчеты результатов взаимодействия магнитного поля с различными физическими телами.
Явления, которые мы называем магнитными, известны человечеству очень давно. Необычные свойства магнетита (разновидности железной руды) использовались в Древнем Китае, а потом и в других странах для изготовления компасов. Магнитам приписывали магические свойства, их действием объясняли непонятные явления природы, пробовали лечить болезни.
Систематизированные исследования магнитов провел английский физик У. Гильберт в XVI в. Он не только исследовал взаимодействие постоянных .магнитов, но и установил, что Земля является большим магнитом.
Учение о магнитах развивалось длительное время обособленно, как отдельная отрасль науки, пока ряд открытий и теоретических исследований в XIX в. не доказали его органическую связь с электричеством.
Одним из фундаментальных доказательств единства электрических и магнитных явлений является опыт Г.Х. Эрстеда, датского физика, который в 1820 г. заметил, что магнитная стрелка изменяет ориентацию вблизи проводника с током (рис. 2.1).
Pиc. 2.1. Опыт Эрстеде
Было вполне очевидно, что причиной изменения ориентации стрелки является электрический ток -направленное движение заряженных частиц в проводнике. C подробным описанием этого опыта вы встречались в 9-м классе.
Магнитное действие движущихся заряженных тел исследовал также американский физик Г. Роуланд в 1878 г. Основная часть его установки представляла собой эбонитовый диск 1, покрытый тонким слоем золота (рис. 2.2). Диск был насажен на вал и мог свободно вместе с ним вращаться между двумя стеклянными пластинами 2. Над эбонитовым диском были укреплены на тонкой нити две намагниченные стальные иголки 3, чувствительные к магнитному полю. Когда диску сообщили некоторый заряд и начали вращать, иголки повернулись на некоторый угол, что свидетельствовало о наличии магнитного поля. При увеличении скорости вращения иголки поворачивались на больший угол.
Рис. 22. Главная часть установки Роуланда по выявлению магнитного поля движущегося электрически заряженного диска
Опытами Г. Роуланда было подтверждено открытие Эрстеда о связи магнитного поля с движущимися электрически заряженными частицами или телами.
Генри Роуланд (184β-1901) – американский физик; научные работы в области электродинамики, оптики, спектроскопии и теплоты. Он доказал, что заряженные тела, если они движутся, вызывают магнитное взаимодействие. |
Магнитные явления хотя и связаны с электрическими, но не идентичны им. Это подтверждают опыты.
Если взять два длинных параллельных проводника и присоединить к источнику тока, то заметим, что они взаимодействуют между собой (рис. 2.3) в зависимости от направления тока в них. При токах противоположных направлений проводники отталкиваются (рис. 2.3-а). Если токи одного направления, то проводники притягиваются друг к другу (рис. 2.3-б).
Pиc. 23. Магнитное взаимодействие проводников с током
Действие проводника с током на магнитную стрелку или другой проводник с током происходит при отсутствии непосредственного контакта между ними, благодаря наличию вокруг проводника магнитного поля.
Магнитное поле имеет свои особенности, которые выделяют его среди других полей:
- магнитное поле наблюдается всегда, когда есть движущиеся заряженные частицы или тела;
- магнитное поле действует только на движущиеся заряженные тела или частицы.
Другие свойства будут описаны далее.
Магнитная индукция
Наблюдения за магнитными взаимодействиями в лаборатории или в природе показывают, что действия магнитного поля па физические тела или проводники с током при равных условиях могут быть различными.
Интенсивность магнитного взаимодействия может быть различной.
Если для выявления магнитного поля Земли магнитную стрелку компаса приходится устанавливать на специальных опорах, которые существенно уменьшают силы трения, то действие электромагнита, в обмотках которого проходит электрический ток, будет заметным даже тогда, когда стрелка будет просто лежать на столе.
Различным будет и взаимодействие параллельных проводников с током. Сила взаимодействия этих проводников будет изменяться, если будет изменяться сила тока в них или расстояние между ними, – она будет увеличиваться при увеличении силы тока или при уменьшении расстояния.
Для всех таких случаев говорят о «сильном» или «слабом» поле. Аналогичные случаи рассматривались при изучении свойств электрического поля, при рассмотрении действия электрического поля на заряженные тела. Для количественной характеристики электрического поля введена напряженность электрического поля. Для магнитного же поля используется также силовая характеристика и соответствующая ей физическая величина магнитная индукция. Магнитная индукция является векторной величиной и обозначается буквой В. Поскольку для исследования магнитного поля длительное время пользовались магнитной стрелкой на острие, то магнитная индукция как характеристика магнитного поля была связана с действием магнитного поля па магнитную стрелку. Так, направление полюсов стрелки послужило базой для установления направления вектора магнитной индукции изучаемого поля. Условились, что за направление магнитной индукции принимается направление северного полюса стрелки.
Магнитная индукция – векторная величина, имеющая направление.
Исследуем с помощью магнитной стрелки магнитное поле проволочного витка с током.
Замкнув цепь, в которую включен виток, начнем обносить магнитную стрелку на острие вокруг витка. Заметим, что ориентация стрелки при этом будет меняться. В разных точках она будет иметь различную ориентацию. Наиболее ощутимым будет действие поля на стрелку в центре витка (рис. 2.4).
Puc. 2.4. Продольная ось магнитной стрелки, находящаяся в центре витка с током, перпендикулярна его плоскости
Таким образом, мы установили, что магнитная индукция витка или прямоугольной рамки будет иметь максимальное значение в центре.
Продольная ось магнитной стрелки плоскости витка. Аналогичное явление будет наблюдаться и тогда, когда возьмем прямоугольную рамку или моток провода произвольной формы.
В отличие от напряженности электрического поля магнитная индукция как векторная величина не совпадает по направлению с направлением силы, которая действует на проводник с током. Выясним, как направление вектора магнитной индукции зависит от направления тока в витке.
Магнитная индукция – это силовая характеристика поля. Она определяет силу, которая действует на проводник с током или на движущуюся частицу.
Отметив направление магнитной стрелки при определенном направлении тока в витке, изменим направление последнего на противоположное. Магнитная стрелка развернется на 1800, показывая, что направление магнитной индукции также изменилось. Таким образом, направление магнитной индукции витка с током зависит от направления тока и нем.
Чтобы каждый раз, когда нужно знать направление магнитной индукции, не проводить опыты со стрелкой, пользуются правилом правого винта (буравчика).
Это правило позволяет запомнить связь направления тока в витке с направлением магнитной индукции его поля. Для этого необходимо представить, как будет двигаться правый винт, приставленный перпендикулярно к плоскости витка, при вращении его по направлению тока в витке.
Если направление вращения правого винта, расположенного в центре витка с током, совпадает с направлением тока, то его поступательное движение показывает направление магнитной индукции (рис. 2.5).
Магнитное поле существует и вокруг прямого проводника с током. Для подтверждения этого магнитную стрелку будем обносить вокруг проводника, не изменяя расстояния (рис. 2.6).
Pиc. 2.5. Определение |
Pиc. 2.6. Исследование магнитного поля прямого проводника с током при помощи магнитной стрелки |
В разных точках ее ориентация будет различной, но ось стрелки всегда будет направлена по касательной к траектории движения.
Соответственно и магнитная индукция проводника с током будет иметь такое ясе направление.
При изменении направления тока в проводнике на противоположное стрелка развернется на 180° и покажет направление магнитной индукции, которое также будет противоположным к прежнему.
Таким образом, направление магнитной индукции прямого проводника зависит от направления тока в нем. Для облегчения его определения, как и в предыдущем случае, на основании анализа результатов эксперимента, сформулировано правило правого винта (рис. 2.7): если направление поступательного движения правого винта совпадает с направлением тока в проводнике, то направление его вращения показывает направление магнитной индукции.
Pиc. 2.7. Определение направления магнитной индукции поля прямого проводника с током при помощи правою винта (буравчика)
Для измерения магнитной индукции применяется специальная единица тесла (Тл). Эта единица названа в честь сербского ученого и изобретателя Николы Теслы.
Никола Тесла (1856-1943) – родился в Сербии, изобретатель и физик. Известен благодаря своим изобретениям в области электротехники и электроники; работал инженером на предприятиях Венгрии, Франции, США. |
В практике используются долевые величины:
- 1 миллитесла = 1 мТл = 10-3 Тл,
- 1 микротесла 1 мкТл 10-6 Тл.
Значения магнитной индукции измеряют специальными приборами, которые называются магнитометрами или индикаторами магнитной индукции (рис. 2.8).
Pиc. 2.8. Лабораторный магнитометр для школьных опытов
Часто вместо прямых измерений пользуются формулами, которые позволяют рассчитать магнитную индукцию на основании параметров проводника. Таким примером может быть расчет модуля магнитной индукции прямого проводника с током. Экспериментально подтверждено, что магнитная индукция поля прямого проводника с током прямо пропорциональна силе тока в проводнике и обратно пропорциональна расстоянию от его оси:
Магнитная индукция прямого проводника с током пропорциональна силе тока в нем и обратно пропорциональна расстоянию от проводника до точки наблюдения.
Коэффициент пропорциональности в этой формуле зависит от выбора системы единиц измерений. В Международной системе единиц (СИ) он имеет значение
где μ0 – магнитная постоянная, ее числовое значение 1,256 × × 10-6 Н/А2.
Тогда окончательно для рассчетов модуля магнитной индукции поля прямого проводника с током имеем формулу:
где μ0 – магнитная постоянная; I – сила тока в проводнике: r – расстояние от проводника до данной точки поля.
Пример №1
Каково значение модуля магнитной индукции в точке поля, удаленной на 3 см от бесконечно длинного проводника, по которому проходит ток 6 А?
Дано: r = 3 см, I = 6 А. |
Решение Магнитная индукция прямого проводника с током рассчитывается по формуле: |
В – ? |
Подставив значения физических величин, получим
Ответ: магнитная индукция поля прямого проводника с током равна 4 • 10-5 Тл.
Действие магнитного поля на проводник с током и сила Ампера
Поскольку вокруг проводников с током возникает магнитное поле, естественно предположить, что в магнитном поле на них действует сила.
На проводник с током в магнитном поле действует сила.
Проведем исследование с целью определения, от чего зависит модуль и направление этой силы. Для этого используем установку, в которой прямой проводник подвешен в магнитном поле постоянного магнита так, что его можно включать в электрическую цепь, силу тока в которой можно изменять при помощи реостата. Амперметр будет измерять силу тока в цепи.
Замкнув электрическую цепь, заметим, что проводник отклонится от положения равновесия, а динамометр покажет некоторое значение силы. Увеличим силу тока в проводнике в 2 раза и увидим, что сила, действующая на проводник, также увеличится в 2 раза. Любые другие изменения силы тока будут вызывать соответствующие изменения силы. Сопоставление результатов всех измерений позволяет сделать вывод, что сила F, которая действует на проводник с током, пропорциональна силе тока к нем:
F~I.
Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.
Сила Ампера пропорциональна силе тока в проводнике.
Pиc. 2.9. Установка для изучения действия магнитного поля на проводник с током
Расположим еще один магнит рядом с первым. Длина проводника, находящегося в магнитном поле, увеличится приблизительно в 2 раза. Значение силы, действующей на проводник, в этом случае также увеличится в 2 раза. Таким образом, сила FΔ, действующая на проводник с током в магнитном поле, пропорциональна длине проводника Δl, который расположен в магнитном поле:
F~ΔI.
Сила Ампера пропорциональна длине активной части проводника.
Сила увеличится также тогда, когда применим другой, более мощный магнит с большей магнитной индукцией поля.
Это позволит сделать вывод, что сила Ампера FА зависит от магнитной индукции поля:
F~B.
Опыт позволяет убедиться и в том, что наибольшее значение силы Ампера будет тогда, когда угол между проводником и вектором магнитной индукции будет равен 90°. Если этот угол будет равен нулю, т. е. вектор магнитной индукции будет параллельным проводнику, то сила Ампера также будет равна нулю. Отсюда легко сделать вывод, что сила Ампера зависит от угла между вектором магнитной индукции и проводником.
Окончательно для расчетов имеем формулу
Направление силы Ампера определяется по правилу левой руки (рис. 2.10): если левую руку разместить так, чтобы линии магнитной индукции входили в ладонь, а четыре от. ставленных пальца показывали направление тока в проводнике, то отставленный под углом 90″ большой палец покажет направление силы, действующей на проводник с током в магнитном поле.
Pиc. 2.10. При помощи левой pуκu можно определить направление силы Ампера
Если левую руку разместить так. чтобы линии магнитной индукции входили в ладонь, а четыре отставленных пальца показывали направление тока в проводнике, то отставленный под углом 90° большой палец покажет направление силы, действующей на проводник с током в магнитном поле.
Взаимодействие проводников с током
Взаимодействие проводников с током объясняется действием силы Ампера (рис. 2.11).
Каждый из проводников имеет свое магнитное поле, которое действует на соседний проводник с током и способствует появлению силы Ампера. Так, проводник AA‘ по которому проходит ток I1, имеет магнитное поле, модуль индукции B1 которого, как указывалось ранее, равен
где r – расстояние от проводника до точки наблюдения.
Если проводник CC’ длиной Δl находитсяy на расстоянии r от проводника AA’ и в нем проходит ток I2, то на него действует сила Ампера FА, поскольку он находится в магнитном поле проводника AA’ . Значение этой силы равно
Поскольку проводники параллельны и угол между проводником CC’ и вектором магнитной индукции B1 равен 90°, то sinα = 1.
Подставим в последнюю формулу значение магнитной индукции поля проводника AA’:
Силу взаимодействия двух параллельных проводников с током можно определить, зная только расстояние между ними и силу тока в них.
Как и при любом взаимодействии, такая сила, согласно третьему закону Ньютона, действует на каждый из проводников. Только направления их противоположны.
Таким образом, два параллельных проводника нзнимодей-ствуют между собой благодаря магнитным полям, которые образуются вокруг проводников, по которым проходит электрический ток.
Пример №2
Определить модуль силы Ампера, которая действует на проводник с током длиной 25 см в магнитном поле с индукцией 0,04 Тл, если между вектором магнитной индукции и направлением тока угол 30° сила тока в проводнике 0,25 А.
Дано: |
Решение Подставим значения всех величин: |
FA– ? |
Ответ: модуль силы равен 1,25 • 10-3 Н.
Использование действия силы Ампера
Силу Ампера применяют для преобразования энергии электрического тока в механическую энергию проводника. Такое превращение происходит во многих электротехнических устройствах. Рассмотрим некоторые из них.
Eлектроиэмеритальные приборы магнитоэлектрической системы
Электроизмерительный прибор магнитоэлектрической системы состоит из постоянного магнита и проволочной рамки, расположенной между его полюсами (рис. 2.12). Полюса магнита имеют специальные насадки, создающие однородное магнитное поле, в котором вращение рамки не приводит к изменению угла между магнитной индукцией и проводниками рамки. Этот угол всегда равен 90°.
Pиc. 2.12. Устройство электроизмерительного прибора магнитоэлектрической системы
C рамкой соединены две спиральные пружины, которые подводят к рамке электрический ток. Во время прохождения электрического тока по витком рамки возникает сила Ампера, пропорциональная силе тока в рамке. Чем больше сила действует на витки рамки, тем больше закручиваются спиральные пружины, которых возникает сила упругости. Когда сила Ампера и сила упругости станут равными, вращение рамки прекратится.
Стрелка, прикрепленная к рамке, показывает угол поворота рамки. Этот угол пропорционален силе тока в рамке.
Электрический двигатель постоянного тока
Электрический двигатель применяют для преобразования энергии электрического тока в механическую энергию вращения вала двигателя. Принцип его действия подобен принципу действия электроизмерительного прибора магнитоэлектрической системы, описанного выше. Только в его конструкции отсутствует пружина, поэтому рамка может поворачиваться на любой угол. Электрический ток к рамке, размещенной на валу и имеющей стальной сердечник, подается через специальные скользящие контакты-щетки (рис. 2.13).
Рис. 213. Устройство двигателя постоянного тока
При замыкании цепи питания двигателя ток проходит по рамке и она взаимодействует с магнитным полем постоянного магнита или электромагнита и поворачивается до тех пор, пока ее плоскость не станет параллельной вектору магнит ной индукции. Чтобы она могла нужно сменить направление силы тока в ней, вследствие чего поменяет направлению сила Ампера, действующая на рамку с током в магнитном поле. В двигателе этот процесс осуществляется с помощью двух неподвижных графитометаллических щеток и двух полуколец на валу, к которым подведены концы рамки.
На рисунке 2.14-а показан момент, когда ток в якоре такого направления, что его полюса отталкиваются от одноименных полюсов статора. После поворачивания на некоторый угол якорь окажется в положении, когда разноименные полюса притягиваются (рис 2.14-6). Вследствие инерции якорь проходит это положение равновесия, а благодаря кольцам, которых касаются токоподводящие щетки (рис. 2.14-в), направление тока в якоре изменяется па противоположное и вращение якоря продолжается (см. рис. 2.14-а).
Pиc. 2.14 Схемы, которые объясняют действие коллекторного электродвигателя постоянного тока
В промышленных образцах электродвигателей постоянного тока ротор имеет несколько рамок-обмоток. Поэтому и количество пар скользящих контактов в них больше: оно согласуется с количеством обмоток. В целом такое устройство называют коллектором. В новейших моделях двигателей постоянного тока роль коллектора выполняет специальное устройство с электронными приборами.
Таким образом, действие силы Ампера нашло применение в различных технических устройствах: электроизмерительных приборах, электрических двигателях и т. п.
Сила ампера
Вы узнали, что магнитное поле действует на проводник с током с некоторой силой. А из курса физики 8 класса помните, что сила — это векторная физическая величина, поэтому, чтобы полностью определить силу, нужно уметь рассчитывать ее значение и определять направление. От чего зависит значение силы, с которой магнитное поле действует на проводник с током, как направлена эта сила и почему ее называют силой Ампера, вы узнаете из данного параграфа.
Характеристика силы действующей на проводник с током
Между полюсами подковообразного постоянного магнита подвесим на тонких и гибких проводах прямой алюминиевый проводник (рис. 4.1, а). Если через проводник пропустить ток, проводник отклонится от положения равновесия (рис. 4.1, б). Причина такого отклонения — сила, действующая на проводник с током со стороны магнитного поля. Доказал наличие этой силы и выяснил, от чего зависят ее значение и направление, А. Ампер. Именно потому эту силу называют силой Ампера.
Рис. 4.1. Опыт, демонстрирующий действие магнитного поля на алюминиевый проводник: при отсутствии тока магнитное поле на проводник не действует (а); если в проводнике течет ток, на проводник действует магнитное поле и проводник отклоняется (б)
Сила Ампера — это сила, с которой магнитное поле действует на проводник с током.
Сила Ампера прямо пропорциональна силе тока в проводнике и длине активной части проводника (то есть части, расположенной в магнитном поле). Сила Ампера увеличивается с увеличением индукции магнитного поля и зависит от того, под каким углом к линиям магнитной индукции расположен проводник.
Значение силы Ампера вычисляют по формуле:
где — магнитная индукция магнитного поля; — сила тока в проводнике; — длина активной части проводника; — угол между направлением вектора магнитной индукции и направлением тока в проводнике (рис. 4.2).
Обратите внимание! Магнитное поле не будет действовать на проводник с током если проводник расположен параллельно магнитным линиям поля
Рис. 4.2. Угол — это угол между направлением вектора магнитной индукции и направлением тока в проводнике
Чтобы определить направление силы Ампера, используют правило левой руки:
Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец укажет направление силы Ампера (рис. 4.3).
Рис. 4.3. Определение направления силы Ампера по правилу левой руки
Формула для определения модуля магнитной индукции
Если проводник расположен перпендикулярно линиям магнитной индукции поле действует на проводник с максимальной силой:
Отсюда получаем формулу для определения модуля магнитной индукции:
Обратите внимание! Значение магнитной индукции не зависит ни от силы тока в проводнике, ни от длины проводника, а зависит только от свойств магнитного поля.
Например, если уменьшить силу тока в проводнике, то уменьшится и сила Ампера, с которой магнитное поле действует на проводник, а вот значение магнитной индукции останется неизменным.
В СИ единица магнитной индукции — тесла (Тл), единица силы — ньютон (Н), силы тока — ампер (А), длины — метр (м), поэтому:
1 Тл — это индукция такого однородного магнитного поля, которое действует с максимальной силой 1 Н на проводник длиной 1 м, в котором течет ток силой 1 А.
- Заказать решение задач по физике
Пример №3
Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.
Анализ физической проблемы. Около любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как будут вести себя проводники.
Решение
Решая задачу, выполним пояснительные рисунки: изобразим проводники А и В, покажем направления тока в них и т. д.
Выясним направление силы Ампера, которая действует на проводник А, находящийся в магнитном поле проводника В.
- С помощью правила буравчика найдем направление линий магнитной индукции магнитного поля, созданного проводником В (рис. 1, а). Выясняется, что вблизи проводника А магнитные линии направлены к нам (обозначено «•»).
- Воспользовавшись правилом левой руки, определим направление силы Ампера, действующей на проводник А со стороны магнитного поля проводника В (рис. 1, б).
Рис. 1
3. Приходим к выводу: проводник А притягивается к проводнику В.
Теперь выясним направление силы Ампера, которая действует на проводник В, находящийся в магнитном поле проводника А.
1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рис. 2, а). Выясняется, что вблизи проводника В магнитные линии направлены от нас (обозначено
2) Определим направление силы Ампера, действующей на проводник В (рис. 2, б).
Рис. 2
3) Приходим к выводу: проводник В притягивается к проводнику А.
Ответ: два параллельных проводника, в которых текут токи одного направления, притягиваются.
Пример №4
Прямой проводник (стержень) длиной 0,1 м и массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитным линиям поля (рис. 3).
Рис. 3
Ток какой силы и в каком направлении следует пропустить по стержню, чтобы стержень не давил на опору (завис в магнитном поле)?
Анализ физической проблемы. Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при условиях: 1) сила Ампера будет направлена противоположно силе тяжести (то есть вертикально вверх); 2) значение силы Ампера будет равно значению силы тяжести:
Дано:
Найти:
Поиск математической модели, решение
1. Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90° большой палец был направлен вертикально вверх. Четыре вытянутых пальца укажут направление от нас. Следовательно, ток в проводнике нужно направить от нас.
2. Учитываем, что
где
Следовательно,
Из последнего выражения найдем силу тока:
Проверим единицу, найдем значение искомой величины.
Вспомним:
Ответ: от нас.
Подводим итоги:
Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера находят по формуле: где В — индукция магнитного поля; I — сила тока в проводнике; — длина активной части проводника; — угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Направление силы Ампера определяют по правилу левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец укажет направление силы Ампера.
Магнитные свойства веществ и гипотеза Ампера
Наверное, каждый из вас видел магниты и даже исследовал их свойства. Если поднести магнит к кучке мелких предметов, некоторые из них (гвоздики, кнопки, скрепки) притянутся к магниту, а некоторые (кусочки мела, медные и алюминиевые монетки, комочки земли) никак не отреагируют. Почему так? Действительно ли магнитное поле не оказывает никакого влияния на некоторые вещества? Именно об этом пойдет речь в параграфе.
Действия электрического и магнитного полей на вещество
Изучая в 8 классе электрические явления, вы узнали, что под влиянием внешнего электрического поля происходит перераспределение электрических зарядов внутри незаряженного тела (рис. 5.1). В результате в теле образуется собственное электрическое поле, направленное противоположно внешнему, и именно поэтому электрическое поле в веществе всегда ослабляется.
Рис. 5.1. В результате действия электрического поля отрицательно заряженной палочки ближняя к ней часть проводящей сферы приобретает положительный заряд
Вещество изменяет и магнитное поле. Есть вещества, которые (как в случае с электрическим полем) ослабляют магнитное поле внутри себя. Такие вещества называют диамагнетиками. Многие вещества, наоборот, усиливают магнитное поле — это парамагнетики и ферромагнетики.
Дело в том, что любое вещество, помещенное в магнитное поле, намагничивается, то есть создает собственное магнитное поле, магнитная индукция которого разная для разных веществ.
Слабомагнитные вещества
Вещества, которые намагничиваются, создавая слабое магнитное поле, магнитная индукция которого намного меньше магнитной индукции внешнего магнитного поля (то есть поля, вызвавшего намагничивание), называют слабомагнитными веществами. К таким веществам относятся диамагнетики и парамагнетики.
Диамагнетики (от греч. dia — расхождение) намагничиваются, создавая слабое магнитное поле, направленное противоположно внешнему магнитному полю (рис. 5.2, а). Именно поэтому диамагнетики незначительно ослабляют внешнее магнитное поле: магнитная индукция магнитного поля внутри диамагнетика немного меньше магнитной индукции внешнего магнитного поля
Рис. 5.2. Образцы из диамагнетика (а) и парамагнетика (б) во внешнем магнитном поле: красные линии — линии магнитного поля, созданного образцом; синие — магнитные линии внешнего магнитного поля; зеленые — линии результирующего магнитного поля
Если диамагнетик поместить в магнитное поле, он будет выталкиваться из него (рис. 5.3).
Рис. 5.3. Пламя свечи выталкивается из магнитного поля, так как продукты сгорания — диамагнитные частицы
К диамагнетикам относятся инертные газы (гелий, неон и др.), многие металлы (золото, медь, ртуть, серебро и др.), молекулярный азот, вода и т. д. Тело человека — диамагнетик, так как оно в среднем на 78 % состоит из воды.
Парамагнетики (от греч. para — рядом) намагничиваются, создавая слабое магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (рис. 5.2, б). Парамагнетики незначительно усиливают внешнее поле: магнитная индукция магнитного поля внутри парамагнетика немного больше магнитной индукции внешнего магнитного поля
К парамагнетикам относятся кислород, платина, алюминий, щелочные и щелочноземельные металлы и другие вещества. Если парамагнитное вещество поместить в магнитное поле, то оно будет втягиваться в это поле.
Ферромагнетики
Если слабомагнитные вещества извлечь из магнитного поля, их намагниченность сразу исчезнет. Иначе происходит с сильномагнитными веществами — ферромагнетиками.
Ферромагнетики (от лат. ferrum — железо) — вещества или материалы, которые остаются намагниченными и при отсутствии внешнего магнитного поля.
Ферромагнетики намагничиваются, создавая сильное магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (рис. 5.4, 5.5, а). Если изготовленное из ферромагнетика тело поместить в магнитное поле, оно будет втягиваться в него (рис. 5.5, б).
Рис. 5.4. Железный гвоздь намагничивается в магнитном поле так, что конец гвоздя, расположенный вблизи северного полюса магнита, становится южным полюсом, поэтому гвоздь притягивается к магниту
Рис. 5.5. Ферромагнетики создают сильное магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (а); линии магнитной индукции как будто втягиваются в ферромагнитный образец (б)
К ферромагнетикам относится небольшая группа веществ: железо, никель, кобальт, редкоземельные вещества и ряд сплавов. Ферромагнетики значительно усиливают внешнее магнитное поле: магнитная индукция магнитного поля внутри ферромагнетиков в сотни и тысячи раз больше магнитной индукции внешнего магнитного поля
Так, кобальт усиливает магнитное поле в 175 раз, никель — в 1120 раз, а трансформаторная сталь (на 96-98 % состоит из железа) — в 8000 раз.
Ферромагнитные материалы условно делят на два типа. Материалы, которые после прекращения действия внешнего магнитного поля остаются намагниченными длительное время, называют магнитожесткими ферромагнетиками. Их применяют для изготовления постоянных магнитов. Ферромагнитные материалы, которые легко намагничиваются и быстро размагничиваются, называют магнитомягкими ферромагнетиками. Их применяют для изготовления сердечников электромагнитов, двигателей, трансформаторов, то есть устройств, которые во время работы постоянно перемагничиваются (о строении и принципе действия таких устройств вы узнаете позже).
Обратите внимание! При достижении температуры Кюри (см. таблицу) ферромагнитные свойства магнитомягких и магнитожестких материалов исчезают — материалы становятся парамагнетиками.
Температура Кюри для некоторых ферромагнетиков
Вещество (или материал) | Температура,°С |
Гадолиний | +19 |
Железо | +770 |
Кобальт | +1127 |
Неодимовый магнит NdFeB | +320 |
Никель | +354 |
Гипотеза Ампера
Наблюдая действие проводника с током на магнитную стрелку (см. рис. 1.1) и выяснив, что катушки с током ведут себя как постоянные магниты (см. рис. 1.3), А. Ампер выдвинул гипотезу о магнитных свойствах веществ. Ампер предположил, что внутри веществ существует огромное количество незатухающих малых круговых токов и каждый из них, как маленькая катушка, является магнитиком. Постоянный магнит состоит из множества таких элементарных магнитиков, ориентированных в определенном направлении.
Механизм намагничивания веществ Ампер объяснял так. Если тело не намагничено, круговые токи ориентированы беспорядочно (рис. 5.7, а). Внешнее магнитное поле пытается сориентировать эти токи так, чтобы направление магнитного поля каждого тока совпадало с направлением внешнего
Рис. 5.7. Механизм намагничивания тел согласно гипотезе Ампера: а — круговые токи ориентированы беспорядочно, тело не намагничено; б — круговые токи ориентированы в определенном направлении, тело намагничено
магнитного поля (рис. 5.7, б). У некоторых веществ такая ориентация токов (намагничивание) остается и после прекращения действия внешнего магнитного поля. Таким образом, все магнитные явления Ампер объяснял взаимодействием движущихся заряженных частиц.
Гипотеза Ампера послужила толчком к созданию теории магнетизма. На основе этой гипотезы были объяснены известные свойства ферромагнетиков, однако она не могла объяснить природу диа- и парамагнетизма, а также то, почему только небольшое количество веществ имеет ферромагнитные свойства. Современная теория магнетизма основана на законах квантовой механики и теории относительности А. Эйнштейна.
Подводим итоги:
Любое вещество, помещенное в магнитное поле, намагничивается, то есть создает собственное магнитное поле.
Диамагнетики | Парамагнетики | Ферромагнетики |
Намагничиваются, создавая слабое магнитное поле, направленное противоположно внешнему магнитному полю | Намагничиваются, создавая слабое магнитное поле, направленное в сторону внешнего магнитного поля | Намагничиваются, создавая сильное магнитное поле, направленное в сторону внешнего магнитного поля; остаются намагниченными после прекращения действия внешнего магнитного поля |
Незначительно ослабляют внешнее магнитное поле, выталкиваются из него | Незначительно усиливают внешнее магнитное поле, втягиваются в него | Усиливают внешнее магнитное поле в сотни и тысячи раз, втягиваются в него |
Инертные газы, медь, золото, ртуть, серебро, азот, вода и др. Кислород, платина, алюминий, щелочные металлы и др. | Кислород, платина, алюминий, щелочные металлы и др. | Железо, никель, кобальт, редкоземельные вещества (например, неодим), ряд сплавов |
- Закон взаимодействия прямолинейных параллельных проводников с током
- Сила Лоренца
- Правило Буравчика в физике
- Шунт и добавочное сопротивление
- Работа по перемещению заряда в электростатическом поле
- Закон Ома для однородного участка электрической цепи
- Закон Ома для полной цепи
- Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
- Подробности
- Обновлено 18.06.2019 17:00
- Просмотров: 370
1. Для чего проводился опыт магнита с кольцом?
Чтобы определить, как направлен индукционный ток в кольце.
а) При приближении к сплошному кольцу любого полюса магнита свободно вращающееся на игле кольцо отталкивается от него.
Почему?
При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток меняется (здесь увеличивается, т.е. увеличивается густота магнитных линий).
В сплошном кольце возникает индукционный ток, который создает вокруг собственное магнитное поле.
Кольцо становится магнитом.
Взаимодействуя с приближающимся полосовым магнитом, кольцо отталкивается от него.
б) При удалении магнита от сплошного кольца оно, притягиваясь, следует за магнитом.
Почему?
При удалении от кольца любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток меняется (здесь уменьшается).
Возникающий в сплошном кольце индукционный ток создает вокруг собственное магнитное поле.
Кольцо становится магнитом.
Взаимодействуя с удаляющимся полосовым магнитом, кольцо притягивается к нему.
В обоих случаях мы наблюдаем взаимодействия двух магнитов: полосового магнита и магнита-кольца.
Очевидно, у кольца-магнита в этих опытах меняются магнитные полюсы.
2. Почему кольцо с разрезом не реагирует на приближение магнита?
Индукционный ток в кольце с разрезом возникнуть не может, так как эта электрическая цепь разомкнута.
3. Как объяснить явления, происходящие при приближении магнита к сплошному кольцу; при удалении магнита?
а) При приближении магнита к кольцу они отталкиваются.
Значит кольцо и магнит обращены друг к другу одноименными полюсами.
А векторы магнитной индукции их полей направлены противоположно друг другу.
Магнитное поле индукционного тока кольца будет противодействовать увеличению магнитного потока полосового магнита, проходящего сквозь кольцо.
Кольцо будет отталкиваться от магнита.
б)
При удалении магнита от кольца они притягиваются.
Значит кольцо и магнит обращены друг к другу разноименными полюсами.
Это возможно, когда вектора магнитной индукции их полей направлены одинаково.
Магнитное поле индукционного тока кольца будет противодействовать уменьшению внешнего магнитного потока полосового магнита.
Кольцо будет притягиваться к магниту.
4. Как определить направление индукционного тока в кольце?
Для определения направления индукционного тока прежде всего необходимо знать, как направлен вектор магнитной индукции (направление магнитных линий) созданного этим током магнитного поля (в центре кольца).
Направление индукционного тока в кольце можно определить с помощью правила правой руки:
Если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.
!!! Правило правой руки можно применять не только для катушки (соленоида), но и для определения направления линий магнитного поля в центре одиночного витка с током.
Можно использовать и обратную задачу, т.е. зная направление линий магнитного поля, можно опредилить направление тока в этом витке с током.
Если отставленный большой палец направить по известному уже направлению линий магнитного поля внутри витка (кольца), то четыре пальца, обхватывающие виток (кольцо), укажут направление индукционного тока в витке (кольце).
Правило правой руки применяем дважды:
–
для случая приближения магнита к кольцу,
– для случая удаления магнита от кольца.
5. Как сформулировать правило Ленца?
Правило Ленца:
Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток.
Следующая страница – смотреть
Назад в “Оглавление” – смотреть