Как найти направление силы действующей на частицу

Содержание:

Сила Лоренца:

Центростремительное (нормальное) ускорение появляется при криволинейном движении тела и характеризует скорость изменения направления скорости с течением времени. Оно вычисляется по формуле Сила Лоренца - основные понятия, формулы и определение с примерами

Согласно закону Ампера на проводник с током в магнитном поле действует сила, которую можно рассматривать как результат действия магнитного поля на все движущиеся в проводнике заряды. Отсюда можно сделать вывод, что магнитное поле оказывает силовое действие на каждый движущийся заряд.

По закону Ампера на проводник длиной Сила Лоренца - основные понятия, формулы и определение с примерами

Поскольку электрический ток — направленное движение заряженных частиц, то силу тока можно представить в виде
Сила Лоренца - основные понятия, формулы и определение с примерами
где q — величина заряда одной частицы, n — концентрация заряженных частиц (число частиц в единице объема проводника), Сила Лоренца - основные понятия, формулы и определение с примерами — средняя скорость упорядоченного движения заряженных частиц, S — площадь поперечного сечения проводника.

Тогда
Сила Лоренца - основные понятия, формулы и определение с примерами
где Сила Лоренца - основные понятия, формулы и определение с примерами — число заряженных частиц, упорядоченно движущихся во всем объеме проводника длиной Сила Лоренца - основные понятия, формулы и определение с примерами

Разделив модуль силы F на число частиц N, получим модуль силы, действующей на один движущийся заряд со стороны магнитного поля:
Сила Лоренца - основные понятия, формулы и определение с примерами

где v — модуль скорости движущегося заряда.

Выражение для силы, с которой магнитное поле действует на движущийся заряд, в 1895 г. впервые получил голландский физик Хендрик Антон Лоренц. В его честь эта сила называется силой Лоренца:
Сила Лоренца - основные понятия, формулы и определение с примерами

Сила Лоренца - основные понятия, формулы и определение с примерами

Как определить направление силы Лоренца

Направление силы Лоренца определяется по правилу левой руки (рис. 153):
если левую руку расположить так, чтобы перпендикулярная к скорости Сила Лоренца - основные понятия, формулы и определение с примерамисоставляющая вектора индукции Сила Лоренца - основные понятия, формулы и определение с примерами магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление движения положительно заряженной частицы, то отогнутый на 90° большой палец укажет направление силы Лоренца Сила Лоренца - основные понятия, формулы и определение с примерами действующей на частицу со стороны магнитного поля. Для отрицательно заряженной частицы (например, для электрона) направление силы будет противоположным.

Поскольку сила Лоренца перпендикулярна вектору скорости, то она не может изменить модуль скорости, а изменяет только ее направление и, следовательно, работы не совершает.

Таким образом, если поле однородно, то при движении частицы перпендикулярно к магнитной индукции поля ее траекторией будет окружность (рис. 154, а), плоскость которой перпендикулярна к магнитному полю.

Ускорение частицы Сила Лоренца - основные понятия, формулы и определение с примерами (R — радиус окружности) направлено к центру окружности. Используя второй закон Ньютона, можем найти период обращения частицы по окружности
Сила Лоренца - основные понятия, формулы и определение с примерами

и радиус окружности

Сила Лоренца - основные понятия, формулы и определение с примерами
описываемой частицей в магнитном поле.

Сила Лоренца - основные понятия, формулы и определение с примерами

Если скорость направлена под углом к индукции магнитного поля, движение заряда можно представить в виде двух независимых движений (рис. 154, б):

В результате сложения обоих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю (см. рис. 154, б). Период этого движения определяется по формуле
Сила Лоренца - основные понятия, формулы и определение с примерами

Действие силы Лоренца широко применяется в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и дисплеев;
  2. ускорителях заряженных частиц (циклотронах);
  3. масс-спектрометрах — приборах, определяющих отношение зарядов частиц к их массе по радиусу окружности, описываемой ими в магнитном поле;
  4. магнитогидродинамических генераторах ЭДС (МГД-генератор — устройство для генерации электрических токов, использующее проводящие жидкости, движущиеся в магнитном поле).

Что такое сила Лоренца

Силой Лоренца FЛ называют силу, действующую на электрически заряженную частицу, двигающуюся в электромагнитном поле, определяя действия на нес электрической» и магнитного полей одновременно. Это выражается формулой:

Сила Лоренца - основные понятия, формулы и определение с примерами

где Сила Лоренца - основные понятия, формулы и определение с примерами – электрическая составляющая силы Лоренца, описывающая взаимодействие движущейся частицы и равная Сила Лоренца - основные понятия, формулы и определение с примерами Сила Лоренца - основные понятия, формулы и определение с примерами – магнитная составляющая силы Лоренца, определяющая взаимодействие заряженной частицы с магнитным полем.

Сила Лоренца действует на движущуюся электрически заряженную частицу в электромагнитном поле.

Для упрощения рассмотрим случай, когда Сила Лоренца - основные понятия, формулы и определение с примерами, а сила Лоренца равна магнитной составляющей.

Выясним, как можно рассчитать силу, действующую на движущуюся заряженную частицу в магнитном поле. Как известно, электрический ток в проводнике – это упорядоченное движение заряженных частиц. Согласно электронной теории сила тока рассчитывается по формуле:

Сила Лоренца - основные понятия, формулы и определение с примерами

где I – сила тока; е – заряд частицы; Сила Лоренца - основные понятия, формулы и определение с примерами— концентрация частиц в проводнике; V – объем; Сила Лоренца - основные понятия, формулы и определение с примерами – скорость движения частиц; S площадь поперечного сечения проводники.

  • Заказать решение задач по физике

Действие магнитного поля на проводник с током является действием магнитного поля на все движущиеся заряженные частицы. Поэтому формулу силы Ампера можно записать с учетом выражения силы тока в электронной теории:

Сила Лоренца - основные понятия, формулы и определение с примерами

или

Сила Лоренца - основные понятия, формулы и определение с примерами

Если учесть, то Сила Лоренца - основные понятия, формулы и определение с примерами

Если сила Ампера является равнодействующей всех сил, действующих на N частиц, то на одну частицу будет действовать сила в N раз меньше:

Сила Лоренца - основные понятия, формулы и определение с примерами

Это и есть формула для расчета магнитной составляющей силы Лоренца:
Сила Лоренца - основные понятия, формулы и определение с примерами

Магнитная составляющая силы Лоренца
Сила Лоренца - основные понятия, формулы и определение с примерами

Анализ этой формулы позволяет сделать выводы, что:

  1. магнитная составляющая силы Лоренца действует только на движущуюся частицу (Сила Лоренца - основные понятия, формулы и определение с примерами≠ 0);
  2. магнитная составляющая не действует на движущуюся частицу, которая движется вдоль линии магнитной индукции (а = 0).

Направление магнитной составляющей силы Лоренца, как и силы Ампера, определяется по правилу левой руки. При этом необходимо учитывать, что это справедливо для положительно заряженных частиц. Если определять направление силы Лоренца, действующей на электрон или другую отрицательно заряженную частицу, то, применяя правило левой руки, нужно мысленно изменять направление движения на противоположное.

Сила Лоренца направлена всегда под некоторым углом к скорости частицы, поэтому она придает ей центростремительное ускорение (рис. 2.15).

Для случая, если
Сила Лоренца - основные понятия, формулы и определение с примерами

Откуда 

Сила Лоренца - основные понятия, формулы и определение с примерами

Сила Лоренца - основные понятия, формулы и определение с примерами
Рис. 2.15. Сила Лоренца придает частице центростремительное ускорение

Таким образом, заряженная частица, попадая в магнитной поле, начинает двигаться по дуге окружности. При иных значениях α ≠ О траектория движения частицы в магнитном поле приобретает форму спирали.

Наблюдать действие силы Лоренца можно с помощью электронно-лучевой трубки, которая есть во многих осциллографах (рис. 2.16), Если включить питание осциллографа, то на его экране можно увидеть светлое пятно, появившееся в месте падения электронов на экран. Если теперь сбоку поднести к трубке постоянный магнит, то пятно сместится, что подтверждает действие магнитного поля на движущиеся электроны.

Сила Лоренца - основные понятия, формулы и определение с примерами
Рис. 2.16. Магнитное поле смещает электронный пучок в трубке осциллографа

Действие силы Лоренца применяется во многих приборах и технических установках. Так, смещение электронного луча, который «рисует» изображение на экране вакуумного кинескопа телевизора или дисплея компьютера, совершается магнитным полем специальных катушек, в которых проходит электрический ток, изменяющийся во времени по определенному закону,
В научных исследованиях применяют так называемые циклические ускорители заряженных частиц, в них магнитное поле мощных электромагнитов удерживает заряженные частицы на круговых орбитах.

Весьма перспективными для развития электроэнергетики являются магнито-гидродипамические генераторы (МГД-генераторы) (рис. 2.17). Поток высокотемпературного газа (плазмы), который образуется при сгорании органического топлива и имеет высокую концентрацию ионов обоих знаков, пропускается через магнитное ноле.

Сила Лоренца - основные понятия, формулы и определение с примерами
Puc. 2.17. Схема, объясняющая действие МГД-генератора

Вследствие действия силы Лоренца ионы отклоняются от прежнего направления движения и оседают на специальных электродах, сообщая им определенный заряд. Полученную при этом разность потенциалов можно использовать для получения электрического тока. Такие установки в будущем могут существенно повысить КПД тепловых «электростанций за счет выработки дополнительной электроэнергии при прохождении газов, которые после выхода из топки имеют довольно высокую температуру и высокую ионизацию, через MГД-генераторы.

Пример решения задачи

Электрон влетает в однородное магнитное поле с индукцией 10-4 Тл перпендикулярно к линиям магнитной индукции. Его скорость 1.6 . 10м/с. Найти радиус окружности, по которой движется электрон.

Отсюда 
Сила Лоренца - основные понятия, формулы и определение с примерами

Подставим значения физических величин:

Сила Лоренца - основные понятия, формулы и определение с примерами

Ответ: электрон будет двигаться по круговой орбите, радиус которой 9,1 ∙ 10-2 м.

  • Правило Буравчика в физике
  • Шунт и добавочное сопротивление
  • Электродвижущая сила
  • Электрические измерительные приборы
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током

Поскольку электрический ток представляет собой упорядоченное движение заряженных частиц, то это означает, что магнитное поле, действуя на проводник с током, действует тем самым на каждую из этих частиц. Таким образом, силу Ампера можно рассматривать как результат сложения сил, действующих на отдельные движущиеся заряженные частицы. Как можно определить силу, действующую со стороны магнитного поля на заряженную частицу, движущуюся в этом поле?

Сила Лоренца. Силу, которой магнитное поле действует на заряженную частицу, движущуюся в этом поле, называют силой Лоренца в честь выдающегося нидерландского физика Хендрика Антона Лоренца (1853–1928).

begin mathsize 18px style F subscript straight Л equals fraction numerator B I increment l space sinα over denominator N end fraction equals fraction numerator B N q increment l space sinα over denominator increment t N end fraction equals fraction numerator B q increment l space sinα over denominator increment t end fraction. end style

Поскольку begin mathsize 18px style fraction numerator increment l over denominator increment t end fraction equals upsilon end style – модуль средней скорости упорядоченного движения заряженной частицы в стационарном* электрическом поле внутри проводника, то формулу для определения модуля силы Лоренца можно записать в виде:

begin mathsize 18px style F subscript straight Л equals B q upsilon space sinα comma end style 

(30.1)

где α — угол между направлениями индукции магнитного поля begin mathsize 18px style B with rightwards arrow on top end style и скорости begin mathsize 18px style upsilon with rightwards arrow on top end style упорядоченного движения заряженной частицы.

Рис.
Рис. 168

Из формулы (30.1) следует, что сила Лоренца максимальна в случае, когда заряженная частица движется перпендикулярно направлению индукции магнитного поля (α = 90°). Когда частица движется вдоль линии индукции поля (α = 0° или α = 180°), сила Лоренца на неё не действует. Сила Лоренца зависит от выбора инерциальной системы отсчёта, так как в разных системах отсчёта скорость движения заряженной частицы может отличаться.

Направление силы Лоренца, действующей на заряженную частицу, как и направление силы Ампера, определяют по правилу левой руки (рис. 168): если левую руку расположить так, чтобы составляющая индукции магнитного поля, перпендикулярная скорости движения частицы, входила в ладонь, а четыре пальца были направлены по движению положительно заряженной частицы (против движения отрицательно заряженной частицы), то отогнутый на 90° в плоскости ладони большой палец укажет направление действующей на частицу силы Лоренца.

Сила Лоренца перпендикулярна как направлению скорости begin mathsize 18px style upsilon with rightwards arrow on top end style движения частицы, так и направлению индукции begin mathsize 18px style B with rightwards arrow on top end style магнитного поля.

* Электрическое поле, создаваемое и поддерживаемое источником тока в течение длительного промежутка времени и обеспечивающее постоянный электрический ток в проводнике, называют стационарным электрическим полем. ↑

Определение

Сила Лоренца — сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Модуль силы Лоренца обозначается как FЛ. Единица измерения — Ньютон (Н).

Модуль силы Лоренца численно равен отношению модуля силы F, действующий на участок проводника длиной l, к числу N заряженных частиц, упорядоченно движущихся на этом участке проводника:

FЛ=FN

Рассмотрим отрезок тонкого прямого проводника с током. Пусть длина отрезка ∆l и площадь поперечного сечения проводника S настолько малы, что вектор индукции магнитного поля B можно считать неизменным в пределах этого отрезка проводника.

Сила тока I в проводнике связана с зарядом частиц q, концентрацией заряженных частиц (число зарядов в единице объема) и скоростью их упорядоченного движения v следующей формулой:

I=qnvS

Модуль силы, действующей со стороны магнитного поля на выбранные элемент тока, равен:

F=|I|ΔlBsinα

Подставляя сюда выражение, полученное для силы тока, получим:

F=|qnvS|ΔlBsinα=|q|nvSΔlBsinα

Учтем, что число заряженных частиц в рассматриваемом объеме равно произведению величины этого объема на концентрацию самих частиц:

N=nSΔlB

Тогда:

F=|q|vNBsinα

Следовательно, на каждый движущийся заряд действует сила Лоренца, равная:

FЛ=FN=|q|vNBsinαN=|q|vBsinα

α — угол между вектором скорости движущегося заряда и вектором магнитной индукции.

Пример №1. Определить силу, действующую на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45o к вектору магнитной индукции.

FЛ=|q|vBsinα=0,005·200·0,3·220,2 (Н)

Направление силы Лоренца

Сила Лоренца перпендикулярна вектору магнитной индукции и вектору скорости движущегося заряда. Ее направление определяется с помощью правила левой руки:

Если левую руку расположить так, чтобы составляющая магнитной индукции B, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Пример №2. Протон p имеет скорость v, направленную горизонтально вдоль прямого длинного проводника с током I (см. рисунок). Куда направлена действующая на протон сила Лоренца?

В точке, в которой находится протон, вектор магнитной индукции направлен в сторону от наблюдателя. Это следует из правила буравчика. Теперь применим правило левой руки. Для этого четыре пальца левой руки направим в сторону движения протона — вправо. Ладонь развернем в сторону наблюдателя, чтобы линии магнитной индукции входили в нее перпендикулярно. Теперь отставим на 90 градусов большой палец. Он показывает вверх. Следовательно, сила Лоренца, действующая на протон, направлена вверх.

Работа силы Лоренца

Поскольку вектор силы Лоренца направлен перпендикулярно скорости движения заряда, угол между перемещением этого заряда и этой силы равен 90о. Работа любой силы определяется формулой:

A=Fscosα

Но так как косинус 90о равен 0, сила Лоренца не совершает работу. Это значит, что сила Лоренца не влияет на модуль скорости перемещения заряда. Но она может менять вектора его скорости.

Полная сила, действующая на заряд

При решении задач, в которых заряженная частица находится одновременно в электрическом и магнитном полях, нужно учитывать, что не нее действует сразу две силы. Со стороны магнитного поля — сила Лоренца. Со стороны электрического поля — сила Fэл, действующая на неподвижный заряд, помещенный в данную точку поля. Она равна произведению этого заряда на напряженность электрического поля:

Fэл=qE

Следовательно, полная сила, действующая на заряд, равна:

F=Fэл+Fл=qE+|q|vBsinα

Пример №3. В пространстве, где существует одновременно однородное и постоянное электрическое и магнитное поля, по прямолинейной траектории движется протон. Известно, что напряженность электрического поля равна E. Какова индукция B магнитного поля?

Прямолинейное движение протона возможно в двух случаях:

  • Вектор E направлен вдоль траектории движения протона. Тогда вектор B также должен быть направлен вдоль этой траектории, и его модуль может быть любым, так как магнитное поле на частицу действовать не будет.
  • Векторы E, B и v взаимно перпендикулярны, и сила, действующая на протон со стороны электрического поля, равна по модулю и противоположна по направлению силе Лоренца, действующей на протон со стороны магнитного поля (см. рисунок).

Заряд протона равен модулю заряда электрона — e. Сложим силы, действующие на протон по оси ОУ:

eE+FЛ=0

В скалярной форме:

eEevB=0

Следовательно:

B=Ev

Задание EF17621

Протон ускоряется постоянным электрическим полем конденсатора, напряжение на обкладках которого 2160 В. Затем он влетает в однородное магнитное поле и движется по дуге окружности радиуса 20 см в плоскости, перпендикулярной линиям магнитной индукции. Каков модуль вектора индукции магнитного поля? Начальной скоростью протона в электрическом поле пренебречь. Ответ выразить в мТл, округлив до десятых.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Записать формулу для определения силы Лоренца.

3.Выразить модуль вектора магнитной индукции.

4.Определить недостающие величины.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Напряжение на обкладках конденсатора: U = 2160 В.

 Радиус окружности, по которой движется протон в однородном магнитном поле: R = 20 см.

 Масса протона: m = 1,673·10–27 кг.

 Заряд протона: q = 1,6·10–19 Кл.

20 см = 0,2 м

Сила Лоренца определяется формулой:

FЛ=|q|vBsinα

По условию задачи протон движется перпендикулярно вектору магнитной индукции. Поэтому синус угла между вектором скорости и вектором магнитной индукции будет равен 1. А протон имеет положительный заряд. Тогда:

FЛ=qvB

Сила Лоренца сообщает протону центростремительное ускорение, равное:

a=v2R

Применим второй закон Ньютона:

F=ma

qvB=mv2R

Отсюда модуль вектора магнитной индукции равен:

B=mv2qvR=mvqR

Энергия заряда, движущегося в электрическом поле, определяется формулой:

W=qU

Но энергию заряда также можно выразить как кинетическую энергию движения:

W=Eк=mv22

Приравняем правые части выражений и получим:

qU=mv22

Отсюда ускорение протона равно:

v=2qUm

Конечная формула для определения модуля вектора магнитной индукции:

B=mvqR=mqR2qUm=2UmqR2

Ответ: 33,6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17600

Протон движется в однородном магнитном поле со скоростью υ, направленной перпендикулярно вектору магнитной индукции B (см. рисунок). Как направлена сила Лоренца, действующая на протон?

а) влево

б) вправо

в) к нам

г) от нас


Алгоритм решения

  1. Определить, каким способом можно найти направлений силы Лоренца, действующей на протон.
  2. Применить правила и найти направление силы Лоренца.

Решение

Силу Лоренца, действующую на заряженную частицу, можно найти с помощью правила левой руки. Для этого мысленно расположим четыре пальца левой руки в сторону, совпадающей с направлением движения положительной частицы (протона). Относительно рисунка пальца будут направлены вниз. Теперь развернем ладонь так, чтобы в нее входили линии магнитной индукции. Теперь отклоним на 90 градусов большой палец. Он будет направлен от плоскости рисунка к нам. Это и есть направление силы Лоренца, действующей на протон.

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17749

Протон в однородном магнитном поле движется по окружности. Чтобы в этом поле двигалась по окружности с той же скоростью α-частица, радиус окружности, частота обращения и энергия α-частицы по сравнению с протоном должны:

  1. увеличиться
  2. уменьшиться
  3. не измениться

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Записать формулу для определения силы Лоренца.

2.Установить, от чего зависят перечисленные в таблице физические величины.

3.Определить характер их изменения при изменении заряда.

Решение

Сила Лоренца определяется формулой:

FЛ=|q|vBsinα

Если вместо протона взять альфа-частицу, то заряд увеличится вдвое, так как альфа-частица содержит 2 протона. Сила Лоренца прямо пропорционально зависит от величины заряда. Следовательно, она тоже увеличится вдвое. Скорость движения заряда по условию задачи остается постоянной, как и модуль вектора магнитной индукции.

Сила Лоренца будет сообщать альфа-частице центростремительное ускорение, равное:

a=v2R

Применим второй закон Ньютона:

F=ma

|q|vBsinα=mv2R

Отсюда:

|q|Bsinα=mvR

R=mv|q|Bsinα

Заряд альфа-частицы больше заряда протона вдвое. Она также содержит 2 нейтрона, поэтому ее масса примерно в 4 раза больше массы протона. Следовательно, радиус движения альфа-частицы увеличится примерно вдвое.

Частота обращения альфа-частицы связана с ее линейной скоростью формулой:

v=2πRν

Так как скорость остается постоянной, то при увеличении радиуса частота обращения должна уменьшиться.

Энергия альфа-частицы будет больше, чем у протона, вращающегося с той же скоростью. Это связано с тем, что ее кинетическая энергия будет примерно в 4 раза больше (так как во столько раз больше ее масса).

Ответ: 121

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 6.8k

Сила Лоренца .

Сила Лоренца действует на заряженную частицу, движущуюся в магнитном поле.

( F_л=Bqv cdot sin alpha )

(B) -магнитная индукция, единица измерения Тесла [Тл]

(q) – заряд частицы, единица измерения Кулон [Кл] )

(v) – скорость частицы

( alpha )- угол между вектором магнитной индукции ( vec{B} ) и вектором скорости частицы ( vec{v} )


Направление силы Лоренца, действующей на положительно заряженную частицу .

Если вектор магнитной индукциии входит в ладонь левой руки, а четыре пальца сонаправлены с
направлением вектора скорости положительно заряженной частицы, то отогнутый на ( 90^0 )
большой палец показывает направление силы Лоренца действующей на эту частицу.

Направление силы Лоренца


Задача 1. (Сила Лоренца)

Пылинка, имеющая заряд (q=10^{-6} Кл) движется в магнитном поле с индукцией
(B=20 Тл) . Скорость пылинки перпендикулярна линиям магнитной индукции и равна

(100 м/с )

Вычислить значение силы Лоренца, действующей на пылинку со стороны магнитного поля.
Дать ответ в миллиньютонах.


Показать ответ
Показать решение
Видеорешение

Задача 2.

Шарик с зарядом (q=100 мкКл) влетает в магнитное поле с
индукцией (B=100 Тл) со скоростью (v=30 м/с .)

Угол между вектором магнитной индукции ( vec{B} ) и вектором скорости частицы
( vec{v} ) составляет ( alpha=30^0 . )

Найти значение силы Лоренца, действующей на шарик со стороны поля.


Показать ответ
Показать решение
Видеорешение



Задача 3. (Сила Лоренца)

Электрон движется в магнитном поле с индукцией
(B=1 Тл) перпендикулярно линиям магнитного поля со скоростью (v=10^8 м/с . )

Вычислить значение силы Лоренца, действующей на электрон со стороны магнитного поля.

Заряд электрона ( q=1,6 cdot 10^{-19} Кл . )

Дать ответ в пиконьютонах.

1 пН ( = 10^{-12} Н . )


Показать ответ
Показать решение
Видеорешение


Задача 4. (Сила Лоренца)

С какой скоростью двигался протон в магнитном поле с индукцией (B=10^{-2} Тл) перпендикулярно линиям поля,
если на него действовала сила Лоренца (F_л=3,2 cdot 10^{-17 } Н ? )
Заряд протона ( q=1,6 cdot 10^{-19} Кл . )

Дать ответ в километрах в секунду.


Показать ответ
Показать решение
Видеорешение


Задача 5. (Сила Лоренца)

Альфа-частица движется в магнитном поле с индукцией (B=10^{-3} Тл) перпендикулярно линиям поля, при этом на нее действует сила Лоренца (F_л=6,4 cdot 10^{-15 } Н . )
Вычислить скорость альфа-частицы, если ее заряд (q=3,2 cdot 10^{-19} Кл . )

Дать ответ в километрах в секунду.


Показать ответ
Показать решение
Видеорешение


Задача 8. (Сила Лоренца)

Протон влетает в магнитное поле со скоростью (v= 10^{5} м/с ) перпендикулярно линиям индукции,
после чего он движется по окружности.Найти радиус этой окружности, если индукция поля
(B=0,01 Тл . )
Заряд протона (q=1,6 cdot 10^{-19} Кл )
Масса протона (m=1,6 cdot 10^{-27} кг )


Показать ответ
Показать решение
Видеорешение

Сила Ампера.

Действие магнитного поля на проводник с током

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила действия однородного маг­нитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F=B.I.. sin α — закон Ампера.

закон Ампера

Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током.

Направление силы Ампера (правило левой руки)

Действие магнитного поля на движущийся заряд.

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца: Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца

Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца

Направление силы Лоренца (правило левой руки) Направление F определяется по правилу левой руки: вектор F перпендикулярен векторам В и v..

Направление силы Лоренца (правило левой руки)

Правило левой руки сформулировано для положительной частицы. Сила, действующая на отрицательный заряд будет направлена в противоположную сторону по сравнению сположительным.

Сила, действующая на отрицательный заряд будет направлена в противоположную сторону по сравнению сположительным

Если вектор v частицы перпендикулярен вектору В, то частица описывает траекторию в виде окружности: 

Роль центростремительной силы играет сила Лоренца: Роль центростремительной силы играет сила Лоренца

Роль центростремительной силы играет сила Лоренца

При этом радиус окружности: радиус окружности,

а период обращения период обращения

не зависит от радиуса окружности!

радиус окружности

период обращения

Если вектор скорости и частицы не перпендикулярен В, то частица описывает траекторию в виде винтовой линии (спирали).

Если вектор скорости и частицы не перпендикулярен В, то частица описывает траекторию в виде винтовой линии (спирали)

Действие магнитного поля на рамку с током

На рамку действует пара сил, в результате чего она поворачивается.

  1. Направление вектора силы – правилу левой руки.
  2. F=BIlsinα=ma
  3. M=Fd=BIS sinα – вращающий момент

Действие магнитного поля на рамку с током

Устройство электроизмерительных приборов

1.Магнитоэлектрическая система:

1 – рамка с током; 2 – постоянный магнит; 3 — спиральные пружины; 4 — клеммы;

5 — подшипники и ось; 6 — стрелка; 7 — шкала (равномерная)

Принцип действия: взаимодействие рамки с током и поля магнита.

Угол поворота рамки и стрелки  ~ I..

Устройство электроизмерительных приборов

2. Электромагнитная система:

1 – не­подвижная катушка; 2 – щель (магнит­ное поле); 3 – ось с подшипниками;

4 – сердечник; 5 – стрелка; 6 -шкала; 7 — спиральная пружина

Принцип действия: взаимодействие магнитного поля катушки со стальным сердечником, где Fмаг ~ I.

Электромагнитная система

Использование силы Лоренца

В циклических ускорителях: 1 – вакуум­ная камера; 2 и 3 – дуанты;

4 –  источник заряженных частиц; 5 – мишень.

В циклотроне магнитное поле управляет движением заряженной частицы. Период обращения частицы в цикло­троне: .

Т не зависит от R и υ!

Электрическое поле между дуантами разгоняет частицы, а магнитное поворачивает поток частиц. В момент попадания частиц в ускоряющий промежуток направление электрического поля меняется так, чтобы оно всегда увеличивало скорость частиц.

Использование силы Лоренца

Схема действия масс-спектрографа Для выделения частиц с одинаковой скоростью используют взаимно перпендикулярные магнитные (B1) и электрические (E) поля. Тогда Для выделения частиц с одинаковой скоростью используют взаимно перпендикулярные магнитные (B1) и электрические (E) поля.

Т.к. радиус окружности, то удельный заряд удельный заряд, следовательно 

 можно определить удельный заряд частицы, заряд. массу.

Схема действия масс-спектрографа

Движение заряженных частиц в магнитном поле Земли. Вблизи магнитных полюсов Земли космические заряженные частицы движутся по спирали (с ускорением) Одно из основных положений теории Максвелла говорит о том, что заряженная частица, движущаяся с ускорением, является источником электромагнитных волн – возникает т.н. синхротронное излучение. Столкновение заряженных частиц с атомами и молекулами из верхних слоев атмосферы приводит к возникновению полярных сияний.

Добавить комментарий