Как найти направление силы действующей на протон

Определение

Сила Лоренца — сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Модуль силы Лоренца обозначается как FЛ. Единица измерения — Ньютон (Н).

Модуль силы Лоренца численно равен отношению модуля силы F, действующий на участок проводника длиной l, к числу N заряженных частиц, упорядоченно движущихся на этом участке проводника:

FЛ=FN

Рассмотрим отрезок тонкого прямого проводника с током. Пусть длина отрезка ∆l и площадь поперечного сечения проводника S настолько малы, что вектор индукции магнитного поля B можно считать неизменным в пределах этого отрезка проводника.

Сила тока I в проводнике связана с зарядом частиц q, концентрацией заряженных частиц (число зарядов в единице объема) и скоростью их упорядоченного движения v следующей формулой:

I=qnvS

Модуль силы, действующей со стороны магнитного поля на выбранные элемент тока, равен:

F=|I|ΔlBsinα

Подставляя сюда выражение, полученное для силы тока, получим:

F=|qnvS|ΔlBsinα=|q|nvSΔlBsinα

Учтем, что число заряженных частиц в рассматриваемом объеме равно произведению величины этого объема на концентрацию самих частиц:

N=nSΔlB

Тогда:

F=|q|vNBsinα

Следовательно, на каждый движущийся заряд действует сила Лоренца, равная:

FЛ=FN=|q|vNBsinαN=|q|vBsinα

α — угол между вектором скорости движущегося заряда и вектором магнитной индукции.

Пример №1. Определить силу, действующую на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45o к вектору магнитной индукции.

FЛ=|q|vBsinα=0,005·200·0,3·220,2 (Н)

Направление силы Лоренца

Сила Лоренца перпендикулярна вектору магнитной индукции и вектору скорости движущегося заряда. Ее направление определяется с помощью правила левой руки:

Если левую руку расположить так, чтобы составляющая магнитной индукции B, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Пример №2. Протон p имеет скорость v, направленную горизонтально вдоль прямого длинного проводника с током I (см. рисунок). Куда направлена действующая на протон сила Лоренца?

В точке, в которой находится протон, вектор магнитной индукции направлен в сторону от наблюдателя. Это следует из правила буравчика. Теперь применим правило левой руки. Для этого четыре пальца левой руки направим в сторону движения протона — вправо. Ладонь развернем в сторону наблюдателя, чтобы линии магнитной индукции входили в нее перпендикулярно. Теперь отставим на 90 градусов большой палец. Он показывает вверх. Следовательно, сила Лоренца, действующая на протон, направлена вверх.

Работа силы Лоренца

Поскольку вектор силы Лоренца направлен перпендикулярно скорости движения заряда, угол между перемещением этого заряда и этой силы равен 90о. Работа любой силы определяется формулой:

A=Fscosα

Но так как косинус 90о равен 0, сила Лоренца не совершает работу. Это значит, что сила Лоренца не влияет на модуль скорости перемещения заряда. Но она может менять вектора его скорости.

Полная сила, действующая на заряд

При решении задач, в которых заряженная частица находится одновременно в электрическом и магнитном полях, нужно учитывать, что не нее действует сразу две силы. Со стороны магнитного поля — сила Лоренца. Со стороны электрического поля — сила Fэл, действующая на неподвижный заряд, помещенный в данную точку поля. Она равна произведению этого заряда на напряженность электрического поля:

Fэл=qE

Следовательно, полная сила, действующая на заряд, равна:

F=Fэл+Fл=qE+|q|vBsinα

Пример №3. В пространстве, где существует одновременно однородное и постоянное электрическое и магнитное поля, по прямолинейной траектории движется протон. Известно, что напряженность электрического поля равна E. Какова индукция B магнитного поля?

Прямолинейное движение протона возможно в двух случаях:

  • Вектор E направлен вдоль траектории движения протона. Тогда вектор B также должен быть направлен вдоль этой траектории, и его модуль может быть любым, так как магнитное поле на частицу действовать не будет.
  • Векторы E, B и v взаимно перпендикулярны, и сила, действующая на протон со стороны электрического поля, равна по модулю и противоположна по направлению силе Лоренца, действующей на протон со стороны магнитного поля (см. рисунок).

Заряд протона равен модулю заряда электрона — e. Сложим силы, действующие на протон по оси ОУ:

eE+FЛ=0

В скалярной форме:

eEevB=0

Следовательно:

B=Ev

Задание EF17621

Протон ускоряется постоянным электрическим полем конденсатора, напряжение на обкладках которого 2160 В. Затем он влетает в однородное магнитное поле и движется по дуге окружности радиуса 20 см в плоскости, перпендикулярной линиям магнитной индукции. Каков модуль вектора индукции магнитного поля? Начальной скоростью протона в электрическом поле пренебречь. Ответ выразить в мТл, округлив до десятых.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Записать формулу для определения силы Лоренца.

3.Выразить модуль вектора магнитной индукции.

4.Определить недостающие величины.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Напряжение на обкладках конденсатора: U = 2160 В.

 Радиус окружности, по которой движется протон в однородном магнитном поле: R = 20 см.

 Масса протона: m = 1,673·10–27 кг.

 Заряд протона: q = 1,6·10–19 Кл.

20 см = 0,2 м

Сила Лоренца определяется формулой:

FЛ=|q|vBsinα

По условию задачи протон движется перпендикулярно вектору магнитной индукции. Поэтому синус угла между вектором скорости и вектором магнитной индукции будет равен 1. А протон имеет положительный заряд. Тогда:

FЛ=qvB

Сила Лоренца сообщает протону центростремительное ускорение, равное:

a=v2R

Применим второй закон Ньютона:

F=ma

qvB=mv2R

Отсюда модуль вектора магнитной индукции равен:

B=mv2qvR=mvqR

Энергия заряда, движущегося в электрическом поле, определяется формулой:

W=qU

Но энергию заряда также можно выразить как кинетическую энергию движения:

W=Eк=mv22

Приравняем правые части выражений и получим:

qU=mv22

Отсюда ускорение протона равно:

v=2qUm

Конечная формула для определения модуля вектора магнитной индукции:

B=mvqR=mqR2qUm=2UmqR2

Ответ: 33,6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17600

Протон движется в однородном магнитном поле со скоростью υ, направленной перпендикулярно вектору магнитной индукции B (см. рисунок). Как направлена сила Лоренца, действующая на протон?

а) влево

б) вправо

в) к нам

г) от нас


Алгоритм решения

  1. Определить, каким способом можно найти направлений силы Лоренца, действующей на протон.
  2. Применить правила и найти направление силы Лоренца.

Решение

Силу Лоренца, действующую на заряженную частицу, можно найти с помощью правила левой руки. Для этого мысленно расположим четыре пальца левой руки в сторону, совпадающей с направлением движения положительной частицы (протона). Относительно рисунка пальца будут направлены вниз. Теперь развернем ладонь так, чтобы в нее входили линии магнитной индукции. Теперь отклоним на 90 градусов большой палец. Он будет направлен от плоскости рисунка к нам. Это и есть направление силы Лоренца, действующей на протон.

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17749

Протон в однородном магнитном поле движется по окружности. Чтобы в этом поле двигалась по окружности с той же скоростью α-частица, радиус окружности, частота обращения и энергия α-частицы по сравнению с протоном должны:

  1. увеличиться
  2. уменьшиться
  3. не измениться

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Записать формулу для определения силы Лоренца.

2.Установить, от чего зависят перечисленные в таблице физические величины.

3.Определить характер их изменения при изменении заряда.

Решение

Сила Лоренца определяется формулой:

FЛ=|q|vBsinα

Если вместо протона взять альфа-частицу, то заряд увеличится вдвое, так как альфа-частица содержит 2 протона. Сила Лоренца прямо пропорционально зависит от величины заряда. Следовательно, она тоже увеличится вдвое. Скорость движения заряда по условию задачи остается постоянной, как и модуль вектора магнитной индукции.

Сила Лоренца будет сообщать альфа-частице центростремительное ускорение, равное:

a=v2R

Применим второй закон Ньютона:

F=ma

|q|vBsinα=mv2R

Отсюда:

|q|Bsinα=mvR

R=mv|q|Bsinα

Заряд альфа-частицы больше заряда протона вдвое. Она также содержит 2 нейтрона, поэтому ее масса примерно в 4 раза больше массы протона. Следовательно, радиус движения альфа-частицы увеличится примерно вдвое.

Частота обращения альфа-частицы связана с ее линейной скоростью формулой:

v=2πRν

Так как скорость остается постоянной, то при увеличении радиуса частота обращения должна уменьшиться.

Энергия альфа-частицы будет больше, чем у протона, вращающегося с той же скоростью. Это связано с тем, что ее кинетическая энергия будет примерно в 4 раза больше (так как во столько раз больше ее масса).

Ответ: 121

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 6.8k

Сила Лоренца

Сила Лоренца действующая на электрон

В частном случае носителем заряда является электрон. Тогда в формулу (5) в качестве Q следует подставить

[ е = – 1.602 cdot 10^{-19} enspace Кл. ]

При определении направления движения электронов с помощью правила левой руки следует учитывать, что направление движения электронов противоположно техническому направлению тока.

Сила Лоренца действующая на электрон и протон

Сила Лоренца действующая на электрон и протон

Величина и направление силы Лоренца определяются соотношением

[ vector{F_{L}}= e vector{v} × vector{B} ]

где $vector{v}$, $vector{B}$ и $vector{F}$ образуют правую систему.

Для электронов, движущихся перпендикулярно магнитному полю, формула упрощается:

[ F_{L} = e v B ]

Так как сила действует перпендикулярно скорости и направлению поля, она создает центростремительное ускорение, т.е. изменяет направление скорости, не меняя ее величины.
Поэтому электрон движется в магнитном поле по окружности.

Вычислить, найти силу Лоренца действующую на электрон или протон

Радиус траектории электрона в магнитном поле

Для определения радиуса круговой траектории электрона приравняем силу Лоренца и центростремительную силу.

Если

r радиус круговой траектории электрона, метр
me 9,11 · 10-31 кг — масса электрона, кг
e 1,602 · 10-19 Кл — элементарный электрический заряд, Кулон
v скорость электрона, м/с
B магнитная индукция, Тесла

то, приравнивая обе силы, получаем

[ evB = frac{m_{e} v^{2}}{r} ]

и, следовательно,

[ r = frac{m_{e} v}{eB} ]

Сила Лоренца действующая на протон

Электрический заряд протона равен по модулю заряду электрона, но имеет положительный знак.

[ p = + 1.602 cdot 10^{-19} enspace Кл. ]

При определении направления движения протонов с помощью правила левой руки направление движения протонов совпадает с техническим направлением тока и с картинкой.

Таким образом электрон и протон влетая в магнитное поле в одном направлении будут отклоняться в разные стороны.

Сила Лоренца действующая на протон

Сила Лоренца действующая на протон

Величина силы действующая на электрон и на протон будет одинакова (определяется формулой №3), но поскольку протон гораздо тяжелее электрона, радиус закручивания для протона будет больше.

Радиус траектории протона в магнитном поле

Если

r радиус круговой траектории протона, метр
mp 1,67 · 10-27 кг — масса протона, кг
p 1,602 · 10-19 Кл — элементарный электрический заряд, Кулон
v скорость протона, м/с
B магнитная индукция, Тесла

Радиус траектории для протона будет вычисляться по аналогичной формуле

[ r = frac{m_{p} v}{p B} ]

Из этой формулы видно что при одинаковых скоростях электрона и протона радиус траектории протона будет значительно больше, чем у электрона пропорционально отношению масс этих частиц

Сила Лоренца

стр. 667

У нас давно не было, что называется, “практического” параграфа, в котором бы рассматривалась какая-нибудь задача на применение ранее изученного материала. Сейчас мы это исправим.

Пусть есть протон, движущийся в однородном магнитном поле со скоростью, равной 1/10 скорости света. Величина магнитной индукции равна 2 теслам.

Сперва нужно найти как величину, так и направление силы Лоренца, которая будет действовать на эту заряженную частицу.

Как мы помним, для магнитного поля прежде всего важны заряд частицы и ее скорость. Что занимательно, потому что пока не очень понятно, чем таким особенным отличаются движущиеся частицы от неподвижных. Первых магнитное поле распознает, а вот вторых – нет. Ну ладно, не об этом сейчас речь. В данный момент для нас имеет значение тот факт, что величину силы Лоренца мы вычислить способны:

F_л=qvBsinalpha

Учитывая, что заряд нашей элементарной частицы равен по величине заряду электрона, скорость света равна c=3⋅10^8,м/с (не забывайте, что скорость протона в 10 раз меньше), а угол между вектором скорости и вектором магнитной индукции составляет 90 градусов, найдем значения силы, действующей на протон со стороны магнитного поля:

F_л=1.6⋅10^{-19},Кл×3⋅10^7,м/с×2,Тл×sin90degree

F_л=9.6⋅10^{-12},Н

Теперь нужно определить ее направление. Для этого воспользуемся правилом левой руки.

Вектор магнитной индукции направлен на нас, а вектор скорости протона направлен вправо. Отогнутый на 90 градусов большой палец левой руки в плоскости рисунка указывает на юг.

Как видите, сила Лоренца направлена перпендикулярно к вектору скорости, поэтому она не будет менять его величину. Но она будет менять его направление. В данном случае сила Лоренца будет центростремительной силой, заставляющей протон двигаться по окружности.

Предположим, что нам нужно определить радиус этой окружности. Это нетрудно сделать, если применить пару фактов из области механики.

Вспомним второй закон Ньютона:

F=ma

В данном случае мы можем не учитывать направления векторных величин, а работать только с их модулями.

Единственная сила, которая будет действовать на протон, – это сила Лоренца. Она будет сообщать ему центростремительное ускорение, которое может быть найдено через квадрат скорости частицы и радиус окружности, по которой она вращается:

F_л=m×dfrac{v^2}{R}

R=dfrac{mv^2}{F_л}

Нам осталось посмотреть значение массы протона в справочных таблицах (mapprox{1.7⋅10^{-27},кг}) и подставить числа в полученное выражение, чтобы найти ответ:

R=dfrac{1.7⋅10^{-27},кг×(3⋅10^7,м/с)^2}{9.6⋅10^{-12},Н}

Rapprox1.6⋅10^{-1},м=16,см

На прошлых уроках мы с вами начали знакомство с магнитными
полями. Давайте с вами вспомним, что магнитное поле — это особая форма материи,
созданная движущимися (относительно определённой инерциальной системы отсчёта)
электрическими зарядами или переменными электрическими полями.

Силовой характеристикой магнитного поля является вектор
магнитной индукции, направление которого в данной точке совпадает с
направлением силовой магнитной линии, проходящей через эту точку:

Так же мы с вами установили, что на проводник с током,
помещённый в магнитное поле, со стороны магнитного поля действует сила,
называемая силой Ампера. Её модуль равен произведению силы тока, модуля вектора
магнитной индукции, длины отрезка проводника и синуса угла между направлениями вектора магнитной индукции и элемента тока:

Поскольку электрический ток представляет собой упорядоченное
движение заряженных частиц, то это означает, что магнитное поле, действуя на
проводник с током, действует тем самым на каждую из этих движущихся заряженных
частиц. Следовательно, силу Ампера можно рассматривать как результат сложения
сил, действующих на каждую движущуюся заряженную частицу.

Силу, с которой магнитное поле действует на заряженную
частицу, движущуюся в этом поле, называют силой Лоренца.

Своё название сила получила в честь выдающегося голландского
физика Хендрика Антона Лоренца — основателя электронной теории строения
вещества.

Модуль силы Лоренца определяется отношением силы Ампера,
действующей на участок проводника, находящийся в магнитном поле, к числу
заряженных частиц, упорядоченно движущихся в этом участке проводника:

Давайте с вами рассмотрим прямолинейный участок проводника с
током длиной Δl и
площадью поперечного сечения S. При этом будем считать, что длина
участка проводника и его площадь поперечного сечения настолько малы, что вектор
магнитной индукции поля можно считать одинаковым в пределах этого участка
проводника.

Итак, на участок проводника с током, находящимся в магнитном
поле, действует сила Ампера, модуль которой равен произведению силы тока,
модуля вектора магнитной индукции, длины отрезка проводника и синуса угла между
направлениями вектора магнитной индукции и элемента тока:

Теперь давайте с вами вспомним, что сила тока в проводнике
определяется зарядом, прошедшим через поперечное сечение проводника за единицу
времени:

Здесь ∆t — это промежуток времени, за который
заряженная частица проходит участок проводника длиной ∆l.

Пусть модуль заряда одной частицы равен q.
Тогда суммарный заряд всех частиц равен произведению модуля заряда одной
частицы на общее число частиц в выбранном участке проводника: Q = qN.

Перепишем уравнение для силы тока с учётом последнего
равенства.

Полученное равенство подставим в закон Ампера:

Обратите внимание на отношение ∆l/∆t — это есть не что иное, как модуль средней скорости
заряженной частицы, упорядоченно движущейся в магнитном поле внутри проводника:

Теперь подставим полученное выражение для силы Ампера в формулу
для силы Лоренца:

После упрощения получим, что модуль силы Лоренца равен
произведению заряда частицы, модуля её средней скорости, модуля вектора
индукции магнитного поля и синуса угла между вектором магнитного поля и вектором
скоростью движения частицы:

Направление силы Лоренца определяют по правилу левой руки:
если левую руку расположить так, чтобы составляющая магнитной индукции,
перпендикулярная скорости упорядоченного движения заряда, входила в ладонь, а
четыре пальца были направлены по движению положительного заряда (или против
движения отрицательного заряда), то отогнутый на 90о большой палец укажет
направление действующей на заряд силы Лоренца.

Анализ данного правила позволяет нам утверждать, что сила
Лоренца, действующая на движущуюся в магнитном поле частицу, перпендикулярна
вектору скорости этой частицы. Следовательно, сила Лоренца не совершает
работы.
Тогда, согласно теореме о кинетической энергии, это означает, что сила
Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль
скорости частицы. А значит заряженная частица в магнитном поле движется с
постоянной по модулю скоростью, но при этом направление скорости непрерывно
изменяется.

Вид траектории заряженной частицы в магнитном поле зависит от
угла между скоростью влетающей в поле частицы и магнитной индукцией. Рассмотрим
такую ситуацию. Пусть протон, ускоренный разностью потенциалов U влетает в однородное магнитное поле сначала параллельно
линиям индукции, затем — перпендикулярно, и, наконец, под некоторым углом к
ним. Индукция магнитного поля равна B. Для
каждого случая определите радиус кривизны траектории протона и период его
обращения.

Итак, рассмотрим первый случай, когда протон, двигаясь по
силовой линии в электрическом поле ускоренно, приобретает скорость, с которой
влетает в однородное магнитное поле так, что его вектор скорости направлен
вдоль поля (или противоположно направлению индукции магнитного поля).

Очевидно, что в этом случае угол между направлением вектора
скорости и индукции магнитного поля либо равен нулю, либо 180о.

Тогда, согласно формуле, сила Лоренца, действующая на протон,
равна нулю и частица будет продолжать двигаться равномерно прямолинейно.

Теперь рассмотрим второй случай, когда протон влетает в
однородное магнитное поле перпендикулярно линиям его индукции.

В этом случае на протон в магнитном поле действует сила
Лоренца, направленная перпендикулярно вектору скорости (направление силы
Лоренца определяем по правилу левой руки). Как мы уже выяснили, сила Лоренца не
может изменить модуль скорости заряженной частицы — она лишь меняет её направление.
А так как магнитное поле однородно и вектор скорости частицы перпендикулярен
линиям магнитной индукции, то протон под действием силы Лоренца начнёт
двигаться по окружности.

С другой стороны, такое движение заряженной частицы в
магнитном поле будет подчиняться второму закону Ньютона:

И нам осталось рассмотреть последний случай, когда частица
влетает в магнитное поле под заданным углом к силовым линиям.

Подобное явление происходит в магнитном поле Земли.
Движущиеся с огромными скоростями заряженные частицы из космоса «захватываются»
магнитным полем Земли и образуют вокруг неё радиационные пояса. В них заряженные
частицы перемещаются по винтообразным траекториям между северным и южным
магнитными полюсами. И только в полярных областях небольшая часть частиц
вторгается в верхние слои атмосферы, вызывая восхитительные полярные сияния.

В заключении урока отметим, что действие магнитного поля на
движущийся заряд широко используется в технике. Вспомните хотя бы
электронно-лучевые трубки, применяемые в кинескопах телевизоров, где пучок
летящих к экрану электронов отклоняется с помощью магнитных катушек.

Сила Лоренца используется и в циклотронах — особых
ускорителях заряженных частиц. Обычный циклотрон состоит из двух полых
полуцилиндров разного диаметра (дуантов), находящихся в однородном магнитном
поле. Его принцип действия достаточно прост.

В зазоре между цилиндрами находится заряженная частица. В
этом зазоре создаётся переменное электрическое поле с постоянным периодом,
равным периоду обращения частицы. Это поле каждые пол периода разгоняет
частицу, увеличивая при этом радиус её обращения (период обращения частицы не
увеличивается). На последнем витке частица вылетает из циклотрона.

Действие силы Лоренца используют и в масс-спектрографах —
устройствах, предназначенных для разделения частиц по их удельным зарядам, то
есть по отношению заряда частицы к её массе, и по полученным результатам точно
определять массы частиц. На экране вы видите схему простейшего
масс-спектрографа. Цифрами один и два обозначены две диафрагмы, между которыми
создаются взаимно перпендикулярные электрическое и магнитное поля. Заряженная
частица, пройдя через первую диафрагму попадает в эти поля и, если сила
Лоренца, действующая на неё, равна электростатической силе, то она сможет
пройти через вторую диафрагму. Ионы же с другими скоростями отклонятся в полях
и через вторую диафрагму не пройдут.

За диафрагмой создаётся постоянное магнитное поле,
заставляющее заряженные частицы двигаться по окружности, радиус кривизны
которой можно измерить, поставив на пути частиц фотопластинку. Так как скорость
частиц одинакова и определяется постоянной прибора, то, зная заряд ионов, можно
легко определить их массу.

Ещё одно устройство, в котором применяется действие силы
Лоренца — это ТОКАМАК (тороидальная камера с магнитными катушками).

В нём плазма (напомним, что это частично или полностью
ионизированный газ) удерживается в специально создаваемом сильном магнитном
поле.  ТОКАМАК считается наиболее перспективным устройством для осуществления
управляемого термоядерного синтеза.

Определите величину и направление силы Лоренца, дуйствующей на протон в изображенном на рисунке случае.

B = 80мТл v = 200 км с.

Определите величину и направление силы Лоренца, дуйствующей на протон в изображенном на рисунке случае?

На этой странице сайта вы найдете ответы на вопрос Определите величину и направление силы Лоренца, дуйствующей на протон в изображенном на рисунке случае?,
относящийся к категории Физика. Сложность вопроса соответствует базовым
знаниям учеников 10 – 11 классов. Для получения дополнительной информации
найдите другие вопросы, относящимися к данной тематике, с помощью поисковой
системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и
задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям.
Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы
помогут найти нужную информацию.

Добавить комментарий