Как найти направление скорости движения тела

Основываясь на определении скорости, мы можем утверждать, что скорость является вектором. Она непосредственно выражается через вектор-перемещения, отнесенный к промежутку времени, и должна обладать всеми свойствами вектора перемещения.

Направление вектора скорости, так же как направление физически малого вектора перемещения, определяется по чертежу траектории. В этом можно наглядно убедиться на простых примерах.

Если к вращающемуся точильному камню прикоснуться железной пластинкой, то снимаемые им опилки приобретут скорость тех точек камня, к которым прикасалась пластинка, и затем улетят в направлении вектора этой скорости. Все точки камня движутся по окружностям. Во время опыта хорошо видно, что отрывающиеся раскаленные частички-опилки уходят по касательным к этим окружностям, указывая направления векторов скоростей отдельных точек вращающегося точильного камня.

Обратите внимание на то, как расположены выходные трубы у кожуха центробежного водяного насоса или у сепаратора для молока. В этих машинах частицы жидкости заставляют двигаться по окружностям и затем дают им возможность выйти в отверстие, расположенное в направлении вектора той скорости, которую они имеют в момент выхода. Направление вектора скорости в этот момент совпадает с направлением касательной к траектории движения частиц жидкости. И выходная труба тоже направлена по этой касательной.

Точно так же обеспечивают выход частиц в современных ускорителях электронов и протонов при ядерных исследованиях.

Итак, мы убедились, что направление вектора скорости определяется по траектории движения тела. Вектор скорости всегда направлен вдоль касательной к траектории в той точке, через которую проходит движущееся тело.

Для того чтобы определить, в какую сторону вдоль касательной направлен вектор скорости и каков его модуль, нужно обратиться к закону движения. Допустим, что закон движения задан графиком, показанным на рис. 1.54. Возьмем приращение длины пути соответствующее малому вектору по которому определяется вектор скорости. Вспомним, что Знак указывает

Рис. 1.54.

направление движения по траектории, а следовательно, определяет ориентировку вектора скорости вдоль касательной. Очевидно, что через модуль этого приращения длины пути будет определяться модуль скорости.

Таким образом, модуль вектора скорости и ориентировку вектора скорости вдоль касательной к траектории можно определить из соотношения

Здесь является алгебраической величиной, знак которой указывает, в какую сторону по касательной к траектории направлен вектор скорости.

Итак, мы убедились, что модуль вектора скорости может быть найден по графику закона движения. Отношение определяет угол наклона а касательной на этом графике. Наклон касательной на графике закона движения будет тем больше, чем больше т. е. чем больше в выбранный момент скорость движения.

Еще раз обратим внимание на то, что для полного определения скорости требуется одновременное знание траектории и закона движения. Чертеж траектории позволяет определить направление скорости, а график закона движения — ее модуль и знак.

Если теперь мы обратимся снова к определению механического движения, то убедимся в том, что после введения понятия скорости для полного описания любого движения больше ничего не требуется. Используя понятия радиус-вектора, вектора перемещения, вектора скорости, длины пути, траектории и закона движения, можно получить ответы на все вопросы, связанные с определением особенностей любого движения. Все эти понятия взаимосвязаны друг с другом, причем знание траектории и закона движения позволяет найти любую из этих величин.

Определение

Равномерное прямолинейное движение — это такое движение, при котором тело совершает за любые равные промежутки времени равные перемещения.

Скорость при прямолинейном равномерном движении

Если тело движется равномерно и прямолинейно, его скорость остается постоянной как по модулю, так и по направлению. Ускорение при этом равно нулю.

Векторный способ записи скорости при равномерном прямолинейном движении:

s — вектор перемещения, ΔR— изменение радиус-вектора, t — время, а ∆t — его изменение.

Проекция скорости на ось ОХ:

sx — проекция перемещения на ось ОХ, ∆x — изменение координаты точки (ее абсциссы).

Знак модуля скорости зависит от направления вектора скорости и оси координат:

Основная единица измерения скорости — 1 метр в секунду. Сокращенно — 1 м/с.

Дополнительные единицы измерения

  • 1 км/ч (километр в час) = 1000 м/3600 с.
  • 1 км/мин (километр в минуту) = 1000 м/60 с.
  • 1 км/с (километр в секунду) = 1000 м/с.
  • 1 м/мин (метр в минуту) = 1 м/60 с.
  • 1 см/с (сантиметр в секунду) = 0,01 м/с.

Спидометр — прибор для измерения модули скорости тела.

График зависимости скорости от времени представляет собой прямую линию, перпендикулярную оси скорости и параллельную оси времени. Выглядит он так:

Тема 2. Графики равномерного движения : Кинематика

Определение направления движения по графику скорости

  • Если график скорости лежит выше оси времени, тело движется в направлении оси ОХ.
  • Если график скорости лежит ниже оси времени, тело движется против оси ОХ.
  • Если график скорости совпадает с осью времени, тело покоится.

Чтобы сравнить модули скоростей на графике, нужно оценить их удаленность от оси времени. Чем дальше график от оси, тем больше модуль.

Пример №1. Найти модуль скорости и направление движения тела относительно оси ОХ. Выразить скорость в км/ч.

ФИЗИКА ДИСТАНЦИОННО - Графическое представление движения

График скорости пересекает ось в точке со значением 10. Единица измерения — м/с. Поэтому модуль скорости равен 10 м/с. График лежит выше оси времени. Это значит, что тело движется по направлению оси ОХ. Чтобы выразить скорость в км/ч, нужно перевести 10 м в километры и 1 с в часы:

Теперь нужно разделить километры на часы:

Перемещение и координаты тела при равномерном прямолинейном движении

Геометрический смысл перемещения заключается в том, что его модуль равен площади фигуры, ограниченной графиком скорости, осями скорости и времени, а также линией, проведенной перпендикулярно оси времени.

Геометрический смысл перемещения

При прямолинейном равномерном движении эта фигура представляет собой прямоугольник. Поэтому модуль перемещения вычисляется по следующей формуле:

Вектор перемещения равен произведению вектора скорости на время движения:

Внимание!

При равномерном прямолинейном движении путь и перемещение совпадают. Поэтому путь, пройденный телом, можно найти по этим же формулам.

Формула проекции перемещения:

График проекции перемещения

График проекции перемещения показывает зависимость этой проекции от времени. При прямолинейном равномерном движении он представляет собой луч, исходящий из начала координат. Выглядит он так:

Определение направления движения по графику проекции перемещения

  • Если луч лежит выше оси времени, тело движется в направлении оси ОХ.
  • Если луч лежит ниже оси времени, тело движется против оси ОХ.
  • Если луч совпадает с этой осью, тело покоится.

Чтобы по графику проекции перемещения сравнить модули скоростей, нужно сравнить углы их наклона к оси sx.Чем меньше угол, тем больше модуль. Согласно рисунку выше, модули скорости тел, которым соответствуют графики 1 и 3, равны. Они превосходят модуль скорости тела 2, так как их угол наклона к оси sx меньше.

График координаты

График координаты представляет собой график зависимости координаты от времени. Выглядит он так:

Так как график координаты представляет собой график линейной функции, уравнение координаты принимает вид:

Определение направления движения тела по графику координаты

  • Если с течением времени координата увеличивается (график идет снизу вверх), тело движется в направлении оси ОХ. На картинке выше этому соответствуют графики тел 1 и 2.
  • Если с течением времени координата уменьшается (график идет сверху вниз), тело движется противоположно направлению оси ОХ. На картинке выше этому соответствует график тела 3.
  • Если координата не изменяется, тело покоится.

Чтобы сравнить модули скоростей тел по графику координат, нужно сравнить углы наклона графика к оси координат. Чем меньше угол, тем больше модуль скорости. На картинке выше наибольший модуль скорости соответствует графику 1. У графиков 2 и 3 модули равны.

Чтобы по графику координат найти время встречи двух тел, нужно из точки пересечения их графиков провести перпендикуляр к оси времени.

Пример №2. График зависимости координаты тела от времени имеет вид:

Изучите график и на его основании выберите два верных утверждения:

  1. На участке 1 скорость тела постоянна, а на участке 2 равна нулю.
  2. Проекция ускорения тела на участке 1 положительна, а на участке 2 — отрицательна.
  3. На участке 1 тело движется равномерно, а на участке 2 оно покоится.
  4. На участке 1 тело движется равноускорено, а на участке 2 оно движется равномерно.
  5. Проекция ускорения тела на участке 1 отрицательна, а на участке 2 — положительна.

На участке 1 координата растет, и ее график представляет собой прямую. Это значит, что на этом участке тело движется равномерно (с постоянной скоростью). На участке 2 координата с течением времени не меняется, что говорит о том, что тело покоится. Исходя из этого, верными утверждениями являются номера 1 и 3.

Пример №3. На рисунке изображен график движения автомобиля из пункта А (х=0 км) в пункт В (х=30 км). Чему равна минимальная скорость автомобиля на всем пути движения туда и обратно?

Согласно графику, с начала движения до прибытия автомобиля в пункт 2 прошло 0,5 часа. А с начала движения до возвращения в пункт А прошло 1,5 часа. Поэтому время, в течение которого тело возвращалось из пункта В в пункт А, равно:

1,5 – 0,5 = 1 (час).

Туда и обратно автомобиль проходил равные пути, каждый из которых равен 30 км. Поэтому скорость во время движения от А к В равна:

Скорость во время движения от В к А равна:

Минимальная скорость автомобиля на всем пути движения составляет 30 км/ч.

Задание EF17553

На рисунке представлены графики зависимости пройденного пути от времени для двух тел. Скорость второго тела v2 больше скорости первого тела v1 в n раз, где n равно…

undefined


Алгоритм решения

  1. Выбрать любой временной интервал.
  2. Выбрать для временного интервала начальные и конечные пути для каждого из графиков.
  3. Записать формулу скорости и вычислить ее для 1 и 2 тела.
  4. Найти n — отношение скорости второго тела к скорости первого тела

Решение

Рассмотрим графики во временном интервале от 0 до 4 с. Ему соответствуют следующие данные:

  • Для графика 1: начальный путь s10 = 0 м. Конечный путь равен s1 = 80 м.
  • Для графика 2: начальный путь s20 = 0 м. Конечный путь равен s2 = 120 м.

Скорость определяется формулой:

Так как начальный момент времени и скорость для обоих тел нулевые, формула примет вид:

Скорость первого тела:

Скорость второго тела:

Отношение скорости второго тела к скорости первого тела:

Ответ: 1,5

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18768

На рисунке приведён график зависимости координаты тела от времени при прямолинейном движении тела по оси Ox.

undefined
Какой из графиков соответствует зависимости от времени для проекции υ
x скорости этого тела на ось Ox?


Алгоритм решения

  1. Записать уравнение координаты при равномерном прямолинейном движении.
  2. Выразить из уравнения проекцию скорости.
  3. Определить начальную и конечную координаты, а также время, в течение которого двигалось тело.
  4. Вычислить проекцию скорости.
  5. Выбрать соответствующий график.

Решение

Уравнение координаты при равномерном прямолинейном движении имеет вид:

https://spadilo.ru/wp-content/uploads/2020/06/9-1-300x55.png

Отсюда проекция скорости равна:

Начальная координата xo = 10 м, конечная x = –10 м. Общее время, в течение которого двигалось тело, равно 40 с.

Вычисляем проекцию скорости:

Этому значению соответствует график «в».

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18831

На рисунке представлен график зависимости модуля скорости υ автомобиля от времени t. Определите по графику путь, пройденный автомобилем в интервале времени от t1=20 с до t2=50 с.


Алгоритм решения

  1. Охарактеризовать движение тела на различных участках графика.
  2. Выделить участки движения, над которыми нужно работать по условию задачи.
  3. Записать исходные данные.
  4. Записать формулу определения искомой величины.
  5. Произвести вычисления.

Решение

Весь график можно поделить на 3 участка:

  1. От t1 = 0 c до t2 = 10 с. В это время тело двигалось равноускоренно (с положительным ускорением).
  2. От t1 = 10 c до t2 = 30 с. В это время тело двигалось равномерно (с нулевым ускорением).
  3. От t1 = 30 c до t2 = 50 с. В это время тело двигалось равнозамедленно (с отрицательным ускорением).

По условию задачи нужно найти путь, пройденный автомобилем в интервале времени от t1 = 20 c до t2 = 50 с. Этому времени соответствуют два участка:

  1. От t1 = 20 c до t2 = 30 с — с равномерным движением.
  2. От t1 = 30 c до t2 = 50 с — с равнозамедленным движением.

Исходные данные:

  • Для первого участка. Начальный момент времени t1 = 20 c. Конечный момент времени t2 = 30 с. Скорость (определяем по графику) — 10 м/с.
  • Для второго участка. Начальный момент времени t1 = 30 c. Конечный момент времени t2 = 50 с. Скорость определяем по графику. Начальная скорость — 10 м/с, конечная — 0 м/с.

Записываем формулу искомой величины:

s = s1 + s2

s1 — путь тела, пройденный на первом участке, s2 — путь тела, пройденный на втором участке.

s1 и s2 можно выразить через формулы пути для равномерного и равноускоренного движения соответственно:

Теперь рассчитаем пути s1 и s2, а затем сложим их:

s1 + s2 = 100 + 100 = 200 (м)

Ответ: 200

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 13.5k

Как определить направление скорости

Скорость – характеристика движения тела, характеризующая быстроту его передвижения, то есть, расстояние, пройденное им за единицу времени. Этот параметр является векторным, а значит, имеет не только величину, но и направление. Определять направление скорости требуется в целом ряде физических задач.

Зависимость скорости от времени и перемещения

Инструкция

Скорость является одной из характеристик движения материальной точки. Она выражает расстояние, пройденное этой точкой за определенный промежуток времени. Различают среднюю и мгновенную скорость, а также равномерное и неравномерное движение.При равномерном движении скорость не меняется с течением времени, что облегчает определение направления этой скорости векторным путем. Вектор средней скорости представляет собой отношение приращения радиус-вектора к промежутку времени:[v]=?r/?tНаправление радиус-вектора ?r совпадает с направлением средней скорости, как показано на рис.1, поскольку точка перемещается из пункта М в пункт М1. Это условие соблюдается только при равномерном движении точки.

Рис.1

Мгновенная скорость рассчитывается при ?t, стремящемся к нулю. Это векторная величина, равная первой производной радиус-вектора по времени. Рассчитывается она следующим образом:v =|lim ?r/?t|=ds/dt
?t>0Вектор мгновенной скорости направлен по касательной к траектории движения MM1. Интегрируя последнее выражение по ds, получим:s=v?dt=v*(t2-t1)=v*tПоследняя формула применяется в случае равномерного движения, когда в условии задачи дан промежуток времени.

Направление скорости может быть вычислено только координатным способом, поскольку это – векторная величина.Если в задаче заданы координаты x и y, а также указаны указаны проекции vx и vy, может быть определено как численное значение скорости, так и ее направление. Вектор скорости v в данном случае является диагональю квадрата, образованного двумя проекциями. Вследствие этого, скорость равна:v= sqrt(vx^2+vy^2), где tg?=vx/vy (см. рис.2)Следует учитывать, что в реальных условиях на движущееся тело действует целый ряд факторов: трение, гравитация и т.п. В одних задачах действием этих факторов можно пренебречь, в других по крайней мере некоторые из них необходимо учитывать в обязательном порядке.

Рис.2

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Механическое движение.

 

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: механическое движение и его виды, относительность механического движения, скорость, ускорение.

Понятие движения является чрезвычайно общим и охватывает самый широкий круг явлений. В физике изучают различные виды движения. Простейшим из них является механическое движение. Оно изучается в механике.
Механическое движение — это изменение положение тела (или его частей) в пространстве относительно других тел с течением времени.

Если тело A меняет своё положение относительно тела B, то и тело B меняет своё положение относительно тела A. Иначе говоря, если тело A движется относительно тела B, то и тело B движется относительно тела A. Механическое движение является относительным — для описания движения необходимо указать, относительно какого тела оно рассматривается.

Так, например, можно говорить о движении поезда относительно земли, пассажира относительно поезда, мухи относительно пассажира и т. д. Понятия абсолютного движения и абсолютного покоя не имеют смысла: пассажир, покоящийся относительно поезда, будет двигаться с ним относительно столба на дороге, совершать вместе с Землёй суточное вращение и двигаться вокруг Солнца.
Тело, относительно которого рассматривается движение, называется телом отсчёта.

Основной задачей механики является определение положения движущегося тела в любой момент времени. Для решения этой задачи удобно представить движение тела как изменение координат его точек с течением времени. Чтобы измерить координаты, нужна система координат. Чтобы измерять время, нужны часы. Всё это вместе образует систему отсчёта.

Система отсчёта — это тело отсчёта вместе с жёстко связанной с ним («вмороженной»» в него) системой координат и часами.
Система отсчёта показана на рис. 1. Движение точки M рассматривается в системе координат OXYZ . Начало координат O является телом отсчёта.

Рисунок 1.

Вектор vec{r} = overrightarrow{OM} называется радиус-вектором точки M. Координаты x, y, z точки M являются в то же время координатами её радиус-вектора r.
Решение основной задачи механики для точки M состоит в нахождении её координат как функций времени: x = x(t), y = y(t), z = z(t).
В ряде случаев можно отвлечься от формы и размеров изучаемого объекта и рассматривать его просто как движущуюся точку.

Материальная точка — это тело, размерами которого можно пренебречь в условиях данной задачи.
Так, поезд можно считать материальной точкой при его движении из Москвы в Саратов, но не при посадке в него пассажиров. Землю можно считать материальной точкой при описании её движения вокруг Солнца, но не её суточного вращения вокруг собственной оси.

К характеристикам механического движения относятся траектория, путь, перемещение, скoрость и ускорение.

Траектория, путь, перемещение.

В дальнейшем, говоря о движущемся (или покоящемся) теле, мы всегда полагаем, что тело можно принять за материальную точку. Случаи, когда идеализацией материальной точки пользоваться нельзя, будут специально оговариваться.

Траектория — это линия, вдоль которой движется тело. На рис. 1 траекторией точки M является синяя дуга, которую описывает в пространстве конец радиус-вектора r.
Путь — это длина участка траектории, пройденного телом за данный промежуток времени.
Перемещение — это вектор, соединяющий начальное и конечное положение тела.
Предположим, что тело начало движение в точке A и закончило движение в точке B (рис. 2). Тогда путь, пройденный телом, это длина траектории ACB. Перемещение тела — это вектор overrightarrow{AB} = overrightarrow{OM}.

Рисунок 2.

Скорость и ускорение.

Рассмотрим движение тела в прямоугольной системе координат с базисом vec{i}, vec{j}, vec{k} (рис. 3).

Рисунок 3.

Пусть в момент времени t тело находилось в точке M(x, y, z) с радиус-вектором
overrightarrow{OM}=vec{r}=xvec{i}+yvec{j}+zvec{k}
Спустя малый промежуток времени Delta t тело оказалось в точке N(x+Delta x,y+Delta y,z+Delta z) с
радиус-вектором

overrightarrow{ON}=vec{r}+Delta vec{r}=(x+Delta x)vec{i}+(y+Delta y)vec{j}+(z+Delta z)vec{k}

Перемещение тела:

Delta r=overrightarrow{MN}=overrightarrow{ON}-overrightarrow{OM}=(Delta x)vec{i}+(Delta y)vec{j}+(Delta z)vec{k} (1)

Мгновенная скорость Delta v в момент времени t – это предел отношения перемещения Delta vec{r} к интервалу времени Delta t, когда величина этого интервала стремится к нулю; иными словами, скорость точки – это производная её радиус-вектора:

vec{v}=frac{displaystyle Delta vec{displaystyle r}}{displaystyle Delta displaystyle t}=frac{displaystyle dvec{r}}{displaystyle dt} (2)

Из (2) и (1) получаем:

vec{v}=lim_{Delta trightarrow 0}left ( frac{displaystyle Delta displaystyle x}{displaystyle Delta displaystyle t}vec{displaystyle i}+frac{displaystyle Delta displaystyle y}{displaystyle Delta displaystyle t}vec{displaystyle j}+frac{displaystyle Delta displaystyle z}{displaystyle Delta displaystyle t}vec{displaystyle k} right )

Коэффициенты при базисных векторах в пределе дают производные:

dot{x}=lim_{Delta trightarrow 0}frac{displaystyle Delta displaystyle x}{displaystyle Delta displaystyle t}, dot{y}=lim_{Delta trightarrow 0}frac{displaystyle Delta displaystyle y}{displaystyle Delta displaystyle t}, dot{z}=lim_{Delta trightarrow 0}frac{displaystyle Delta displaystyle z}{displaystyle Delta displaystyle t}

(Производная по времени традиционно обозначается точкой над буквой.) Итак,

vec{v}=xvec{i}+yvec{j}+zvec{k}

Мы видим, что проекции вектора скорости на координатные оси являются производными координат точки:

displaystyle v_{displaystyle x}=dot{x}, displaystyle v_{displaystyle y}=dot{y}, displaystyle v_{displaystyle z}=dot{z}.

Когда Delta t стремится к нулю, точка N приближается к точке M и вектор перемещения Delta vec{r} разворачивается в направлении касательной. Оказывается, что в пределе вектор Delta vec{v} направлен точно по касательной к траектории в точке M. Это и показано на рис. 3.

Понятие ускорения вводится похожит образом. Пусть в момент времени t скорость тела равна vec{v}, а спустя малый интервал Delta t скорость стала равна vec{v}+Delta vec{v}.
Ускорение vec{a} – это предел отношения изменения скорости Delta vec{v} к интервалу Delta {t}, когда этот интервал стремится к нулю; иначе говоря, ускорение – это производная скорости:
vec{a}=lim_{Delta trightarrow 0}frac{displaystyle Delta vec{displaystyle v}}{displaystyle Delta displaystyle t}=frac{displaystyle dvec{displaystyle a}}{displaystyle dt}.

Ускорение, таким образом, есть “cкорость изменения скорости”. Имеем:

vec{a}=frac{displaystyle d}{displaystyle dt}(displaystyle v_{displaystyle x}vec{displaystyle i}+displaystyle v_{displaystyle y}vec{displaystyle j}+displaystyle v_{displaystyle z}vec{displaystyle k})=dot{displaystyle v_{displaystyle x}}vec{displaystyle i}+dot{displaystyle v_{displaystyle y}}vec{displaystyle j}+dot{v_{displaystyle z}}vec{displaystyle k}.

Следовательно, проекции ускорения являются производными проекций скорости (и, стало быть, вторыми производными координат):

displaystyle a_{displaystyle x}=dot{displaystyle v_{displaystyle x}}=ddot{displaystyle x}, displaystyle a_{displaystyle y}=dot{displaystyle v_{displaystyle y}}=ddot{displaystyle y}, displaystyle a_{displaystyle z}=dot{displaystyle v_{displaystyle z}}=ddot{displaystyle z}.

Закон сложения скоростей.

Пусть имеются две системы отсчёта. Одна из них связана с неподвижным телом отсчёта O. Эту систему отсчёта обозначим K и будем называть неподвижной.
Вторая система отсчёта, обозначаемая {K} , связана с телом отсчёта {O}, которое движется относительно тела O со скоростью vec{u} . Эту систему отсчёта называем движущейся. Дополнительно предполагаем, что координатные оси системы {K} перемещаются параллельно самим себе (нет вращения системы координат), так что вектор vec{u} можно считать скоростью движущейся системы относительно неподвижной.

Неподвижная система отсчёта K обычно связана с землёй. Если поезд плавно едет по рельсам со скоростью vec{u}, это система отсчёта, связанная с вагоном поезда, будет движущейся системой отсчёта {K}.

Заметим, что скорость любой точки вагона (кроме вращающихся колёс!) равна vec{u}. Если муха неподвижно сидит в некоторой точке вагона, то относительно земли муха движется со скоростью vec{u}. Муха переносится вагоном, и потому скорость vec{u} движущейся системы относительно неподвижной называется переносной скоростью.

Предположим теперь, что муха поползла по вагону. Скорость мухи относительно вагона (то есть в движущейся системе {K}) обозначается {vec{v}} и называется относительной скоростью. Скорость мухи относительно земли (то есть в неподвижной системе K ) обозначается vec{v} и называется абсолютной скоростью.

Выясним, как связаны друг с другом эти три скорости – абсолютная, относительная и переносная.
На рис. 4 муха обозначена точкой M.Далее:
vec{r} – радиус-вектор точки M в неподвижной системе K;
{vec{r}} – радиус-вектор точки M в движущейся системе {K};
vec{R} – радиус-вектор тела отсчёта {O} в неподвижной системе K.

Рисунок 4.

Как видно из рисунка,

vec{r}=vec{R}+{vec{r}}

Дифференцируя это равенство, получим:

frac{displaystyle dvec{displaystyle r}}{displaystyle dt}=frac{displaystyle dvec{displaystyle R}}{displaystyle dt}+frac{displaystyle d{vec{displaystyle r}} (3)

(производная суммы равна сумме производных не только для случая скалярных функций, но и для векторов тоже).
Производная dvec{r}/dt есть скорость точки M в системе K, то есть абсолютная скорость:

frac{displaystyle dvec{displaystyle r}}{displaystyle dt}=vec{v}.

Аналогично, производная d{vec{r}} есть скорость точки M в системе {K}, то есть относительная скорость:

frac{displaystyle d{vec{displaystyle r}}
А что такое dvec{R}/dt? Это скорость точки {O} в неподвижной системе, то есть – переносная скорость vec{u} движущейся системы относительно неподвижной:

frac{displaystyle dvec{displaystyle R}}{displaystyle dt}=vec{u}

В результате из (3) получаем:

vec{v}=vec{u}+{vec{v}}

Закон сложения скоростей. Скорость точки относительно неподвижной системы отсчёта равна векторной сумме скорости движущейся системы и скорости точки относительно движущейся системы. Иными словами, абсолютная скорость есть сумма переносной и относительной скоростей.

Таким образом, если муха ползёт по движущемуся вагону, то скорость мухи относительно земли равна векторной сумме скорости вагона и скорости мухи относительно вагона. Интуитивно очевидный результат!

Виды механического движения.

Простейшими видами механического движения материальной точки являются равномерное и прямолинейное движения.
Движение называется равномерным, если модуль вектора скорости остаётся постоянным (направление скорости при этом может меняться).

Движение называется прямолинейным, если направление вектора скорости остаётся постоянным (а величина скорости при этом может меняться). Траекторией прямолинейного движения служит прямая линия, на которой лежит вектор скорости.
Например, автомобиль, который едет с постоянной скоростью по извилистой дороге, совершает равномерное (но не прямолинейное) движение. Автомобиль, разгоняющийся на прямом участке шоссе, совершает прямолинейное (но не равномерное) движение.

А вот если при движении тела остаются постоянными как модуль скорости, так и его направление, то движение называется равномерным прямолинейным.

В терминах вектора скорости можно дать более короткие определения данным типам движения:

Важнейшим частным случаем неравномерного движения является равноускоренное движение, при котором остаются постоянными модуль и направление вектора ускорения:

  • равноускоренное движение Leftrightarrow vec{a}=const

Наряду с материальной точкой в механике рассматривается ещё одна идеализация – твёрдое тело.
Твёрдое тело это система материальных точек, расстояния между которыми не меняются со временем. Модель твёрдого тела применяется в тех случаях, когда мы не можем пренебречь размерами тела, но можем не принимать во внимание изменение размеров и формы тела в процессе движения.

Простейшими видами механического движения твёрдого тела являются поступательное и вращательное движения.
Движение тела называется поступательным, если всякая прямая, соединяющая две какие-либо точки тела, перемещается параллельно своему первоначальному направлению. При поступательном движении траектории всех точек тела идентичны: они получаются друг из друга параллельным сдвигом (рис. 5).

Рисунок 5.

Движение тела называется вращательным, если все его точки описывают окружности, лежащие в параллельных плоскостях. При этом центры данных окружностей лежат на одной прямой, которая перпендикулярна всем этим плоскостям и называется осью вращения.

На рис. 6 изображён шар, вращающийся вокруг вертикальной оси. Так обычно рисуют земной шар в соответствующих задачах динамики.

Рисунок 6.

Если вам нравятся наши материалы – записывайтесь на курсы подготовки к ЕГЭ по физике онлайн

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Механическое движение.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Механическое движение имеет множество характеристик. Вы уже узнали, что оно относительно и бывает разных видов: прямолинейное и криволинейное, равномерное и неравномерное.

Тела движутся по воображаемым линиям, которые называются траекториями, а длина траектории – это путь, который проходит тело.

В этом уроке мы рассмотрим новую физическую величину, характеризующую движение – скорость.

Скорость при равномерном движении

Взгляните на рисунок 1. Если мы предположим, что бегуны, велосипедисты и автомобили двигаются равномерно, то чем будет отличаться их движение?

Разные физические тела, совершающие равномерное движение.
Рисунок 1. Разные физические тела, совершающие равномерное движение

В таких случаях обычно мы говорим, что машина будет двигаться быстрее, чем велосипедист, а велосипедист – быстрее, чем бегун. Здесь в физике появляется такая величина, как скорость.

Скорость – это физическая величина, характеризующая быстроту движения тел.

В нашем случае люди пробегают 15 км за 1 час, велосипедисты проезжают 25 км за 1 час, а машина за то же время – 60 км, то есть движутся с различными скоростями.

Что показывает скорость при равномерном движении?

Скорость при равномерном движении тела показывает, какой путь проходит тело в единицу времени.

Скорость при равномерном движении постоянна.

Как вычислить скорость

По какой формуле определяют скорость тела, если известен его путь и время, за которое он пройден?

Чтобы определить скорость при равномерном движении, нужно путь, пройденный телом за выбранный промежуток времени, разделить на этот промежуток времени:
$Скорость = frac{Путь}{Время}$
или
$upsilon = frac{S}{t}$.

Здесь $upsilon$ — скорость, $S$ – путь, $t$ — время.

Дадим определение.

Cкорость тела при равномерном движении – это величина, равная отношению пути ко времени, за которое пройден этот путь.

Соответственно, если автомобиль проезжает в течение 10 с путь, равный 20 метрам (рисунок 2), то его скорость будет равна $frac{20 space м}{10 space с} = 2 frac{м}{с}$ (2 метра в секунду).

Рисунок 2. Расчет скорости движения автомобиля

Скорость при неравномерном движении

При неравномерном движении тело проходит разные пути за равные промежутки времени, т.е. скорость тела изменяется от одного участка пути к другому.

Как же определить скорость на всем пути? Здесь нам поможет понятие средней скорости.

Как определяют среднюю скорость при неравномерном движении?

Чтобы определить среднюю скорость тела при неравномерном движении, надо весь пройденный путь разделить на все время движения:
$upsilon_{ср} = frac{S}{t}$.

Отметим, что средняя скорость описывает движение тела за весь промежуток времени. В это время тело можно замедляться, разгоняться, останавливаться.

Например, если вы выезжаете на автомобиле из Москвы в Санкт-Петербург (рисунок 3), то весь путь займет у вас 10 ч. В это время машина будет то набирать скорость, то тормозить, сделает остановку. Общий путь, который вы при этом проедите, будет равен 600 км.

Средняя скорость движения автомобиля будет равна:
$upsilon_{ср} = frac{S}{t} = frac{600 space км}{10 space ч} = 60 frac{км}{ч}$.

Пример неравномерного движения.
Рисунок 3. Пример неравномерного движения

Взгляните на таблицу 1, где приведены различные средние скорости.

Тело Скорость, $frac{м}{с}$ Тело Скорость, $frac{м}{с}$
Улитка 0,0014 Пассажирский самолет 220
Черепаха 0,05-0,14 Звук в воздухе при $0 degree C$ 332
Муха 5 Пуля автомата Калашникова 760
Пешеход 1,5 Луна вокруг Земли 1000
Конькобежец 13 Молекула водорода при $0 degree C$ 1693
Скворец 20 Молекула водорода при $25 degree C$ 1770
Страус 22 Земля вокруг Солнца 30 000
Автомобиль 20 Свет и радиоволны 300 000 000
Таблица 1. Средние скорости движения некоторых тел, скорость звука, радиоволн и света

Единицы измерения скорости

Какова единица измерения скорости в СИ?

В Международной системе (СИ) скорость измеряется в метрах в секунду $frac{м}{с}$.

За единицу скорости принимают скорость такого равномерного движения, при котором за 1 секунду тело проходит путь длиной 1 метр.

Следственно, скорость в системе СИ — количество метров, которое тело пройдёт за 1 секунду.

В повседневной жизни мы чаще видим, что скорость измеряют в километрах в час $frac{км}{ч}$. Также можно использовать километры в секунду $frac{км}{с}$ и сантиметры в секунду $frac{см}{с}$.

Наиболее часто встречаемое ограничение скорости в городах – $ 60 frac{км}{ч}$. Переведем это значение в $frac{м}{с}$:

$60 frac{км}{ч} = 60 cdot frac{1 space км}{1 space ч} = 60 cdot frac{1000 space м}{3600 space с} = frac{60 cdot 1000}{3600} frac{м}{с} approx 17 frac{м}{с}$

Так мы увидели, что числовое значение скорости зависит от выбранной единицы измерения.

Скорость как вектор

Чем, кроме числового значения, характеризуется скорость тела?

Логично, что, кроме числового значения, скорость имеет и направление. Например, чтобы узнать, где будет находиться велосипедист через 1 час после того, как он выехал из дома, нам необходимо знать скорость движения и ее направление.

Физические величины делятся на те, которые имеют направление и те, которые его не имеют — на векторные и скалярные:

1. Векторные величины – это величины, которые, кроме числового значения (модуля), имеют еще и направление.

Скорость – это векторная физическая величина

Векторные величины обозначаются буквами со стрелочками. Скорость обозначается как $vec{upsilon}$, а модуль скорости — $upsilon$.

На рисунке 4 стрелкой показано направление скорости (направление движение тела).

Направление скорости для различных тел.
Рисунок 4. Направление скорости для различных тел

2. Скалярные величины – это физические величины, которые не имеют направления и характеризуются только числовым значением. Это путь, объем, время, длина, масса и др.

Примеры задач на нахождение скорости

Задача №1

Равномерно двигаясь, поезд за 3 часа прошел путь длиной 152 км. Найдите скорость движения поезда в единицах СИ.

Дано:
$S = 152 space км$
$t = 3 space ч$

$upsilon -?$

Показать решение и ответ

Скрыть

Решение:

Скорость рассчитывается по формуле:
$upsilon = frac{S}{t}$.

$upsilon = frac{152}{3} frac{км}{ч} approx 51 frac{км}{ч}$.

Выразим в единицах СИ:
$51 frac{км}{ч} = frac{51 000}{3600} frac{м}{c} approx 14 frac{м}{c}$.

Ответ: $upsilon = 14 frac{м}{с}$.

Задача №2

Скорость лыжника первую часть пути составляла $20 frac{км}{ч}$ в течение 15 мин. Следующие 45 мин его скорость была $10 frac{км}{ч}$. Найдите среднюю скорость лыжника. 

Обозначим первую часть пути как $s_1$, вторую как $s_2$. Время, соответствующее движению на этих участках, $t_1$ и $t_2$ (рисунок 5). Скорости — $upsilon_1$ и $upsilon_2$.

Рисунок 5. Схема движения лыжника

Дано:
$upsilon_1 = 20 frac{км}{ч}$
$t_1 = 15 space мин$
$upsilon_2 = 10 frac{км}{ч}$
$t_2 = 45 space мин$

$upsilon_{ср} -?$

Показать решение и ответ

Скрыть

Решение:

Скорость лыжника на первой и второй частях пути:
$upsilon_1 = frac{S_1}{t_1}$; $upsilon_2 = frac{S_2}{t_2}$.

Выразим из этих уравнений неизвестные $s_1$ и $s_2$:
$s_1 = upsilon_1t_1$; $s_2 = upsilon_2t_2$.

Чтобы найти среднюю скорость лыжника, нужно его полный путь разделить на все время движения:
$upsilon_{ср} = frac{s_1+s_2}{t_1+t_2} = frac{upsilon_1t_1+upsilon_2t_2}{ t_1+t_2}$.

Выпишем отдельно часть выражения и переведем в часы:
$t_1+t_2 = 15 space мин + 45 space мин = 1space ч$.

Тогда:
$t_1 = frac{1}{4} space ч = 0.25 space ч$,
$t_2 = frac{3}{4} space ч = 0.75 space ч$.

$upsilon_{ср} = frac{20 frac{км}{ч} cdot 0.25 space ч+10 frac{км}{ч} cdot 0.75 space ч}{1 space ч} = frac{5 space км +7.5 space км}{1 space ч} = 12.5 frac{км}{ч}$.

Ответ: $upsilon_{ср} = 12,5 frac{км}{ч}$.

Упражнения

Упражнение №1

Выразите скорости тел: $90 frac{км}{ч}$ и $36 frac{км}{ч}$ в $frac{м}{с}$.

Показать решение

Скрыть

Решение:

$upsilon_1 = 90 frac{км}{ч} = 90 cdot frac{1000 space м}{3600 space с} = frac{1000}{40} frac{м}{с} = 25 frac{м}{с}$.

$upsilon_2 = 36 frac{км}{ч} = 36 cdot frac{1000 space м}{3600 space с} = frac{1000}{100} frac{м}{с} = 10 frac{м}{с}$.

Упражнение №2

Поезд идет со скоростью $72 frac{км}{ч}$. Выразите его скорость в $frac{м}{с}$.

Показать решение

Скрыть

Решение:

$upsilon = 72 frac{км}{ч} = 72 cdot frac{1000 space м}{3600 space с} = frac{1000}{50} frac{м}{с} = 20 frac{м}{с}$.

Упражнение №3

Гоночный автомобиль за $10 space мин$ проезжает путь, равный $50 space км$. Определите его среднюю скорость.

Дано:
$t = 10 space мин$
$S = 50 space км$

СИ:
$t = 600 space с$
$S = 50 space 000 space м$

$upsilon_{ср} — ?$

Показать решение и ответ

Скрыть

Решение:

Средняя скорость при неравномерном движении рассчитывается по формуле:
$upsilon_{ср} = frac{S}{t}$.

$upsilon_{ср} = frac{50 space 000 space м}{600 space с} approx 83.3 frac{м}{с}$.

Ответ: $upsilon_{ср} approx 83.3 frac{м}{с}$.

Упражнение №4

Лучшие конькобежцы дистанцию $1500 space м$ пробегают за $1 space мин$ и $52.5 space с$. С какой средней скоростью они проходят эту дистанцию?

Дано:
$t =1 space мин space 52.5 space с$
$S = 1500 space м$

СИ:
$t = 112.5 space с$

$upsilon_{ср} — ?$

Показать решение и ответ

Скрыть

Решение:

Средняя скорость при неравномерном движении рассчитывается по формуле:
$upsilon_{ср} = frac{S}{t}$.

$upsilon_{ср} = frac{1500 space м}{112.5 space с} approx 13.3 frac{м}{с}$.

Ответ: $upsilon_{ср} approx 13.3 frac{м}{с}$.

Упражнение №5

Лыжник, спускаясь с горы, проходит $50 space м$ за $5 space с$. Спустившись с горы и продолжая двигаться, он до полной остановки проходит еще $30 space м$ за $15 space с$. Найдите среднюю скорость лыжника за все время движения.

Дано:
$S_1 = 50 space м$
$t_1 = 5 space с$
$S_2 = 30 space м$
$t_2 = 15 space с$

$upsilon_{ср} — ?$

Показать решение и ответ

Скрыть

Решение:

Средняя скорость при неравномерном движении рассчитывается по формуле:
$upsilon_{ср} = frac{S}{t}$, где $S$ — весь путь, пройденный лыжником, $t$ — общее время движения.

Общий путь равен: $S = S_1 + S_2$.
Общее время движения: $t = t_1 + t_2$.

Подставим эти значения в формулу для средней скорости и рассчитаем ее:
$upsilon_{ср} = frac{S_1 + S_2}{t_1 + t_2}$,
$upsilon_{ср} = frac{50 space м + 30 space м}{5 space с + 15 space с} = frac{80 space м}{20 space с} = 4 frac{м}{с}$.

Ответ: $upsilon_{ср} = 4 frac{м}{с}$.

Задание

Найдите с помощью интернета фамилии советских летчиков, совершивших впервые в мире беспосадочный перелет Москва-Северный полюс-США. Известно, что расстояние в $8582 space км$ они пролетели за $63 space ч$ и $16 space мин$. Определите, с какой скоростью летел самолет.

Первый беспосадочный перелет Москва-Северный полюс-США совершили советские авиаторы 18-20 июня в 1937 году. Перелет был совершен на самолете АНТ-25. Состав: командир экипажа В. П. Чкалов, второй пилот Г. Ф. Байдуков и штурман А. В. Беляков.

Дано:
$S = 8582 space км$
$t = 63 space ч space 16 space мин$

СИ:
$S = 8 space 582 space 000 space м$
$t = 227 space 760 space с$

$upsilon — ?$

Показать решение и ответ

Скрыть

Решение:

Рассчитаем скорость:
$upsilon = frac{S}{t}$,
$upsilon = frac{8 space 582 space 000 space м}{227 space 760 space с} approx 37.7 frac{м}{с}$.

Ответ: $upsilon approx 37.7 frac{м}{с}$.

Добавить комментарий