Как найти направление вектора кориолиса

Кориолисовым
или поворотным
ускорением называется составляю­щая
абсолютного ускорения точки в сложном
движении, равная удвоен­ному векторному
произведению угловой скорости переносного
вращения на относительную скорость
точки

Кориолисово
ускорение характеризует:

1)
изменение модуля и направления переносной
скорости точки вследствие ее относительного
движения;

2)
изменение направления относительной
скорости точки вследствие вращательного
переносного движения.

Модуль
кориолисова ускорения определяется
как модуль вектор­ного произведения


.

Кориолисово
ускорение равно нулю в трех случаях:

1)
если

,
т. е. в случае поступательного переносного
движения или в моменты обращения в нуль
угловой скорости непоступатель­ного
переносного движения;

2)
если


,
т. е. в случае относительного покоя точки
или в моменты равенства нулю относительной
скорости движущейся точки;

3)
если

,
т.е. в случае, когда

;
иначе,
когда
относительная скорость точки параллельна
оси переносного вращения, как, например,
при движении точки М
вдоль
образующей цилиндра, вращающегося
вокруг своей оси (рис. 2.102).
Направление
кориолисова ускорения определяется по
правилу вектор­ного произведения
(рис. 2.103). Построив условно вектор

в точке М,
направим кориолисово ускорение

по перпендикуляру к плоскости векторов

и


в ту сторону,
откуда поворот вектора

к скорости

на наименьший угол виден происходящим
в сторону, обратную вращению часовой
стрелки.

Рис.
2.102
Рис.
2.103

Для
определения направления кориолисова
ускорения удобно поль­зоваться
правилом Жуковского: чтобы
найти направление кориолисова ускорения,
следует спроецировать относительную
скорость точки на плоскость, перпендикулярную
оси переносного вращения, и повернуть
эту проекцию в той же плоскости на

90°
в сторону переносного вращения
(рис.

2.104).

Рис.
2.104

Действительно,
полученное направление

(рис. 2.104)
перпендику­лярно плоскости треугольника,
образованного скоростью

и ее проекцией

,
а эта
плоскость совпадает с плоскостью
векторов

и

.

Задача
2.21
.
Клин, движущийся прямолинейно по
горизонтальной плоскости с ускорением

,
перемещает вдоль вертикальных направляющих
стержень DE
(рис. 2.105).
Определить ускорение стержня, если угол
клина равен

.

Рис.
2.105

Решение.
Абсолютное ускорение

точки D
стержня направлено по вертикали вверх.
Его можно рассматривать как слагающееся
из относительного ускорения

,
направленного вдоль щеки клина, и
переносного ускорения

,
равного ускорению клина

(так как переносное движение, т. е.
движение клина является поступательным).
Строя соответствующий параллелограмм
и учитывая, что

=
,
найдем


.

Величина

и определяет ускорение стержня.

Задача
2.22.
По
железнодорожному пути, проложенному
по параллели северной широты, движется
тепловоз со скоростью v=20
м/с
с запада на восток(рис.2.106). Найти
кориолисово ускорение тепловоза.

Решение.
Свяжем неподвижную систему отсчета с
Землей, подвижную систему с тепловозом.
Тогда вращение Земли вокруг собственной
оси для всех точек тепловоза будет
являться переносным, а угловая скорость
вращения Земли – переносной угловой
скоростью

.
Скорость движения
тепловоза
по

железнодорожному

пути

относительной

скоростью

.

Рис. 2.106

Вектор

лежит в плоскости, перпендикулярной
оси переносного вращения, и значит угол,
образованный вектором переносной
угловой скорости

и вектором относительной скорости

,
равен 90о,
а

.
Тогда


.

Угловая скорость
переносного вращения определяется из
того, что полный оборот Земля совершает
за 24 часа.


.

Ускорение
Кориолиса для тепловоза равно 0,29 см/с2
и направлено в соответствии с правилом
Жуковского к центру окружности той
параллели северной широты, по которой
движется тепловоз.

Задача
2.23
. Диск
радиусом R=1
м
вращается в плоскости чертежа вокруг
неподвижной точки О
против хода часовой стрелки по закону

(t
– в с,

– в рад).
По ободу диска из точки О
движется точка М
по ходу часовой стрелки согласно
уравнению

(
t
– в с,
s
– в м).
Определить абсолютную скорость и
абсолютное ускорение точки М
в момент времени t
= 0,5 c
(рис. 2.107).

Решение.
Точка М
совершает сложное движение. Свяжем
подвижную систему отсчета с диском.
Тогда относительным движением точки М
будет ее движение по ободу диска. Это
движение задано естественным способом.
Переносным движением точки М
является движение той точки диска, в
которой находится в данный момент
рассматриваемая точка М,
т.е. вращение диска вокруг оси О.

Рис.
2.107

Определим
положение точки М
в указанный момент времени, при t
= 0,5 c

м,

следовательно,
к указанному моменту времени точка
пройдет четверть окружности. При t
= 0,5 c

рад.

Рис.
2.108

Покажем
положение диска и точки, соответствующее
заданному времени (рис. 2.108), и определим
радиус переносного вращения:


м.

2.
Определение абсолютной скорости

.
По теореме о сложении скоростей


.

Относительное
движение задано естественным способом,
поэтому воспользуемся формулой для
определения

м/с.

На
рис. 2.108 в точке М
изобразим вектор относительной скорости

по касательной к окружности радиусом
R
в сторону дуговой координаты s,
так как

. Для
определения

точки М
определим вращательную скорость точки
диска, с которой совпадает наша точка
М


.
(а)

Угловая
скорость переносного вращения равна
первой производной по времени от угла
поворота

213

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Ускорение Кориолиса

Ускорение Кориолиса (Кориолисово ускорение) характеризует изменение относительной скорости по направлению за счет переносного вращения и изменение величины переносной скорости за счет относительного движения.

Согласно теореме Кориолиса, абсолютное ускорение точки в сложном движении определяется как геометрическая сумма относительного, переносного и кориолисова ускорений (рис. 3)

Теорема Кориолиса
Направление ускорения Кориолиса

Рис. 3

Поскольку, в данном случае, относительное движение происходит по прямой линии, относительное ускорение ar направлено вдоль этой прямой и определяется выражением

Переносным ускорением точки M является ускорение точки M диска. Диск совершает вращательное движение, следовательно, переносное ускорение определяется выражением

Переносное ускорение

где aeвр= ε  OM — вращательное ускорение точки M, направленное перпендикулярно отрезку OM;
aeцс= ω2 OM — центростремительное ускорение точки M, направленное к центру диска.

Ускорение Кориолиса или поворотное ускорение определяется по формуле

Поворотное ускорение

где ωe — переносная угловая скорость,
νr — относительная скорость точки.

Направление Кориолисова ускорения определяется по правилу векторного произведения или по правилу Жуковского.

Величина ускорения Кориолиса определяется выражением

Величина Кориолисова ускорения

где α – угол между векторами ωe и νr.

Рассмотрим, какой физический смысл заложен в ускорение Кориолиса. Для простоты будем считать, что диск вращается с постоянной угловой скоростью, а точка M движется относительно диска с постоянной относительной скоростью (рис.4).

Рис. 4

Пусть в момент времени t1 точка M занимала положение M1 и имела относительную скорость νr1. За промежуток времени Δt точка M переместится в положение M2, при этом направление скорости νr изменится вследствие вращения диска. Вектор νr получит приращение Δνr.

Отношение определяет среднее ускорение точки за промежуток времени Δt. Предел отношения при Δt0 есть производная как производная от вектора постоянного по величине.

Рассмотрим, как изменяется переносная скорость в зависимости от относительного движения. В моменты времени t1 и t2 переносная скорость определяется выражениями


Тогда приращение вектора νe за счет относительного движения будет равно

Отношение в пределе при Δt 0 дает производную

Таким образом, ускорение Кориолиса с одной стороны характеризует изменение относительной скорости по направлению за счет переносного вращения и, с другой стороны, изменение величины переносной скорости за счет относительного движения.

Изменение величины переносной скорости

Рис. 5

Абсолютное ускорение точки в сложном движении в общем случае определяется геометрической суммой пяти слагаемых

Для определения величины абсолютного ускорения удобнее пользоваться аналитическим методом сложения векторов:

Аналитический метод сложения векторов

Примеры решения задач >
Сферическое движение и способы его задания >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Запрос «Эффект Кориолиса» перенаправляется сюда; см. также другие значения.

Рис. 1. При вращении диска более далёкие от центра точки движутся с большей касательной скоростью, чем менее далёкие (группа чёрных стрелок вдоль радиуса). Переместить тело вдоль радиуса так, чтобы оно оставалось на радиусе (синяя стрелка из положения «А» в положение «Б») можно, увеличив скорость тела, то есть придав ему ускорение. Если система отсчёта вращается вместе с диском, то видно, что тело «не хочет» оставаться на радиусе, а «пытается» уйти влево — с точки зрения наблюдателя во вращающейся системе отсчёта, это результат действия силы Кориолиса.

Рис. 2. Траектории шарика при движении без трения по поверхности вращающейся тарелки в разных системах отсчёта (вверху — в инерциальной по прямой, внизу — в неинерциальной, вращающейся вместе с тарелкой).

Си́ла Кориоли́са — одна из сил инерции, использующаяся при рассмотрении движения материальной точки относительно вращающейся системы отсчёта. Добавление силы Кориолиса к действующим на материальную точку физическим силам позволяет учесть влияние вращения системы отсчёта на такое движение[1].

Названа по имени французского учёного Гаспа́ра-Гюста́ва де Кориоли́са, впервые описавшего её в статье, опубликованной в 1835 году[2][3]. Иногда высказываются мнения, что первым математическое выражение для силы получил Пьер-Симон Лаплас в 1775 году[4], а эффект отклонения движущихся объектов во вращающихся системах отсчёта был описан Джованни Баттиста Риччоли и Франческо Мария Гримальди в 1651 году[5].

Часто под термином «эффект Кориолиса» подразумевается наиболее важный случай проявления силы Кориолиса — который возникает в связи с суточным вращением Земли.
Так как угловая скорость вращения Земли мала (1 оборот в день), эта сила, как правило, мала по сравнению с другими силами.
Эффекты обычно становятся заметными только для движений, происходящих на больших расстояниях при длительных периодах времени, таких как крупномасштабное движение воздуха атмосферы (вихреобразные циклоны) или воды в океане (Гольфстрим). Такие движения, как правило, происходят вдоль поверхности Земли, поэтому для них часто важна только горизонтальная составляющая силы Кориолиса. Она заставляет движущиеся вдоль поверхности Земли объекты (от полюсов к экватору) отклоняться вправо (по отношению к направлению движения) в северном полушарии и влево в южном. Эффект горизонтального отклонения сильнее близ полюсов, так как эффективная скорость вращения вокруг локальной вертикальной оси значительнее там и уменьшается до нуля у экватора[⇨].

Предварительное рассмотрение[править | править код]

Пусть в какой-либо инерциальной системе отсчёта (ИСО) имеется радиус, равномерно вращающийся вокруг перпендикулярной к нему оси. Если вдоль этого радиуса в направлении от центра вращения с постоянной относительно радиуса скоростью движется материальная точка (МТ), то вместе с увеличением расстояния от центра вращения, в ИСО возрастает и компонента скорости тела, направленная перпендикулярно радиусу. Значит, в данном случае компонента ускорения точки, перпендикулярная радиусу, отлична от нуля. Эта компонента ускорения МТ в инерциальной системе отсчёта и представляет собой ускорение Кориолиса.

При рассмотрении того же самого движения в неинерциальной системе отсчёта (НИСО), вращающейся вместе с радиусом, наблюдаемая картина будет другой. Действительно, в этой системе отсчёта скорость МТ не изменяется и, соответственно, компонента её ускорения, перпендикулярная радиусу, равна нулю. Значит, движение выглядит так, как будто во вращающейся системе отсчёта на МТ действует дополнительная сила, направленная противоположно ускорению Кориолиса и компенсирующая его. Эта дополнительная «сила», вводимая для удобства описания движения, но в действительности отсутствующая, и есть сила Кориолиса. Понятно, что данная «сила» позволяет учесть влияние вращения подвижной системы отсчёта на относительное движение МТ, но при этом никакому реальному взаимодействию МТ с другими телами не соответствует[6].

Более строго — ускорение Кориолиса есть удвоенное векторное произведение вектора угловой скорости вращения системы координат на вектор скорости движения МТ относительно вращающейся системы координат[7]. Соответственно, сила Кориолиса равна произведению массы МТ на её ускорение Кориолиса, взятому со знаком минус[1].

Определение[править | править код]

Пусть имеются две системы отсчёта, одна из которых (S) инерциальная, а другая {displaystyle left(S,'right)} движется относительно первой произвольным образом и в общем случае является неинерциальной. Будем также рассматривать движение произвольной материальной точки массы m. Её ускорение по отношению к первой системе отсчёта обозначим {vec  a}_{a}, а по отношению ко второй — {vec  a}_{r}.

Связь между ускорениями {vec  a}_{a} и {vec  a}_{r} следует из теоремы Кориолиса (см. ниже)[8]:

{vec  a}_{a}={vec  a}_{r}+{vec  a}_{e}+{vec  a}_{K},

где {vec  a}_{e} — перено́сное ускорение, а {vec  a}_{K} — ускорение Кориолиса (кориолисово ускорение, поворотное ускорение). Напомним, что переносным ускорением называют ускорение той точки системы S,' относительно системы S, в которой в данный момент находится рассматриваемая материальная точка[9].

После умножения на массу точки и учёта второго закона Ньютона m{vec  a}_{a}={vec  F}, данное соотношение можно представить в виде

m{vec  a}_{r}={vec  F}+(-m{vec  a}_{e})+(-m{vec  a}_{K}).

Величину (-m{vec  a}_{e}) называют переносной силой инерции, а величину {displaystyle (-m{vec {a}}_{K})} — силой Кориолиса (кориолисовой силой). Обозначив их {vec  F}_{e} и {vec  F}_{K} соответственно, можно записать

m{vec  a}_{r}={vec  F}+{vec  F}_{e}+{vec  F}_{K}.

Полученное выражение выражает основной закон динамики для неинерциальных систем отсчёта.

Из кинематики известно, что

{vec  a}_{K}=2left[{vec  omega }times {vec  v}_{r}right],

где {vec {omega }} — угловая скорость вращения неинерциальной системы отсчёта S,', {vec  v}_{r} — скорость движения рассматриваемой материальной точки в этой системе отсчёта; квадратными скобками обозначена операция векторного произведения.
С учётом этого для силы Кориолиса выполняется

{vec  F}_{K}=-2,m,left[{vec  omega }times {vec  v}_{r}right].

Замечания

  1. Согласно принятой в русскоязычной литературе терминологии, кориолисово ускорение материальной точки — это часть её ускорения в инерциальной системе отсчёта S[7][10]. Этим оно отличается, например, от центробежного ускорения, возникающего в неинерциальной системе отсчёта S,'.
  2. В иноязычной литературе встречается альтернативное определение кориолисового ускорения с противоположным знаком: {vec  a}_{K}equiv -2left[{vec  omega }times {vec  v}_{r}right]. В таком случае кориолисово ускорение и кориолисова сила оказываются связаны соотношением: {vec  a}_{K}={frac  {F_{K}}{m}}[11][12][13][14]. В рамках такого определения кориолисово ускорение является частью ускорения тела в неинерциальной системе отсчёта S,'.

Теорема Кориолиса[править | править код]

Пусть точка совершает сложное движение: движется относительно неинерциальной системы отсчёта S,' со скоростью {vec  {v}}_{r} ; система S,' при этом сама движется относительно инерциальной системы координат S, причём линейная скорость движущегося в трёхмерном пространстве произвольным образом мгновенного центра скоростей O равна vec {v}_0 , а угловая скорость вращения системы S,' относительно мгновенного центра скоростей равна vecomega. Мгновенный центр скоростей находится с помощью теоремы вращения Эйлера.

Тогда абсолютная скорость рассматриваемой точки (то есть её линейная скорость в инерциальной системе координат) будет такой:

{vec  v}={vec  {v}}_{0}+left[{vec  omega }times {vec  R}right]+{vec  {v}}_{r}, причём {frac  {d}{dt}}{vec  R}=left[{vec  omega }times {vec  R}right]+{vec  {v}}_{r},

где vec R — радиус-вектор точки относительно мгновенного центра скоростей O. Первые два слагаемых в правой части равенства представляют собой переносную скорость точки, а последнее — её относительную скорость.

Продифференцируем это равенство по времени:

{frac  {d}{dt}}{vec  v}={frac  {d}{dt}}{vec  {v}}_{0}+{frac  {d}{dt}}left[{vec  omega }times {vec  R}right]+{frac  {d}{dt}}{vec  {v}}_{r}.

Найдём значение каждого слагаемого в инерциальной системе координат:

frac{d}{dt} vec {v}_0 = vec {a}_0 ,
{displaystyle {frac {d}{dt}}left[{vec {omega }}times {vec {R}}right]=left[{vec {varepsilon }}times {vec {R}}right]+left[{vec {omega }}times {frac {d}{dt}}{vec {R}}right]=left[{vec {varepsilon }}times {vec {R}}right]+{biggl [}{vec {omega }}times left[{vec {omega }}times {vec {R}}right]{biggr ]}+left[{vec {omega }}times {vec {v}}_{r}right],}
{frac  {d}{dt}}{vec  {v}}_{r}=left[{vec  omega }times {vec  {v}}_{r}right]+{frac  {{stackrel  {~}{d_{r}}}{vec  {v}}_{r}}{dt}},

где {vec  {a}}_{r}={frac  {{stackrel  {~}{d_{r}}}{vec  {v}}_{r}}{dt}} — линейное ускорение точки относительно системы S,', {vec  varepsilon }={frac  {d{vec  omega }}{dt}} — угловое ускорение системы S,'.

Таким образом, имеем:

{displaystyle {frac {d}{dt}}{vec {v}}={vec {a}}={vec {a}}_{0}+left[{vec {varepsilon }}times {vec {R}}right]+{biggl [}{vec {omega }}times left[{vec {omega }}times {vec {R}}right]{biggr ]}+{vec {a}}_{r}+2left[{vec {omega }}times {vec {v}}_{r}right].}

Полученное равенство служит математическим выражением теоремы Кориолиса: Абсолютное ускорение точки в сложном движении равно геометрической сумме её переносного ускорения (сумма первых трёх слагаемых в правой части), относительного ускорения (четвёртое слагаемое) и добавочного кориолисова ускорения (последнее слагаемое), равного 2left[{vec  omega }times {vec  {v}}_{r}right].

Используя обозначения
{displaystyle {vec {a}}_{e}={vec {a}}_{0}+left[{vec {varepsilon }}times {vec {R}}right]+{biggl [}{vec {omega }}times left[{vec {omega }}times {vec {R}}right]{biggl ]}} и {vec  a}_{K}=2left[{vec  omega }times {vec  {v}}_{r}right], получим запись теоремы Кориолиса в более сжатом виде:

{vec  a}_{a}={vec  a}_{e}+{vec  a}_{r}+{vec  a}_{K}.

Сам Кориолис выражал в 1835 г. свои результаты в иной форме, вводя в рассмотрение переносную и кориолисову силы инерции; общепринятая же ныне чисто кинематическая формулировка теоремы Кориолиса предложена в 1862 г. Анри Эме Резалем[15].

В частном случае вращательного движения инерциальной системы отсчёта относительно начала координат для того, чтобы точка относительно неинерциальной системы отсчёта двигалась прямолинейно по радиусу к оси вращения (см. рис.), необходимо приложить к ней силу, которая будет противодействующей суммы силы Кориолиса -2mleft[{vec  omega }times {vec  {v}}_{r}right], переносной вращательной силы -mleft[{vec  varepsilon }times {vec  R}right] и переносной силы инерции поступательного движения системы отсчёта -m{vec  {a}}_{0}. Составляющая же ускорения left[{vec  omega }times left[{vec  omega }times {vec  R}right]right] не отклонит тело от этой прямой, так как является осестремительным переносным ускорением и всегда направлена по этой прямой. Действительно, если рассматривать уравнение такого движения, то после компенсации в нём вышеупомянутых сил получится уравнение {displaystyle left[{vec {omega }}times left[{vec {omega }}times {vec {R}}right]right]+{vec {a}}_{r}=0}, которое если умножить векторно на {vec  R}, то с учётом left[{vec  R}times left[{vec  omega }times left[{vec  omega }times {vec  R}right]right]right]=0 получим относительно {vec  {v}}_{r} дифференциальное уравнение left[{vec  R}times {frac  {{stackrel  {~}{d_{r}}}{vec  {v}}_{r}}{dt}}right]equiv 0, имеющее при любых {vec  R} и {vec  {v}}_{r} общим решением left[{vec  R}times {vec  {v}}_{r}right]={vec  {Const}}, которое и является уравнением такой прямой — left[{vec  R}times {vec  {v}}_{r}right]={vec  {0}}.

Обсуждение[править | править код]

Правило Жуковского[править | править код]

Н. Е. Жуковский предложил удобный способ нахождения кориолисова ускорения:

Ускорение Кориолиса {vec  a}_{K} можно получить, спроецировав вектор относительной скорости точки {vec  {v}} на плоскость, перпендикулярную вектору переносной угловой скорости {vec {omega }}, увеличив полученную проекцию в  2omega раз и повернув её на 90 градусов в направлении переносного вращения.

Физический смысл[править | править код]

Пусть точка движется со скоростью {vec  {v}} вдоль прямой к центру координат инерциальной системы отсчёта (см. рис.).

Тогда данное движение приведёт к изменению расстояния до центра вращения  R и, как следствие, абсолютной скорости движения точки неинерциальной системы отсчёта, совпадающей с движущейся точкой — её переносной скорости.

Как мы знаем, эта скорость движения равна

{vec  {v}}_{e}=left[{vec  omega }times {vec  R}right].

Данное изменение будет равно:

d{vec  {v}}_{e}=left[{vec  omega }times d{vec  R}right].

Проведя дифференцирование по времени, получим

{displaystyle {vec {a}}=left[{vec {omega }}times {vec {v}}right].}

(Направление данного ускорения перпендикулярно {vec {omega }} и {vec  {v}}).

С другой стороны, вектор {vec  {v}} для точки, остающейся неподвижной относительно инерциального пространства, повернётся относительно неинерциального на угол omega dt. Или приращение скорости будет

{displaystyle d{v}_{r}=vsin omega dt=vtimes omega dt.}

При {displaystyle trightarrow 0,} соответственно, второе ускорение будет:

{displaystyle {vec {a}}=left[{vec {omega }}times {vec {v}}right].}

Общее ускорение будет

{displaystyle {vec {a}}_{k}=2left[{vec {omega }}times {vec {v}}right].}

Как видно, система отсчёта не претерпела изменения угловой скорости {vec  omega }.
Линейная скорость относительно неё не меняется и остаётся {vec  v}. Тем не менее, ускорение не равно нулю.

Если тело движется перпендикулярно направлению к центру вращения, то доказательство будет аналогичным.
Ускорение из-за поворота вектора скорости останется

{vec  a}=left[{vec  omega }times {vec  v}right],

а также прибавляется ускорение в результате изменения центростремительного ускорения точки.

Введение в рассмотрение силы Кориолиса производится для того, чтобы иметь возможность описывать движение тел в неинерциальных системах отсчёта с помощью уравнений, по форме совпадающих с уравнением второго закона Ньютона. В то же время сила Кориолиса никак не связана с каким-либо взаимодействием рассматриваемого тела с другими телами, а все её свойства определяются только обстоятельствами кинематического характера, обусловленными выбором конкретной неинерциальной системы отсчёта. В связи с этим о силе Кориолиса говорят, что она не является физической силой, и называют её псевдосилой[16].

Сила Кориолиса не инвариантна относительно перехода из одной системы отсчёта в другую. Она не подчиняется закону действия и противодействия. Движение тела под действием силы Кориолиса аналогично движению во внешнем силовом поле. Сила Кориолиса всегда является внешней по отношению к любому движению системы материальных тел.

Сила Кориолиса и закон сохранения момента импульса[править | править код]

Если вращающаяся лаборатория, принимаемая за неинерциальную систему отсчёта, имеет конечный момент инерции, то в соответствии с законом сохранения момента импульса при движении тела по радиусу, перпендикулярному оси вращения, угловая скорость вращения будет увеличиваться (при движении тела к центру) или уменьшаться (при движении тела от центра). Рассмотрим эту ситуацию с точки зрения неинерциальной системы.

Хорошим примером может быть человек, который перемещается в радиальном направлении по вращающейся карусели (например, держась за ведущий к центру поручень). При этом с точки зрения человека он при движении к центру будет совершать работу против центробежной силы (эта работа пойдёт на увеличение энергии вращения карусели). На него также будет действовать сила Кориолиса, которая стремится отклонить его движение от радиального направления («сносит» его вбок), и противодействуя сносу (прилагая поперечное усилие к поручню), он будет раскручивать карусель.

При движении от центра центробежная сила будет совершать работу над человеком (за счёт уменьшения энергии вращения), а противодействие силе Кориолиса будет тормозить карусель.

Сила Кориолиса в природе и технике[править | править код]

Самый важный случай действия силы Кориолиса связан с суточным вращением Земли.
Поскольку Земля вращается, для правильного анализа движения объектов в системах, привязанных к Земле, необходимо учитывать силу Кориолиса.
Сила Кориолиса, вызванная вращением Земли, может быть замечена при наблюдении за движением маятника Фуко[17].

В Северном полушарии приложенная к движущемуся поезду сила Кориолиса направлена перпендикулярно рельсам, имеет горизонтальную составляющую и стремится сместить поезд вправо по ходу движения. Из-за этого реборды колёс, расположенных по правой стороне поезда, оказываются прижаты к рельсам.
Кроме того, поскольку сила Кориолиса приложена к центру масс каждого вагона, то она создаёт момент силы, из-за которого возрастает нормальная сила реакции, действующая на колёса со стороны правого рельса в направлении, перпендикулярном поверхности рельса, и уменьшается аналогичная сила, действующая со стороны левого рельса. Понятно, что в силу 3-го закона Ньютона сила давления вагонов на правый рельс также больше, чем на левый[18].
На одноколейных железных дорогах поезда обычно ходят в обоих направлениях, поэтому последствия действия силы Кориолиса оказываются одинаковыми для обоих рельсов. Иначе обстоят дела на двухколейных дорогах. На таких дорогах по каждой колее поезда движутся только в одном направлении, вследствие чего действие силы Кориолиса приводит к тому, что правые по ходу движения рельсы изнашиваются сильнее, чем левые. Очевидно, что в Южном полушарии из-за изменения направления силы Кориолиса больше изнашиваются левые рельсы[19]. На экваторе эффект отсутствует, поскольку в этом случае сила Кориолиса направлена по вертикали (при движении вдоль экватора) или равна нулю (при движении вдоль меридиана).

Кроме того, сила Кориолиса проявляется и в глобальных масштабах.
Вместо того чтобы течь непосредственно из области высокого давления в низкое, как это было бы в невращающейся системе, ветры и течения, как правило, текут вправо от этого направления в Северном полушарии и влево от этого направления в Южном. Поэтому правые берега рек в Северном полушарии более крутые — их подмывает вода под действием этой силы[20] (см. Закон Бэра). В Южном полушарии всё происходит наоборот. Сила Кориолиса ответственна также и за вращение циклонов и антициклонов[21] (см. геострофический ветер): в Северном полушарии вращение воздушных масс происходит в циклонах против часовой стрелки, а в антициклонах — по часовой стрелке; в Южном — наоборот: по часовой стрелке в циклонах и против — в антициклонах. Отклонение ветров (пассатов) при циркуляции атмосферы — также проявление силы Кориолиса.

Силу Кориолиса необходимо учитывать при рассмотрении планетарных движений воды в океане. Она является причиной возникновения гироскопических волн[22], волн Россби.

При идеальных условиях сила Кориолиса определяет направление закручивания воды — например, при сливе в раковине (феномен «обратного закручивания воды при стоке»). На практике зависимость направления закручивания воды от полушария проявляется лишь в тщательно спланированных экспериментах, проведённых вдали от экватора, в которых используются строго симметричные сосуды, многочасовой отстой жидкости перед измерением, контроль внешних условий (стабильность температуры и отсутствие потоков воздуха)[23]. Отклонения от таких идеальных условий оказывают на направление закручивания воды большее влияние, чем сила Кориолиса.

См. также[править | править код]

  • Сила Кориолиса в гидроаэромеханике
  • Центростремительное ускорение
  • Кориолисов расходомер
  • Увлечение инерциальных систем отсчёта

Примечания[править | править код]

  1. 1 2 Тарг С. М. Кориолиса сила // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 461. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  2. Фрейман Л. С. К истории доказательства теоремы Кориолиса // Труды института истории естествознания и техники / Гл. ред. Н. А. Фигуровский. — М.: АН СССР, 1956. — Т. 10. — С. 213—244.
  3. Coriolis G. Sur les équations du mouvement relative des systèmes de corps (фр.) // Journ. Ecole polytechn. — 1835. — Vol. 15, no 24. — P. 142—154. Архивировано 21 января 2018 года.
  4. Manuel López-Mariscal.  Further Coriolis correlation considerations (англ.) // Physics Today. — 2012. — Vol. 65. — P. 8. — doi:10.1063/PT.3.1764. (недоступная ссылка)
  5. Christopher M. Graney.  Coriolis effect, two centuries before Coriolis (англ.) // Physics Today. — 2011. — Vol. 64. — P. 8. — doi:10.1063/PT.3.1195. (недоступная ссылка)
  6. Ишлинский А. Ю. Классическая механика и силы инерции. — М.: «Наука», 1987. — С. 70. — 320 с.
  7. 1 2 Тарг С. М. Кориолиса ускорение // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 461. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  8. Маркеев А. П. Теоретическая механика: Учебник для университетов. — М.: ЧеРО, 1999. — С. 74. — 572 с.
  9. Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 156. — 416 с. — ISBN 5-06-003117-9.
  10. Хайкин С. Э. Силы инерции и невесомость. — М.: «Наука», 1967. — С. 163—164.
  11. N. de Nevers. Air Pollution Control Engeneering. — 2. — The MkGraw-Hill Companies, Inc., 1999. — С. 88. — 586 с. — ISBN 0-07-039367-2.
  12. Bela G. Liptak. Flow Measurement. — CRS Press, 1993. — С. 51. — 211 с. — ISBN 0-8019-8386-X.
  13. A. Berthoz, Werner Graf, Pierre Paul Vidal. The Head-neck Sensory Motor System. — 1. — Oxford University Press, 1992. — С. 216. — 748 с. — ISBN 0-19-506820-3.
  14. E. Brinckmann. Biology in Space and Life on Earth: Effects of Spaceflight on Biological Systems. — 1. — Heppenheim: Wiley-VCH, 2007. — С. 30. — ISBN 978-3-527-40668-5.
  15. Веселовский И. Н.  Очерки по истории теоретической механики. — М.: Высшая школа, 1974. — 287 с. — С. 203—204.
  16. Ишлинский А. Ю. Классическая механика и силы инерции. — М.: «Наука», 1987. — С. 69—70. — 320 с.
  17. Сила Кориолиса. Дата обращения: 7 декабря 2009. Архивировано 16 ноября 2012 года.
  18. Матвеев А. Н. Механика и теория относительности. — Издание 2-е, переработанное. — М.: Высш. шк., 1986. — С. 167. — 320 с. — 28 000 экз.
  19. Хайкин С. Э. Силы инерции и невесомость. — М.: «Наука», 1967. — С. 161—163.
  20. Краткая географическая энциклопедия. Закон Бэра. Дата обращения: 7 декабря 2009. Архивировано 7 декабря 2010 года.
  21. Сурдин В.  Ванна и закон Бэра // Квант. — 2003. — № 3. — С. 13. Архивировано 3 июля 2009 года.
  22. Научная Сеть. Колебания и волны. Лекции. Дата обращения: 7 декабря 2009. Архивировано 12 февраля 2007 года.
  23. Can somebody finally settle this question: Does water flowing down a drain spin in different directions depending on which hemisphere you’re in? And if so, why?, Scientific American. Архивировано 5 ноября 2016 года. Дата обращения: 4 ноября 2016.

Литература[править | править код]

  • Persson, A. The Coriolis Effect: Four centuries of conflict between common sense and mathematics, Part I: A history to 1885 // History of Meteorology 2 (2005): 1-24.  (англ.)

Ускорение и сила Кориолиса – что это?

Опубликовано 19 Фев 2014
Рубрика: Механика | 2 комментария

Гаспар-Гюстав де Кориолис на фоне спиральной галактикиИз этой статьи вы не узнаете ничего нового о крутых правых берегах рек северного полушария, о направлениях вращения атмосферных циклонов и антициклонов, о пассатах и о закручивании воды в сливном отверстии ванны или раковины. Эта статья расскажет вам об…

…истоках понятий «ускорение Кориолиса» и «сила Кориолиса».

Прежде чем начать отвечать на вопрос заголовка статьи я хочу напомнить несколько определений. Для упрощения понимания при изучении сложных движений тел в теоретической механике были введены понятия относительного движения и переносного, а так же присущих им скоростей и ускорений.

Относительное движение характеризуется относительной траекторией, относительной скоростью vотн и относительным ускорением aотн и представляет собой движение материальной точки относительно подвижной системы координат.

Переносное движение, характеризующееся переносной траекторией, переносной скоростью vпер и переносным ускорением aпер, представляет собой движение подвижной системы координат вместе со всеми жестко связанными с ней точками пространства по отношению к неподвижной (абсолютной) системе координат.

Абсолютное движение, характеризующееся абсолютной траекторией, абсолютной скоростью v и абсолютным ускорением a, это — движение точки относительно неподвижной системы координат.

Далее в тексте статьи для отличия векторных величин от абсолютных значений приняты следующие обозначения:

a — вектор

a  — абсолютное значение (модуль)

Приношу извинения за отступление от использования общепринятых символов в обозначении векторов.

Основные формулы сложного движения материальной точки в векторной форме:

v = vотн + vпер

a = aотн + aпер + aкор

Если со скоростью все понятно и логично, то с ускорением все не так очевидно. Что это за третий вектор aкор? Откуда он взялся? Именно ему – третьему слагаемому векторного уравнения ускорения материальной точки при сложном движении – ускорению Кориолиса — и посвящена эта статья.

Если относительное ускорение является параметром изменения относительной скорости в относительном движении материальной точки, переносное ускорение – параметром изменения переносной скорости в переносном движении, то ускорение Кориолиса характеризует изменение относительной скорости точки в переносном движении и переносной скорости в относительном движении. Непонятно? Разберемся, как обычно, на примере!

Как возникает ускорение Кориолиса

1. На рисунке, расположенном ниже, изображен механизм, состоящий из кулисы, вращающейся с постоянной угловой скоростью ωпер вокруг точки O и ползун, перемещающийся по кулисе с постоянной линейной скоростью vотн. Следовательно, угловое ускорение кулисы и связанной с ней подвижной системы координат (ось x) εпер равно нулю. Так же равно нулю и линейное ускорение точки C ползуна  aотн относительно кулисы (подвижной системы координат – оси х).

ωпер = const     εпер = 0

vотн = const       aотн = 0

2. Как можно догадаться по аббревиатурам – относительное движение в нашем примере – это прямолинейное движение ползуна — точки C — по кулисе, а переносное движение – это вращение ползуна вместе кулисой вокруг центра – точки О. Ось x0 – ось неподвижной системы координат.

3. То, что ускорения εпер = 0 и aотн = 0 выбрано в примере не случайно. Это облегчит и упростит восприятие и понимание сути и природы возникновения кориолисова ускорения и рождаемой этим ускорением – силы Кориолиса.

Ускорение Кориолиса и сила Кориолиса - схема возникновения

4. При переносном движении (вращении кулисы) вектор относительной линейной скорости vотн1 повернется за малый промежуток времени dt на весьма незначительный угол и получит при этом приращение (изменение)  в виде вектора dvотн.

 = ωпер dt

dvотн = vотн2  vотн1

dvотн vотн  = vотн ωпер dt

5. Вектор относительной скорости точки C vотн2 в положении №2 сохранил свой размер и направление относительно подвижной системы координат – оси x. Но в абсолютном пространстве этот вектор повернулся за счет переносного движения на угол и переместился за счет относительного движения на расстояние dS!

6. При стремящемся к нулю угле поворота вектор изменения относительной скорости dvотн будет перпендикулярен вектору относительной скорости vотн2.

7. Изменение скорости может быть вызвано только наличием ненулевого ускорения, которое и приобретет точка С. Направление вектора этого ускорения a1 совпадает  с направлением вектора изменения относительной скорости dvотн.

a1 dvотн / dt = vотн ωпер

8. При относительном движении (прямолинейном перемещении точки C ползуна по кулисе) вектор переносной линейной скорости vпер за незначительный промежуток времени dt переместится на расстояние dS и получит приращение (изменение) — вектор dvпер.

dS = vотн dt

dvпер = vпер2  vпер1  dvцпер

dvпер = ωпер * dS = ωпер * vотн * dt

9. Вектор переносной скорости точки C vпер2 в положении №2 увеличил свой размер и сохранил направление относительно подвижной системы координат – оси x. В неподвижной системе координат (ось x0) этот вектор повернулся за счет переносного движения на угол и переместился на расстояние dS благодаря переносному движению!

10. По аналогии с относительной скоростью дополнительное изменение переносной скорости может быть вызвано только наличием ненулевого ускорения, которое приобретет точка С в этом движении. Направление вектора этого ускорения a2 совпадает  с направлением вектора изменения переносной скорости dvпер.

a2 dvпер / dt = ωпер vотн

11. Появление вектора изменения переносной скорости dvцпервызвано переносным движением (вращением)! На точку C действует переносное ускорение aпер – в нашем случае центростремительное, вектор которого направлен к центру вращения точке O.

aпер2 ωперS2

В нашем примере это ускорение действует и в начальный момент времени (в положении №1), его значение равно:

aпер1 ωперS1

12. Векторы a1 и a2 имеют одинаковое направление! На рисунке это визуально не совсем так по причине невозможности начертить понятную схему при близком к нулю угле поворота . Чтобы найти полное добавочное ускорение точки C, которое она получила из-за изменения вектора относительной скорости vотн1 в переносном движении и вектора переносной скорости vпер1 в относительном движении необходимо сложить векторы a1 и a2. Это и есть ускорение Кориолиса точки C.

aкор = a1 + a2

aкор a1 a= 2 * ωпер vотн

13. Основные зависимости скорости и ускорения точки C в неподвижной системе координат в векторной и абсолютной формах для нашего примера выглядят так:

v vотн— + vпер

v = (vотнωперS2)0,5

a  = aпер + aкор

a = (ωперSaкор2)0,5 = (ωперS+ 4 * ωперvотн2)0,5

Итоги и выводы

Ускорение Кориолиса возникает при сложном движении точки только при одновременном выполнении трех независимых условий:

1. Переносное движение должно быть вращательным. То есть угловая скорость переносного движения должна быть не равна нулю.

2. Направление относительного движения не должно быть параллельно оси переносного вращения.

3. Относительное движение должно быть поступательным. То есть линейная скорость относительного движения не должна быть равна нулю.

Для определения направления вектора ускорения Кориолиса необходимо повернуть вектор линейной относительной скорости на 90° в сторону переносного вращения.

Если точка обладает массой, то согласно второму закону Ньютона кориолисово ускорение  совместно с массой создадут силу инерции, направленную в сторону противоположную вектору ускорения. Это и есть сила Кориолиса!

Именно сила Кориолиса, действуя на некотором плече, создает момент, который называется гироскопическим моментом!

О гироскопических явлениях можно прочитать в целом ряде других статей этого блога.

В этой статье мне, как всегда, хотелось кратко и доходчиво рассказать о весьма непростых понятиях – об ускорении и силе Кориолиса. Удалось это или нет с интересом прочту в Ваших комментариях, уважаемые читатели!

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

Содержание:

  1. Сложное движение точки
  2. Абсолютный, относительный и переносной движения точки
  3. Теорема о сложении скоростей в сложном движении точки
  4. Теорема о сложении ускоренного в сложном движении точки (Теорема Кориолиса *)
  5. Кориолисово ускорения
  6. Правило Жуковского
  7. Примеры решения задач на сложное движение точки
  8. Сложное движение точки и решение задач
  9. Порядок решения задач на сложное движение точки
  10. Примеры решения задач
  11. Задание темы К4 (сложное движение точки)
  12. Пример решения задания темы К4
  13. Сложное движение точки образцы и примеры
  14. Относительное, переносное и абсолютное движение точки
  15. Относительные, переносные и абсолютные скорости и ускорение
  16. Сложение скоростей и ускорений при сложном движении точки
  17. Примеры решения задач
  18. Абсолютное, относительное и переносное движение точки
  19. Центральная операция кинематики и динамики. Абсолютная и относительная производные по времени от вектора функции
  20. Теорема о сложении скоростей
  21. Теорема о сложении ускорений
  22. Вращательное и осевое ускорение в случае вращения тела вокруг неподвижной оси
  23. Ускорение Кориолиса
  24. Случаи превращения в ноль ускорения Кориолиса
  25. Физические причины возникновения ускорения Кориолиса
  26. Сложное движение материальной точки. Относительное, переносное и абсолютное движение материальной точки
  27. Теорема о сложении скоростей в сложном движении материальной точки
  28. Теорема Кориолиса
  29. Модуль, направление и физические причины возникновения  ускорения Кориолиса
  30. Методика решения задач на сложное движение материальной точки

Сложное движение точки – это такое движение, при котором точка (тело) одновременно участвует в двух или нескольких движениях. Примером сложного движения могут служить: движение пассажира. перемещающегося в вагоне движущегося поезда; движение человека, перемещающегося по лестнице движущегося эскалатора.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Сложное движение точки

Сложное движение точки – это такое движение, при котором точка участвует одновременно в двух или нескольких движениях. Примеры сложного движения точки (тела): лодка, переплывающая реку; человек, идущий по движущемуся эскалатору; камень подвижной кулисы, поршень качающегося цилиндра; шары центробежного регулятора Уатта. Для описания сложного движения точки или для представления движения в виде сложного используются неподвижная система отсчета, связанная с каким-либо условно неподвижным телом, например, с Землей, и подвижная система отсчета, связанная с каким-либо движущимся телом.

Абсолютный, относительный и переносной движения точки

В разделе 2 изучалось движение точки по отношению к системе координат (системы отсчета), которую считали условно неподвижной. В то же время, рассматривая многие задачи механики, целесообразнее, а в некоторых случаях просто необходимо, проводить исследования движения точки одновременно по отношению в двух (или более) систем отсчета, из которых одна считается неподвижной, а другая (другие) движется определенным образом по отношению к ней.

Движение точки по отношению к нескольким системам отсчета называется сложным.

Например, в сложном движении находятся поршень двигателя движущегося автомобиля; груз, который поднимается краном, одновременно перемещается вдоль направляющих и поворачивается вокруг своей вертикальной оси; движение человека по вагону подвижного состава.
В этом разделе будем рассматривать движение точки относительно двух систем отсчета.
Рассмотрим движущееся тело А, которое в отдельных случаях будем называть переносной средой, в отношении которого движется точка М, которая не принадлежит телу (рис. 7.1). С телом А неизменно свяжем систему координат Сложное движение точки которая движется относительно другой системы Сложное движение точки которую условно считаем неподвижной.

Сложное движение точки

Система координат Сложное движение точкиназывается подвижной системой отсчета, а система Сложное движение точкинеподвижной системе отсчета. Заметим, что неподвижную систему отсчета очень часто связывают с поверхностью Земли или неподвижными объектами на ней.
Поскольку точка М движется относительно двух систем отсчета, то ее движение, по определению, будет сложным. Введем основные понятия и обозначения в случае сложного движения точки.
Движение точки М по отношению к неподвижной системе отсчета называется абсолютным движением. Уравнения абсолютного движения точки можно записать в виде:

Сложное движение точки

Траектория, скорость и ускорение точки в абсолютном движении называются абсолютной траекторией, скоростью и ускорением точки. Абсолютные скорость и ускорение будем обозначать Сложное движение точкииСложное движение точки
Движение точки М относительно подвижной системы отсчета Сложное движение точки называется
относительным движением точки, а траектория, скорость и ускорение – относительной траекторией, скоростью и ускорением. Относительные скорость и ускорение обозначают Сложное движение точки и Сложное движение точки(от латинского relativus – относительный). Уравнения относительного движения точки имеют вид:

Сложное движение точки

Движение подвижной системы отсчета (а значит и тела А) относительно неподвижной
является для точки М переносным движением. Скорость и ускорение той точки тела А, с которой в данный момент времени совпадает движущаяся точка М, называется соответственно переносной скоростью и переносным ускорением точки в этот момент. Переносная скорость и ускорение обозначаются Сложное движение точки и Сложное движение точки (от латинского emporter – переносить).

В приведенном выше примере о человеке, что перемещается в вагоне подвижного состава, с вагоном можно связать подвижную систему координат, а с поверхностью Земли – неподвижную. Тогда движение вагона будет переносным, движение человека относительно вагона – относительным, а движение человека относительно поверхности
Земли – абсолютным. Переносной скоростью и переносным ускорением человека будет скорость и ускорение той точки вагона, в которой в заданный момент находится человек.
Основная задача кинематики сложного движения точки заключается в том, чтобы, зная кинематические характеристики относительного и переносного движений, найти соответствующие им характеристики абсолютного движения.

Теорема о сложении скоростей в сложном движении точки

Теорема. В сложном движении точки ее абсолютная скорость равна векторной сумме относительной и переносной скоростей.

Доказательство. Для доказательства рассмотрим движение точки М (рис. 7.1) относительно подвижной системы отсчета Сложное движение точки связанной с телом А. Для общего случая, движение тела А рассмотрим как движение свободного твердого тела. Следовательно, точка М находится одновременно в двух движениях: относительном – относительно тела А и переносном – вместе с телом. Абсолютным движением точки М будет ее движение относительно неподвижной системы отсчета Сложное движение точки Напомним, что поскольку переносным движением является свободное движение твердого тела, то его можно рассматривать, согласно § 6.1 раздела 6, как совокупность поступательного движения вместе с полюсом (Точка Сложное движение точки ) и сферического вокруг полюса. Сферическую составляющую в каждый момент времени можно заменить (§ 5.1) вращением тела, а значит и подвижной системы координат Сложное движение точки вокруг мгновенной оси Сложное движение точкипроходящей через
точку Сложное движение точкис угловой скоростью переносного движения Сложное движение точки
Положение точки М в подвижной системе координат Сложное движение точки определяется радиусом-вектором Сложное движение точки в неподвижной – радиусом-вектором Сложное движение точкиа положение начала подвижной системы координат (точка Сложное движение точки) относительно начала О неподвижной – радиусом-вектором Сложное движение точкиВо время движения точки М между радиусами-векторами Сложное движение точкии Сложное движение точкисогласно рис. 7.1 справедлива зависимость

Сложное движение точки

Если координаты точки М в подвижной системе отсчета обозначить через Сложное движение точки а орты осей этой системы – Сложное движение точки то

Сложное движение точки

и тогда 

Сложное движение точки

Абсолютная скорость точки М равна производной по времени от радиусавектораСложное движение точкичто определяет ее положение в абсолютном движении. дифференцируя зависимость (7.5) и учитывая, что ортыСложное движение точкименяют свое направление в пространстве, получим

Сложное движение точки

Изменение направлений ортов Сложное движение точки происходит от вращения осей подвижной системы отсчета вокруг мгновенной оси Сложное движение точки с угловой скоростью Сложное движение точкиПоэтому производные по времени от единичных ортов можно рассматривать как скорости концов этих ортов от этого вращения. Согласно формуле (3.17) раздела 3 запишем

Сложное движение точки

После подстановки (7,7) в (7.6) и преобразований с учетом зависимости (7.7), получимСложное движение точки

гдеСложное движение точкискорость точки Сложное движение точки начала подвижной системы координат.

Зависимость (7.8) определяет вектор абсолютной скорости точки М. Проведем ее анализ.
Поскольку в последних трех слагаемых зависимости (7.8) являются производные по времени от соответствующих уравнений относительного движения точки М (7.2), то согласно с (2.18) они являются проекциями вектора относительной скорости точки на оси
подвижной системы координат

Сложное движение точкиа сумма трех слагаемых выражает вектор относительной скорости точки М

Сложное движение точки

Покажем, что первые две слагаемых зависимости (7.8) определяют вектор переносной скорости точки М. Действительно, переносная скорость точки, по определению, это скорость точки, неизменно связанной с подвижной системой отсчета, с которой в данный момент времени совпадает движущаяся точка М. Такой точкой в нашем случае является точка М тела А, находящегося в свободном движении. А по формуле (6.3) скорость этой точки равна сумме скорости полюса Сложное движение точкии вращательной скорости вокруг мгновенной
оси Сложное движение точкито есть

Сложное движение точки

Учитывая (7.9) и (7.10), зависимость (7.8) перепишем в виде

Сложное движение точки

то есть абсолютная скорость точки равна векторной сумме переносной и относительной скоростей. Теорема доказана.
Следует заметить, что в случае, когда переносным движением является движение свободного твердого тела, то переносная скорость сама определяется диагональю
параллелограмма, построенного на векторах скорости полюсаСложное движение точки и скорости точки от вращения вокруг него Сложное движение точки Если же переносное движение поступательное, то зависимость (7.10) принимает вид

Сложное движение точки

В случае вращательного переносного движения Сложное движение точкигде Сложное движение точки– вектор, проведенный из любой точки на оси вращения к точке М.
Исходя из того, что в общем случае абсолютная скорость точки М определяется диагональю параллелограмма, построенного на векторах Сложное движение точкии Сложное движение точкимодуль абсолютной скорости точки можно получить по формуле

Сложное движение точки

Замечания. Если точка М находится в n движениях, то абсолютная скорость точки М равна векторной сумме векторов скоростей составляющих движенийСложное движение точки

Теорема о сложении ускоренного в сложном движении точки (Теорема Кориолиса *)

Теорема. В сложном движении точки ее абсолютное ускорение равно векторной сумме переносного, относительного и кориолисового ускоренний.

Доказательство. Вектор абсолютного ускорения точки М равна

Сложное движение точки

и для его определения продифференцируем зависимость (7.6) по времени.
После возведения соответствующих членов, получимСложное движение точки

Учитывая формулы (7.7),Сложное движение точки

Превратим зависимость (7.14), используя зависимости (7.5), (7.7), (7.9) и (7.15). Получим формулу, выражающую вектор абсолютного ускорения точки МСложное движение точки

где Сложное движение точкиускорения начала подвижной системы координат.

Проведем анализ зависимости (7.16).
Учитывая, что переносным движением в нашем случае является движение свободного твердого тела, то соответственно формуле (6.10) первые три слагаемых формулы (7.16) является вектором переносного ускорения точки

Сложное движение точки

Поскольку в выраженииСложное движение точкиесть вторые производные по времени от соответствующих уравнений относительного движения (7.2), то согласно (2.34) это выражение является вектором относительного ускорения точкиСложное движение точки

Итак, мы установили механический смысл первых шести слагаемых зависимостях (7.16). Но, как видим, в формулу для вектора абсолютного ускорения точки М входит еще одно слагаемое.

Выражение Сложное движение точки

называется вектором кориолисового или поворотного ускорения точки М.
Подставляя формулы (7.17), (7.18) и (7.19) в (7.16), получим

Сложное движение точки

Теорема доказана.
В случае поступательного переносного движенияСложное движение точки а потому переносное ускорение точки М равна ускорению начала подвижной системы отсчета, то есть Сложное движение точки
И одинаковое для всех точек переносного среды. Кроме этого, кориолисово ускорения в этом
случае также равна нулюСложное движение точки и зависимость (7.20) принимает вид

Сложное движение точки

Замечания. Относительные скорость и ускорение определяются в относительной системе отсчета по правилам кинематики точки: по координатного способа – через проекции на оси декартовой системы координат, как вторые производные от уравнений относительного движения точки (7.2) при натуральном способа – через проекции на оси натурального трехгранника относительной траектории.
Переносная скорость и ускорение определяются методами кинематики твердого тела. Если система Сложное движение точки движется поступательно или вращается вокруг неподвижной оси, то используются методы раздела 3. В случае плоского движения переносного среды следует применить правила раздела 4, а для более сложных движений (сферический движение, движение свободного твердого тела) необходимо использовать методы, изложенные в
разделах 5 и 6. Методы определения кориолисового ускорения рассмотрены ниже.

Кориолисово ускорения

Кориолисовым ускорением называется составляющая абсолютного ускорения точки в ее сложном движении, равна удвоенному векторном произведения вектора переносной угловой скорости на вектор относительной скорости этой точки.
В начале выясним физические причины появления кориолисового ускорения. Как известно, вектор ускорения характеризует изменение вектора скорости как по величине, так и по направлению. Так, переносное ускорение характеризует изменение переносной скорости, а относительное -относительной скорости в соответствующих движениях точки М. Какие же изменения и которых кинематических характеристик движения точки, при ее сложном движении, характеризует кориолисово ускорения? Для ответа на этот вопрос рассмотрим движение точки М, равномерно перемещается вдоль радиуса платформы, которая равномерно вращается вокруг оси, перпендикулярной к плоскости платформы (рис. 7.2).

В этом случае переносным движением будет вращения платформы с Сложное движение точкиСложное движение точки
относительным движением – прямолинейное движение точки вдоль радиуса
с Сложное движение точки

Сложное движение точки

Пусть в момент времени Сложное движение точки точка занимала положение М, для которого векторы
переносной и относительной скоростей Сложное движение точкии Сложное движение точкиЗа промежуток времени Сложное движение точки платформа вернулась на некоторый уголСложное движение точки а точка переместилась из положенияСложное движение точкии в
момент времениСложное движение точки векторы переносной и относительной скоростей будут соответственно Сложное движение точки

Поскольку относительное движение равномерное прямолинейный, то относительное ускорение Сложное движение точки то есть за промежуток времени Сложное движение точкивектор Сложное движение точки должен не измениться, а быть постоянным. Однако, как видно из рисунка, за время Сложное движение точки вектор относительной
скорости Сложное движение точки изменил свое направление от Сложное движение точкиЭто изменение вектора относительной
скорости состоялась за счет переносного движения.
Учитывая, что переносное движение – равномерное вращениеСложное движение точкии Сложное движение точкито за промежуток времени Сложное движение точки не должна состояться изменение величины переносной скорости (это изменение характеризует вращательное ускорение, которое в нашем случае равна нулю 0). Сложное движение точки Но, как видно из рис. 7.2, величина переносной скорости меняется от Сложное движение точкиСложное движение точкиОчевидно, что изменение вызвано перемещением точки с положения Сложное движение точки которое произошло за счет относительного движения точки.
Итак, появление кориолисового ускорения обусловлена ​​взаимным влиянием переносного и относительных движений.

Ускорение Кориолиса характеризует изменение направления относительной скорости, обусловленной переносным движением, и величины переносной скорости за счет относительного движения.
Модуль кориолисового ускорения, исходя из (7.19), равна

Сложное движение точки

Рассмотрим случаи отсутствия кориолисового ускорения точки.
Из формулы (7.22) следует, что Сложное движение точкиесли:
1) Сложное движение точки то есть, когда переносное движение поступательное или угловая скорость переносного вращения равна нулю (в моменты, когда направление вращательного движения меняется на противоположный)
2) Сложное движение точкито есть в те моменты времени, когда относительная скорость равна нулю (например, в моменты времени, когда вектор Сложное движение точкименяет свое направление на противоположный).

3)Сложное движение точкиесть, когда векторы Сложное движение точкии Сложное движение точкиколлинеарны (параллельные).
Направление вектора кориолисового ускорения определяется согласно правилу векторного произведения двух векторов Сложное движение точкиВо время практического решения задач целесообразно применять правило Жуковского.
 

Правило Жуковского

Чтобы найти направление кориолисового ускорения, необходимо спроектировать вектор относительной скорости Сложное движение точки на плоскость П, перпендикулярную оси переносного вращения, и вернуть эту проекцию Сложное движение точки на угол Сложное движение точки в сторону переносного вращения (рис. 7.3).
Наличием кориолисового ускорения объясняются различные явления, которые происходят на поверхности Земли вследствие ее вращения. так замечено, что для рек, текущих в
северном полушарии, даже на прямолинейных участках, подмываются больше правы, чем левые берега; при аналогичных условиях на железнодорожных дорогах происходит интенсивнее износ правых рельсов колеи по сравнению с левыми. Все эти явления объясняются появлением кориолисова силы инерции, направленной в сторону, противоположную кориолисового ускорению, о чем пойдет речь в части «Динамика».

Сложное движение точки

Примеры решения задач на сложное движение точки

Задача 1. Тележка А мостового крана, перемещает груз С в горизонтальной плоскости, движется по закону Сложное движение точки в метрах, Сложное движение точки -в секундах). Груз С при этом колеблется на подвесе Сложное движение точкидлиной Сложное движение точкипо закону Сложное движение точки Сложное движение точки – в радианах, Сложное движение точки – в секундах). Найти абсолютные скорость и ускорение груза С в момент времени
Сложное движение точки

Сложное движение точки

Решение. Рассмотрим движение груза С, как материальной точки, находится в сложном движении. выберем неподвижную Сложное движение точкии подвижную Сложное движение точкисистемы координат, причем последнюю свяжем с подвижным тележкой (рис. 7.5). Тогда абсолютным движением груза С будет его движение относительно системы Сложное движение точкипереносным – движение подвижной системы Сложное движение точкиотносительно неподвижной Сложное движение точкиили, что одно и тоже, поступательное движение тележки, а относительным движением – колебания груза на подвесе (криволинейное движение
точки С по кругу).

Сложное движение точки

Для определения абсолютной скорости груза используем зависимость (7.11)

Сложное движение точки

Чтобы определить переносную скорость, условно остановим относительное движение груза.
Тогда движение системы тележка-груз на подвесе рассматриваем как поступательное движение одного тела, происходит по закону Сложное движение точки
Переносная скорость определится

Сложное движение точки

Если Сложное движение точки ВекторСложное движение точкинаправленный параллельно оси Сложное движение точки

Чтобы найти относительную скорость груза, условно остановим переносное движение и тогда относительную скорость подсчитаем как скорость точки С при вращении вокруг точки Сложное движение точки (криволинейное движение точки по окружности).

Сложное движение точки

где Сложное движение точки – относительная угловая скорость, в нашем случае

Сложное движение точки

При Сложное движение точки

Знак минус показывает, что вращение в данный момент времени происходит против положительного направления отсчета угла φ, то есть по часовой стрелки.

Итак,Сложное движение точки

Вектор Сложное движение точки напрямлений перпендикулярно до Сложное движение точки в сторону напрямку кутової швидкості.

Модуль абсолютной скорости груза С определим по зависимости (7.12)Сложное движение точки

где α – угол между векторамиСложное движение точки и Сложное движение точки

При Сложное движение точки

Сложное движение точки

Тогда Сложное движение точки

Для определения абсолютного ускорения груза С используем зависимость (7.20)

Сложное движение точки

Определим составляющие абсолютного ускорения груза. Методика определение переносного и относительного ускоренного аналогична определения переносной и относительной скоростей. переносное ускорение

Сложное движение точки

Знаки Сложное движение точки и Сложное движение точки одинаковые, поэтому вектор Сложное движение точки совпадает по направлению с Сложное движение точки
Относительное ускорение точки, при ее движении по кругу, равна

Сложное движение точки

Касательное ускорение

Сложное движение точки

где Сложное движение точкиотносительное угловое ускорение.

При Сложное движение точки

Поскольку знаки Сложное движение точкииСложное движение точки одинаковые, то вращение ускоренное, иСложное движение точки
совпадает по направлению с Сложное движение точки
Тогда

Сложное движение точки

Вектор Сложное движение точкисовпадает по направлению с вектором Сложное движение точки
Нормальное ускорение точки в относительном движении определится зависимостью

Сложное движение точки

и при Сложное движение точки

Вектор Сложное движение точкинаправленный по Сложное движение точки от точки С до точки Сложное движение точки
В этой задаче переносное движение является поступательным, так кориолисово ускорения равна нулю Сложное движение точкиВеличину абсолютного ускорения груза найдем по его проекциями на оси неподвижной системы координат, учитывая, что при

Сложное движение точки

Проекции абсолютного ускорения груза будут такими

Сложное движение точки

Тогда модуль абсолютного ускорения груза С будет равняться

Сложное движение точки

Задача 2. Прямоугольный треугольник АВС вращается вокруг своего катета АС ривносповильнено с угловым ускорением Сложное движение точки при начальной угловой скорости Сложное движение точкиПо гипотенузе АВ движется точка М по закону Сложное движение точки в сантиметрах, t – в секундах). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени Сложное движение точки (рис. 7.6).

Сложное движение точки

Сложное движение точки

Решение. Поскольку точка М одновременно находится в двух движениях, то
ее движение рассматриваем как сложный.
Выберем неподвижную Сложное движение точкии подвижнуюСложное движение точкисистемы координат (рис. 7.7).
Подвижная система связана с треугольником, вращающийся (на рис. 7.7 показана только ось Сложное движение точкитогда переносним рухом буде обертання трикутника навколо катета АС, відносним — прямолінійний рух точки вздовж катета АВ за законом

Сложное движение точки

Абсолютная скорость точки М определится согласно (7.11)

Сложное движение точки

Переносную скорость точки М определим как скорость той точки гипотенузы АВ треугольника, вращающийся с которой в данный момент времени совпадает подвижная точка М. Определим положение точки М на гипотенузе АВ при Сложное движение точки

Сложное движение точки

Переносная скорость равна

Сложное движение точки

где DM – короткая расстояние от точки М до оси вращения АС; Сложное движение точкиугловая скорость вращения треугольника АВС.

Сложное движение точки

Тогда Сложное движение точки

Поскольку траектории переносного движения точки М в данный момент времени
является окружность радиуса DM, то вектор Сложное движение точки будет направлен по касательной к
круга в сторону вращения. Если плоскость треугольника АВС приСложное движение точки совместить с плоскостьюСложное движение точки то вектор Сложное движение точкиОтносительная скорость точки М определится методами кинематики точки и будет равняться

Сложное движение точки

и при Сложное движение точки

ВекторСложное движение точки направлен по гипотенузе АВ в сторону увеличения S.
Поскольку угол между векторами Сложное движение точкии Сложное движение точки равна Сложное движение точки То модуль абсолютной
скорости будет равняться

Сложное движение точки

В случае непоступального переносного движения абсолютное ускорение точки М в сложном движении по формуле (7.20) будет равняться

Сложное движение точки

Переносное движение является вращательным, так переносное ускорение точки М в соответствии с (3.15) определится по формулеСложное движение точки

Вектор Сложное движение точкинаправлен к оси вращения треугольника вдоль радиуса MD, а вектор Сложное движение точки – перпендикулярно к Сложное движение точкив сторону дуговой стрелки углового ускорения Сложное движение точки которое противоположное Сложное движение точки поскольку вращение замедлено.
При прямолинейном относительном движении относительно ускорения точки М имеет только касательную составляющую, равную

Сложное движение точки

Сложное движение точки

векторыСложное движение точки и Сложное движение точки приСложное движение точкисовпадают по направлению.
Модуль кориолисового ускорения определится по зависимости (7.23)

Сложное движение точки

Согласно принятому направлением вращения вектор Сложное движение точкибудет направлен по оси вращения в сторону положительного направления оси Сложное движение точки Поэтому угол между Сложное движение точкии Сложное движение точки равнаСложное движение точки и при Сложное движение точкикориолисово ускорения будет равняться

Сложное движение точки

Вектор Сложное движение точкисогласно правилу Жуковского, совпадает по направлению с вектором Сложное движение точки
Для нахождения модуля абсолютного ускорения точки М воспользуемся методом проекций. Для этого введем вспомогательную систему координат Сложное движение точки оси которой направлены соответственно по касательной к переносной траектории, по радиусу MD и параллельно оси вращения (Рис. 7.7).

тогда:

Сложное движение точки

Модуль абсолютного ускорения точки М

Сложное движение точки

Сложное движение точки и решение задач

Краткие сведения по теории:

Характер движения существенно зависит от того, в какой системе отсчета (подвижной или неподвижной) рассматривается это движение.

Движение точки относительно неподвижной системы отсчета называется абсолютным.
 

Движение точки по отношению к подвижной системе отсчета называется относительным.

Движение, которое имеет подвижная система отсчета со всеми неизменно связанными с ней точками пространства по отношению к условно неподвижной системы отсчета,
называется переносным.

Каждое из этих движений характеризуется своими скоростями и ускорениями.
В соответствии с законами сложения скоростей:

Сложное движение точки

и ускорений:
Сложное движение точки
где Сложное движение точкиабсолютные скорость и ускорение подвижной точки;
Сложное движение точки переносные скорость и ускорение подвижной точки;
Сложное движение точки относительные скорость и ускорение подвижной точки;
Сложное движение точки Кориолисовое ускорение.

Величина Корриолисового ускорения определяется по формуле:
Сложное движение точки
где Сложное движение точки угловая скорость переносного движения;
Сложное движение точки угол между векторами Сложное движение точки и Сложное движение точки

Вектор Корриолисового ускорения Сложное движение точки направлен перпендикулярно к плоскости, в которой лежат векторы угловой скорости Сложное движение точки и относительной скорости Сложное движение точки в ту сторону, откуда наблюдатель видит наименьший поворот вектора Сложное движение точки к вектору Сложное движение точкипротив движения часовой стрелки.

Поскольку в случае плоского движения тела угол между векторами Сложное движение точки и Сложное движение точкиравняется Сложное движение точки то:
Сложное движение точки
При плоском движении направление Сложное движение точки можно определить по правилу Жуковского Н.Е.: на направление Кориолисового ускорения укажет вектор относительной скорости Сложное движение точкиесли его повернуть в плоскости расположения на Сложное движение точки в сторону переносной угловой скорости Сложное движение точки
 

В случае, если переносное движение является поступательным Сложное движение точки

Если переносные и относительные движения являются криволинейными, переносными и относительными ускорениями можно изобразить в виде геометрических сумм соответствующих нормальных и касательных ускорений:
Сложное движение точки

Порядок решения задач на сложное движение точки

При решении задач на сложное движение точки рекомендуется придерживаться такой последовательности:

1. Разложить движение точки на составляющие, определить абсолютное, относительное и переносное движения.

2. Выбрать две системы координат: абсолютную (неподвижную) и относительную (подвижную).

3. Мысленно остановить переносное движение, определить скорость и ускорение точки в относительном движении.

4. Мысленно остановить относительное движение, определить угловую скорость переносного движения, скорость и ускорение точки в переносном движении.

5. По известным угловым скоростям переносного движения и скоростью точки в относительном движении найти величину и направление кориолисового ускорения точки.

6. Используя метод проекций, определить проекции абсолютного ускорения и абсолютной скорости на оси неподвижной системы координат.

7. По определенным проекциям, найти модули и направления абсолютной скорости и абсолютного ускорения.

Примеры решения задач

Задача 1

Диск вращается вокруг оси, перпендикулярной к его плоскости, против хода часовой стрелки с угловой скоростью Сложное движение точки в/c. По хорде диска от точки K к L движется точка M.
Определить модуль и направление корриолисового ускорения точки M в изображенном на рис. 1 положении, если относительная скорость Сложное движение точки

Сложное движение точки

Решение. Точка M движется в плоскости диска которая перпендикулярна к оси вращения, то есть угол между векторами Сложное движение точки и Сложное движение точки составляет Сложное движение точки

Учитывая Сложное движение точки модуль ускорения Кориолиса равняется:
Сложное движение точки

Поскольку вектор относительной скорости находится в плоскости перпендикулярной к оси вращения, то для определения направления ускорения Кориолиса согласно правилу
Жуковского надо повернуть вектор Сложное движение точки по направлению  угловой скорости Сложное движение точки переносного движения на угол Сложное движение точки (Рисс.1).

Задача 2

Определить модуль и направление корриолисового ускорения точки M, которая движется по производной ВN кругового конуса от вершины В к точке N. Конус вращается вокруг своей оси с угловой скоростью Сложное движение точки в/с.  в направлении. показанном на рисунке, угол наклона производной к оси конуса Сложное движение точки относительная скорость точки Сложное движение точки

Сложное движение точки

Решение. Отложим вектор угловой скорости Сложное движение точки переносного вращательного движения по оси вращения в сторону, с которой вращение видно против хода часовой стрелки. Относительную скорость Сложное движение точкинаправим от точки M до точки N. Тогда угол между
векторами Сложное движение точки и Сложное движение точки(Рис.1) составит:
Сложное движение точки

Модуль ускорения Кориолиса точки M равен:
Сложное движение точки

Сложное движение точки

Чтобы найти направление ускорения Кориолиса (рис.1), спроектируем вектор относительной скорости Сложное движение точки на плоскость S, перпендикулярную оси вращения конуса.

Проекция относительной скорости Сложное движение точки направленная по прямой МК, которая является продолжением радиуса СМ.
Повернув проекцию Сложное движение точки в направлении вращения конуса на угол Сложное движение точки устанавливаем, что вектор Сложное движение точки кориолисового ускорения направлен по касательной к кругу радиусом СМ в сторону вращения конуса.

Задача 3

По хорде АВ диска, что вращается от точки А до точки В (рис.1) движется точка М, согласно уравнению Сложное движение точкиугол поворота диска изменяется по закону Сложное движение точки

Определить абсолютные скорости и ускорение точки М в момент времени, когда она находится на расстоянии Сложное движение точки от оси вращения диска (рис.1).

Сложное движение точки

Решение. В данной задачи переносным движением будет вращение диска по закону
Сложное движение точки и относительным – движение точки по хорде АВ по закону Сложное движение точки

Запишем уравнение для определения абсолютной скорости точки М:
Сложное движение точки

Для определения относительной скорости остановим переносное вращение диска и будем рассматривать движение точки по отношению к неподвижному диску.

Поскольку закон относительного движения Сложное движение точки величина относительной скорости определяется как первая производная от пути по времени:
Сложное движение точки

Вектор Сложное движение точки относительной скорости направлен по хорде АВ (рис. 1) от точки А до точки В.

Переносной скоростью Сложное движение точки точки М будет скорость той точки диска, с которой в данный момент совпадает точка М.

Из условия задачи следует, что точка М в данный момент времени находится посередине хорды АВ на расстоянии Сложное движение точки от оси вращения диска.

Переносная скорость вращающегося движения определяется по формуле:
Сложное движение точки
где Сложное движение точки– угловая скорость переносного вращательного движения.

Угловую скорость переносного вращательного движения найдем как первую производную от угла поворота Сложное движение точки по времени:
Сложное движение точки в/с.
Таким образом, переносная скорость вращательного движения равна:
Сложное движение точки

Вектор переносной скорости направлен перпендикулярно радиусу OM в сторону вращения диска.

Поскольку векторы Сложное движение точки и Сложное движение точки направленны вдоль одной прямой в разные стороны (рис. 1), то для определения абсолютной скорости от операции векторного сложения скоростей можно перейти к их алгебраическому сложению.

Тогда:
Сложное движение точки

В зависимости от абсолютных значений скоростей Сложное движение точки и Сложное движение точкивектор Сложное движение точки будет направлен или в сторону Сложное движение точки или в сторона Сложное движение точки

Определить абсолютное ускорение точки M. Поскольку переносное движение является вращательным, то абсолютное ускорение точки равно:
Сложное движение точки

Модуль относительного ускорения определим как производную от относительной скорости по времени:
Сложное движение точки
Направленный вектор Сложное движение точки вдоль хорды AB от точки A до точки B (рис.2).
Переносное ускорение Сложное движение точки точки диска, которая совпадает с точкой M, учитывая, что она движется по кругу радиусом h, состоит из переносного тангенциального (касательного) ускорения Сложное движение точки и переносного нормального ускорения Сложное движение точки

Сложное движение точки

Вычислим модули нормального Сложное движение точкии тангенциального Сложное движение точки ускорений:
Сложное движение точки
где Сложное движение точки угловое ускорение переносного вращательного движения.

Переносное нормальное ускорение направлено вдоль радиуса к центру вращения O (рис.2).

Сложное движение точки

Поскольку движение точки M происходит в плоскости, перпендикулярной оси вращения, то ускорение Кориолиса определяется из формулы:
Сложное движение точки

Для определения направления ускорения Кориолиса (рис.2) необходимо вектор относительной скорости Сложное движение точки повернуть на Сложное движение точки в сторону угловой скорости Сложное движение точки
переносного вращательного движения, то есть против хода часовой стрелки.

Для определения величины и направления абсолютного ускорения Сложное движение точки сначала добавим векторы Сложное движение точки и Сложное движение точки которые направлены вдоль одной прямой в противоположные стороны.

Найдена векторная сумма Сложное движение точкинаправлена перпендикулярно к вектору Сложное движение точки и по модулю равняется
Сложное движение точки
Таким образом, абсолютное ускорение точки M равняется сумме векторов:
Сложное движение точки
Поскольку вектор Сложное движение точки перпендикулярный к вектору Сложное движение точки вектор Сложное движение точки будет изображаться диагональю прямоугольника со сторонами Сложное движение точкии Сложное движение точки (рис.2).

Модуль абсолютного ускорения равняется:
Сложное движение точки

Ответ:  Сложное движение точки

Задание темы К4 (сложное движение точки)

Вдоль стороны AB (см. задачу К3 и рис. К4.1) движется ползун 2, шарнирно
соединённый со стержнем EK, который движется в неподвижных направляющих параллельно оси Сложное движение точки Точка E разделяет сторону AB в пропорции, которую указано в таблице К5 коэффициентом пропорциональности Сложное движение точки

Определить путем построения планов скоростей и ускорений по известным из задачи К3 кинематическим характеристикам движения фигуры АВС абсолютные скорости и
ускорение точек Е и К.

Сложное движение точки

Сложное движение точки

Пример решения задания темы К4

Изобразим на стороне AB тела 1 (рис.К4.2, а) ползун 2, который соединен шарниром Е со стержнем 3. Ползун 2 может двигаться поступательно по стороне AB, а стержень
3 – поступательно в вертикальных направляющих. Положение шарнира Е на стороне AB определяем по заданному коэффициенту пропорциональности Сложное движение точки
Сложное движение точки
 

1. Анализ движения стержня ЕК

Рассмотрим точку Сложное движение точки принадлежащую одновременно ползуну 2 и стержню 3. Эта точка осуществляет сложное движение, двигаясь как по направляющей AB, так и вместе с фигурой ABC .

Очевидно, скорость и ускорение точки Сложное движение точки в ее поступательном движении вместе со стержнем ЕК относительно неподвижной опоры (которое видит неподвижный наблюдатель) следует считать абсолютным. Обозначим их соответственно Сложное движение точкии Сложное движение точки

Тогда движение точки Сложное движение точки ползуна 2 вдоль направляющей AB будет относительным. Скорость Сложное движение точки и ускорение Сложное движение точки точки Сложное движение точки в относительном движении направлены вдоль стороны AB, поскольку ползун движется относительно стержня поступательно.

Одновременно ползун 2 движется вместе с фигурой ABC . Это движение для точки Сложное движение точки
является переносным. Переносные скорость и ускорение Сложное движение точки следует определить как скорость и ускорение той точки Сложное движение точки фигуры ABC, с которой в данный момент времени совпадает точка Сложное движение точки ползуна 2.

2. Определение переносной, абсолютной и относительной скорости точки Е2

Приняв точку A тела 1, осуществляющую плоское движение, за полюс (рис. К4.2, б), определим скорость точки Сложное движение точки стороны AB используя свойство сходства фигур
ABС тела 1 и abc плана скоростей, в соответствии с какой:

Сложное движение точки

Из этой пропорции определим отрезок Сложное движение точки
Сложное движение точки
Отрезок откладываем на стороне ab фигуры abc плана скоростей (рис.К4.2, б) в направлении от точки “a” до точки “b”. Величине переносной скорости ползуна 2 на
плане будет соответствовать отрезок Сложное движение точки
Сложное движение точки
Запишем уравнение для абсолютной скорости точки Сложное движение точки ползуна 2:
Сложное движение точки
В этом уравнении нам известны:

  • величина и направление переносной скорости Сложное движение точки (из плана скоростей);
  • направление относительной скорости Сложное движение точки (вдоль AB), поскольку ползун 2 движется относительно стержня AB поступательно;
  • направление абсолютной скорости Сложное движение точки (вдоль EК), поскольку ползун 3 движется поступательно в вертикальных направляющих.

Для решения уравнения (2) воспользуемся планом скоростей (рис.К4.2, б). Поскольку согласно уравнению до вектора Сложное движение точки необходимо добавить вектор Сложное движение точкито с точки Сложное движение точки
проведем прямую Сложное движение точки параллельную к AB, а с полюса Сложное движение точки проведем направление абсолютной скорости Сложное движение точки вертикальную прямую. Точка пересечения этих прямых “к” и будет решением уравнения (2), а отрезок Сложное движение точки будет изображать
в масштабе Сложное движение точки абсолютную скорость точек Сложное движение точки и К:
Сложное движение точки

3. Определение переносного и абсолютного ускорения точки Е2

Определить переносное ускорение точки Сложное движение точки ползуна 2.

Из условия сходства фигур ABС тела 1 и abc плана ускорений (рис.К4.2,в) следует, что точка Сложное движение точки(конец вектора ускорения Сложное движение точки) на плане ускорений будет лежать на отрезке ab. При этом расстояние Сложное движение точки может быть найдено из пропорции (1). Поскольку на плане
ускорений Сложное движение точки то:
Сложное движение точки

Сложное движение точки

Тогда отрезок Сложное движение точки будет изображать переносное ускорение точки Сложное движение точки
в масштабе плана ускорений Сложное движение точки
Сложное движение точки
Запишем векторное уравнение для абсолютного ускорения для точки Сложное движение точки ползуна 2:
Сложное движение точки
Определим сначала величину и направление Кориолисового ускорения.

Поскольку движение происходит в плоскости Сложное движение точки то есть угол между векторами относительной скорости Сложное движение точки и угол переносной скорости Сложное движение точки равняется Сложное движение точки то для определения величины Сложное движение точки воспользуемся формулой (4.4): 

Сложное движение точки

Угловая переносная скорость Сложное движение точки равняется угловой скорости тела 1, то есть Сложное движение точки
Величину относительной скорости Сложное движение точки определим из плана скоростей. (рис. К4.2, б). Измерение отрезка Сложное движение точки который на плане скоростей в масштабе Сложное движение точки
изображает Сложное движение точки находим:
Сложное движение точки
Тогда:
Сложное движение точки

Направление Кориолисового ускорения определим по правилу Жуковского Н.Е., для этого вектор относительной скорости  Сложное движение точки что на плане скоростей (рис. К4.2, б) изображается вектором Сложное движение точкиповернем в сторону угловой переносной скорости Сложное движение точки направление которой показано на рис. К4.2,а, на Сложное движение точки (рис. К4.2, г).

Таким образом, в уравнении (3) нам известны:

  • величина и направление переносного ускорения Сложное движение точки
  • величина и направление Корриолисового ускорения Сложное движение точки
  • направление относительного ускорения Сложное движение точки (вдоль AB), поскольку ползун 2 движется относительно стержня AB поступательно;
  • направление абсолютного ускорения Сложное движение точки (вдоль EК), поскольку ползун 3 движется поступательно в вертикальных направляющих.

Все это позволяет нам построить многоугольник ускорений в соответствии с уравнением (3) на плане ускорений, или отдельным чертежом. Учитывая, что величины отрезков, которые будут изображать некоторые ускорения, слишком большие и выходят за пределы чертежа, для нахождения абсолютного ускорения точки Сложное движение точки построим отдельный план ускорений с масштабным коэффициентом:

Сложное движение точки

Сначала из произвольной точки Сложное движение точки (рис. К4.2, д) за направлением  Сложное движение точки(рис. К4.2, в) отложим вектор Сложное движение точки который в масштабе Сложное движение точки будет изображать Сложное движение точки

Сложное движение точки
До этого вектора в направлении Кориолисового ускорения (рис. К4.2, г) добавим вектор Сложное движение точки который в масштабе Сложное движение точки будет изображать Сложное движение точки

Сложное движение точки
Через конец вектора Сложное движение точки параллельно AB проведем направление относительного ускорения Сложное движение точки (перпендикулярно Сложное движение точки или параллельно AB), а через полюс Сложное движение точки направление абсолютного ускорения Сложное движение точки (параллельно ЕК). Точка пересечения “к” этих двух направлений и будет решением уравнения (3), а вектор Сложное движение точкив масштабе Сложное движение точки
будет изображать абсолютное ускорение точек К и Сложное движение точки

Замерив отрезок Сложное движение точки получим:
Сложное движение точки
 

Примечание. Поскольку все построения расчетные графических работ по кинематике К1, К3 и К4 рекомендуется выполнять на бумаге форматом А3, то после выполнения данной курсовой работы ее графическая часть будет иметь вид подобный изображенному на с. 188.

Сложное движение точки

Сложное движение точки образцы и примеры

Сложное или составное движение точки – это движение в подвижной системе координат. То есть движение точки описывается в системе координат, которая сама совершает движение относительно неподвижной системы координат.

Относительное, переносное и абсолютное движение точки

При исследовании движения точки выбирают некоторую систему отсчета (темы 1 и 2), относительно которой рассматривают движение точки.

В некоторых случаях приходится рассматривать движение точки относительно двух различных систем отсчета. Например, движение пассажира в поезде можно рассматривать как по отношению к поезду, так и по отношению к Земле.

При этом движение одной и той же точки относительно двух различных систем отсчета будет разным. Например, точка обода колеса движущегося железнодорожного вагона относительно Земли пишет циклоиду, а относительно вагона – окружение.

При рассмотрении движения точки по отношению к двум системам отсчета и система, которая в данной задаче условно принята за неподвижную, называется основной системой отсчета (неподвижной), а система, которая движется относительно основной, называется подвижной системой отсчета.

Движение точки относительно основной системы отсчета называется абсолютным движением, а ее движение относительно подвижной системы отсчета – относительным движением.

Пусть есть две системы координат Сложное движение точки и Сложное движение точки и некоторая подвижная точка Сложное движение точки (рис.3.1).

Сложное движение точки

Выберем систему координат Сложное движение точки за основную. Тогда движение системы Сложное движение точки  относительно системы Сложное движение точки будет переносным. Движение точки Сложное движение точки относительно системы Сложное движение точки будет относительным, а движение точки Сложное движение точки относительно системы Сложное движение точки будет абсолютным.

Надо заметить, что переносным движением является движение не самой точки Сложное движение точки, а того тела, с которым связана подвижная система координат Сложное движение точки, тогда как относительное и абсолютное движение является движением самой точки Сложное движение точки, которое рассматривается соответственно относительно подвижной и основной систем отсчета. В переносном движении подвижная система координат может иметь любой вид движения.

Основная задача этого раздела состоит в том, чтобы по известным относительным и переносным движениям определить абсолютное движение точки (движение точки Сложное движение точки относительно системы отсчета Сложное движение точки).

Выбор основной и подвижной систем отсчета, а соответственно, и разделение движения точки на абсолютное и относительное зависит от постановки конкретной задачи. В большинстве случаев за основную систему отсчета принимают систему, которую связано с Землей.

Относительные, переносные и абсолютные скорости и ускорение

Относительной скоростью Сложное движение точки точки называется ее скорость в относительном движении, то есть по отношению к подвижной системе отсчета.

Абсолютной скоростью Сложное движение точки точки называется ее скорость в абсолютном движении, то есть по отношению к основной системе отсчета.

Переносной скоростью Сложное движение точки называется скорость относительно основной системы отсчета той точки подвижной системы отсчета, с которой в данный момент времени совпадает движущаяся точка.

Аналогично введем понятие относительного, абсолютного и переносного ускорения точки.

Относительным ускорением Сложное движение точкиточки называется ее ускорение в относительном движении, то есть по отношению к подвижной системе отсчета.

Абсолютным ускорением Сложное движение точки точки называется ее ускорение в абсолютном движении, то есть по отношению к основной системе отсчета.

Переносным ускорением Сложное движение точки называется ускорение относительно основной системы отсчета той точки подвижной системы отсчета, с которой в данный момент времени совпадает движущаяся точка.

Обратим внимание на то, что переносное движение – это движение всей подвижной системы отсчета, то есть некоторого тела, с которым связана подвижная система координат, а переносная скорость и переносное ускорение – это скорость и ускорение конкретной точки этого тела.

Сложение скоростей и ускорений при сложном движении точки

Зависимость между абсолютной, переносной и относительной скоростями точки определяется теоремой сложения скоростей, согласно которой абсолютная скорость точки равна векторной сумме переносной и относительной скоростей:

Сложное движение точки                          (3.1)

где Сложное движение точки – абсолютная скорость точки;

Сложное движение точки – относительная скорость точки;

Сложное движение точки – переносная скорость.

Для определения относительной скорости точки достаточно мысленно остановить переносное движение и найти по правилам кинематики скорость точки относительно системы отсчета, которая была подвижной.

Для определения переносной скорости – достаточно мысленно остановить относительное движение и найти переносную скорость как скорость той точки подвижной системы отсчета, с которой в данный момент времени совпадает движущаяся точка.

Зависимость между абсолютным, относительным и переносным ускорением точки при поступательном движении подвижной системы отсчета выражается векторным уравнением:

Сложное движение точки                     (3.2)

где Сложное движение точки – абсолютное ускорение точки;

Сложное движение точки – относительное ускорение точки;

Сложное движение точки – переносное ускорение точки.

Если переносным движением является вращательный, или сложный, то теорема о сложении ускорений приобретает вид:

Сложное движение точки,      (3.3)

где Сложное движение точки – ускорение Кориолиса (поворотное ускорение точки).

3.4. Ускорение Кориолиса

Сложное движение точки.

Модуль ускорения Кориолиса равен:

Сложное движение точки

где Сложное движение точки – угол между векторами Сложное движение точки и Сложное движение точки.

Ускорение Кориолиса характеризует:

  • изменение модуля и направления переносной скорости точки вследствие ее относительного движения;
  • изменение направления относительной скорости точки вследствие вращательного переносного движения.

Ускорение Кориолиса равно нулю в трех случаях:

Направление ускорения Кориолиса определяется как направление вектора векторного произведения Сложное движение точки Сложное движение точкиСложное движение точки.

Пусть точка Сложное движение точки (рис.3.2) движется со скоростью Сложное движение точки относительно тела, которое вращается вокруг оси Сложное движение точки с угловой скоростью Сложное движение точки. Если построить в точке Сложное движение точки кроме Сложное движение точки вектор Сложное движение точки, то вектор векторного произведения Сложное движение точки Сложное движение точкиСложное движение точки, то есть вектор ускорения Кориолиса Сложное движение точки, будет направлен перпендикулярно плоскости, в которой лежат векторы Сложное движение точки и Сложное движение точки в ту сторону, откуда поворот вектора Сложное движение точки к вектору относительной скорости Сложное движение точки на наименьший угол виден против хода часовой стрелки.

Сложное движение точки

Для определения направления ускорения Кориолиса удобно пользоваться правилом Жуковского: чтобы найти направление ускорения Кориолиса надо спроектировать относительную скорость точки Сложное движение точки на плоскость, перпендикулярную оси переносного вращения, и вернуть в этой плоскости полученную проекцию на Сложное движение точки в сторону переносного вращения (рис.3.3).

Сложное движение точки

Действительно, полученное направление Сложное движение точки (рис.3.3) перпендикулярное плоскости треугольника, который образован относительной скоростью Сложное движение точки и ее проекцией Сложное движение точки‘отн, а эта плоскость совпадает с плоскостью векторов Сложное движение точки и Сложное движение точки, которой должен быть перпендикулярным вектор ускорения Кориолиса.

Если вектор Сложное движение точки перпендикулярен Сложное движение точки, то есть Сложное движение точки Сложное движение точки Сложное движение точки и соответственно
Сложное движение точки Сложное движение точкиСложное движение точки Сложное движение точки, то величина ускорения Кориолиса будет равна:

Сложное движение точкиСложное движение точки.               (3.5)

Такой случай возможен, если относительное движение точки происходит в плоскости перпендикулярной оси переносного вращения. В этом случае векторы Сложное движение точки, Сложное движение точки и Сложное движение точки  взаимно перпендикулярны (рис. 3.4).

Сложное движение точки

Рассмотрим два примера определения модуля и направления ускорения Кориолиса .

Пример 1. Диск вращается вокруг оси, которая перпендикулярна его плоскости, против хода часовой стрелки с угловой скоростью Сложное движение точки. По хорде диска от точки Сложное движение точки к Сложное движение точки движется точка Сложное движение точки.

Определить модуль и направление ускорения Кориолиса точки Сложное движение точки в изображенном на рис. 3.5 положении, если относительная скорость Сложное движение точкиСложное движение точки.

Точка Сложное движение точки движется в плоскости диска которая перпендикулярна оси вращения, то есть угол между векторами Сложное движение точки и Сложное движение точки составляет Сложное движение точки. Учитывая, что Сложное движение точкиСложное движение точкиСложное движение точки Сложное движение точки, модуль ускорения Кориолиса равен:

Сложное движение точкиСложное движение точкиСложное движение точки

Поскольку вектор относительной скорости лежит в плоскости перпендикулярной оси вращения, то для определения направления ускорение Кориолиса согласно правилу Жуковского надо повернуть вектор Сложное движение точки по направлению угловой скорости Сложное движение точки переносного движения на угол Сложное движение точки(рис.3.5).

Сложное движение точки

Пример 2. Определить модуль и направление ускорение Кориолиса точки Сложное движение точки, которая движется по образующей Сложное движение точки кругового конуса от вершины Сложное движение точки к точке Сложное движение точки. Конус вращается вокруг своей оси с угловой скоростью Сложное движение точки в направлении, показанном на рис.3.6, угол наклона образующей к оси конуса Сложное движение точки, относительная скорость точки Сложное движение точкиСложное движение точки.

Отложим вектор угловой скорости Сложное движение точки переносного вращательного движения по оси вращения в сторону, из которой вращения видно против хода часовой стрелки. Относительную скорость Сложное движение точки направим от точки Сложное движение точки к точке Сложное движение точки. Тогда угол между векторами Сложное движение точки и Сложное движение точки (рис 3.6) составит:

Сложное движение точкиСложное движение точки Сложное движение точкиСложное движение точки Сложное движение точки

Модуль ускорения Кориолиса точки Сложное движение точки равен:

Сложное движение точкиСложное движение точки Сложное движение точки Сложное движение точкиСложное движение точкиСложное движение точки Сложное движение точки Сложное движение точкиСложное движение точки  Сложное движение точки Сложное движение точки Сложное движение точки Сложное движение точкиСложное движение точки

Чтобы найти направление ускорения Кориолиса (рис.3.6), спроектируем вектор относительной скорости Сложное движение точки на плоскость Сложное движение точки, которая перпендикулярна оси вращения конуса.

Сложное движение точки

Проекция относительной скорости Сложное движение точкиСложное движение точкиСложное движение точки направлена по прямой Сложное движение точки, которая является продолжением радиуса Сложное движение точки.

Если повернуть проекцию Сложное движение точкиСложное движение точкиСложное движение точки в направлении вращения конуса на угол Сложное движение точки, устанавливаем, что вектор Сложное движение точки ускорения Кориолиса направлен по касательной к окружности радиусом Сложное движение точки в сторону вращения конуса.

Примеры решения задач

Задача №1

Клин Сложное движение точки (рис.3.7) с углом наклона рабочей поверхности Сложное движение точки, который движется поступательно по горизонтальной поверхности со скоростью Сложное движение точки, поднимает стержень Сложное движение точки, который движется в вертикальном направлении.

Сложное движение точки

Найти абсолютную скорость стержня Сложное движение точки.

Решение. Учитывая, что стержень Сложное движение точки в вертикальном направлении будет двигаться прямолинейно поступательно, то достаточно определить скорость любой его точки.

Рассмотрим движение точки Сложное движение точки стержня.

Поскольку точка Сложное движение точки стержня должна все время касаться клина Сложное движение точки, то рассмотрим ее движение как сложное – относительным будет движение точки Сложное движение точки по отношению к клину, а переносным – движение точки Сложное движение точки вместе с клином.

По отношению к клину точка Сложное движение точки стержня может двигаться только вдоль рабочей поверхности Сложное движение точки. Таким образом, относительная скорость Сложное движение точки будет направлена вдоль Сложное движение точки.

Клин Сложное движение точки движется поступательно горизонтальной поверхностью, то есть скорости всех его точек одинаковы. Таким образом, переносная скорость Сложное движение точки точки Сложное движение точки стержня, которая совпадает с точкой Сложное движение точки клина будет равна Сложное движение точки.

Абсолютную скорость точки Сложное движение точки стержня определим из векторного уравнения:

Сложное движение точки Сложное движение точки Сложное движение точки                 (1)

Для решения векторного уравнения (1) построим параллелограмм на векторах Сложное движение точки и Сложное движение точки (рис.3.7). При построении надо учесть, что Сложное движение точки, как диагональ параллелограмма, должна быть направлена вертикально.

Поскольку угол между векторами Сложное движение точки и Сложное движение точки прямой, то получим:

Сложное движение точки

Ответ: Сложное движение точки

Задача № 2

Круг радиусом Сложное движение точки (рис.3.8) равномерно вращается в своей плоскости вокруг центра Сложное движение точки по ходу часовой стрелки и делает Сложное движение точки оборотов в минуту. По кругу равномерно в противоположном направлении движется точка Сложное движение точки и делает Сложное движение точки оборотов в минуту.

Сложное движение точки

Найти абсолютное ускорение точки Сложное движение точки.

Решение. Движение точки Сложное движение точки рассмотрим как сложное. Переносным движением будет вращение круга вместе с точкой Сложное движение точки вокруг центра Сложное движение точки, а относительным – движение точки Сложное движение точки по кругу.

Абсолютное ускорение точки Сложное движение точки, учитывая, что переносным будет вращательное движение, равно:

Сложное движение точки Сложное движение точки Сложное движение точки

Поскольку переносное движение вращательное, то переносное ускорение точки круга с которой совпадает точка Сложное движение точки, будет иметь нормальную Сложное движение точки и тангенциальную Сложное движение точки  составляющую.

Учитывая, что при равномерном вращении угловое ускорение Сложное движение точки, тангенциальная составляющая переносного ускорения

Сложное движение точки

Величина переносного нормального ускорения Сложное движение точки определим из формулы:

Сложное движение точки

где Сложное движение точки – угловая скорость круга.

Направлено это ускорение вдоль радиуса от точки Сложное движение точки к точке Сложное движение точки (рис.3.8).

Учитывая то, что точка Сложное движение точки по кругу радиуса Сложное движение точки движется равномерно, модуль относительного ускорения будет иметь тоже только одну нормальную составляющую Сложное движение точкиСложное движение точкиСложное движение точки:

Сложное движение точкиСложное движение точкиСложное движение точки Сложное движение точки

где Сложное движение точки – угловая скорость вращения точки Сложное движение точки по кругу.

Направлено это ускорение от точки Сложное движение точки к точке Сложное движение точки (рис.3.8).

Поскольку точка Сложное движение точки движется в плоскости, перпендикулярной оси вращения, то ускорение Кориолиса определяется по формуле:

Сложное движение точки Сложное движение точки.

Учитывая, что Сложное движение точки Сложное движение точки, достанем:

Сложное движение точки

Для определения направления ускорения Кориолиса повернем вектор относительной скорости Сложное движение точки, который направлен по касательной к кругу, в направлении переносной угловой Сложное движение точки на Сложное движение точки (рис.3.8). Таким образом, это ускорение направлено вдоль радиуса от центра вращения Сложное движение точки.

Поскольку все ускорения направлены вдоль одной прямой, то их можно сложить алгебраически:

Сложное движение точки Сложное движение точкиСложное движение точкиСложное движение точки Сложное движение точки,

или с учетом выражений для Сложное движение точки, Сложное движение точкиСложное движение точкиСложное движение точки и Сложное движение точки:

Сложное движение точки

Подставив зависимости для угловых скоростей Сложное движение точки и Сложное движение точки, получим:

Сложное движение точки

Ответ: Сложное движение точки

Задача №3

По хорде Сложное движение точки вращающегося диска от точки Сложное движение точки к точке Сложное движение точки движется точка Сложное движение точки согласно уравнению Сложное движение точки, угол поворота диска изменяется по закону Сложное движение точки.

Определить абсолютные скорости и ускорения точки Сложное движение точки в момент времени, когда она находится на расстоянии Сложное движение точки от оси вращения диска (рис.3.9).

Решение. В данной задаче переносным движением будет вращение диска по закону Сложное движение точки, а относительным – движение точки по хорде Сложное движение точки по закону Сложное движение точки.

Запишем уравнение для определения абсолютной скорости точки Сложное движение точки:

Сложное движение точки Сложное движение точки Сложное движение точки

Для определения относительной скорости остановим переносное вращение диска и будем рассматривать движение точки по отношению к неподвижному диску. Поскольку закон относительного движения Сложное движение точки, то величина относительной скорости определяется как первая производная от пути по времени:

Сложное движение точки Сложное движение точки

Вектор относительной скорости направлен по хорде Сложное движение точки (рис. 3.9) от точки Сложное движение точки к точке Сложное движение точки.

Сложное движение точки

Переносной скоростью Сложное движение точки точки Сложное движение точки будет скорость той точки диска, с которой в данный момент совпадает точка Сложное движение точки.

Из условия задачи вытекает, что точка Сложное движение точки в данный момент времени находится посередине хорды Сложное движение точки на расстоянии Сложное движение точки от оси вращения диска.

Переносная скорость вращательного движения определяется по формулой:

Сложное движение точки

где Сложное движение точки – угловая скорость переносного вращательного движения.

Угловую скорость переносного вращательного движения найдем как первую производную от угла поворота Сложное движение точки по времени:

Сложное движение точки

Таким образом, переносная скорость вращательного движения равна: 

Сложное движение точки

Вектор переносной скорости направлен перпендикулярно радиусу Сложное движение точки в сторону вращения диска.

Поскольку векторы Сложное движение точки и Сложное движение точки направлены вдоль одной прямой в разные стороны (рис. 3.9), то для определения абсолютной скорости от операции векторного сложения скоростей можно перейти к их алгебраическому сложению.

Тогда:

Сложное движение точки Сложное движение точки Сложное движение точки

В зависимости от абсолютных значений скоростей Сложное движение точки и Сложное движение точки, вектор Сложное движение точки будет направлен либо в сторону Сложное движение точки, либо в сторону Сложное движение точки.

Определим абсолютное ускорение точки Сложное движение точки. Поскольку переносное движение является вращательным, то абсолютное ускорение точки равно:

Сложное движение точки Сложное движение точки Сложное движение точки

Модуль относительного ускорения определим как производную от относительной скорости по времени:

Сложное движение точки Сложное движение точки

Направлен вектор Сложное движение точки вдоль хорды Сложное движение точки от точки Сложное движение точки к точке Сложное движение точки (рис.3.10).

Сложное движение точки

Переносное ускорение Сложное движение точки точки диска, которая совпадает с точкой Сложное движение точки, учитывая, что она движется по окружности радиусом Сложное движение точки, состоит из переносного тангенциального (касательного) ускорения Сложное движение точки и переносного нормального ускорения Сложное движение точки:

Сложное движение точки

Вычислим модули нормального Сложное движение точки и тангенциального Сложное движение точки ускорений:

Сложное движение точки

где Сложное движение точки – угловое ускорение переносного вращательного движения.

Переносное нормальное ускорение направлено вдоль радиуса к центру вращения Сложное движение точки (рис.3.10).

Поскольку движение точки Сложное движение точки происходит в плоскости, перпендикулярной оси вращения, то ускорение Кориолиса определяется из формулы:

Сложное движение точки Сложное движение точки Сложное движение точки

Для определения направления ускорения Кориолиса (рис.3.10) необходимо вектор относительной скорости Сложное движение точки повернуть на Сложное движение точки в бок угловой скорости Сложное движение точки переносного вращательного движения, то есть против хода часовой стрелки.

Для определения величины и направления абсолютного ускорения Сложное движение точки сначала сложим векторы Сложное движение точки и Сложное движение точки, которые направлены вдоль одной прямой в противоположные стороны. Найденная векторная сумма Сложное движение точки направлена перпендикулярно вектору Сложное движение точки и по модулю равнa Сложное движение точки

Таким образом, абсолютное ускорение точки Сложное движение точки равно сумме векторов:

Сложное движение точки Сложное движение точки.

Поскольку вектор от Сложное движение точки перпендикулярен вектору Сложное движение точки, то вектор Сложное движение точки будет изображаться диагональю прямоугольника со сторонами Сложное движение точки и Сложное движение точки (рис.3.10).

Модуль абсолютного ускорения будет равен:

Сложное движение точки

Ответ: Сложное движение точки

Задача №4

В состав механизма Витворта (рис.3.11) входит: кривошип 1, ползун 2 и кулиса 3. Кривошип Сложное движение точки механизма вращается с постоянной угловой скоростью Сложное движение точки

Сложное движение точки

Определить скорость и ускорение точки Сложное движение точки и угловую скорость и угловое ускорение кулисы 3 механизма в положении,

когда: Сложное движение точки

Решение. Особенность этого механизма заключается в том, что в точке Сложное движение точки между собой соединяются кривошип 1, ползун 2 и кулиса 3 (рис.3.12).

Пересечение Сложное движение точки

Сложное движение точки 

Кривошип 1 и ползун 2 между собой соединены цилиндрическим шарниром, что позволяет ползуну относительно кривошипа возвращаться, а на кулисе 3 параллельно ее оси сделаны направляющие, по которым ползун 2 может двигаться поступательно.

При повороте кривошипа 1 ползун 2 скользит по кулисе 3 и заставляет ее поворачиваться вокруг точки Сложное движение точки. Расстояние от точки Сложное движение точки к точке Сложное движение точки на кулисе 3 с поворотом кривошипа 1 меняется.

Такой механизм позволяет преобразовать вращательное движение кривошипа в колебательное движение кулисы, если Сложное движение точки, или в вращательное, с другим законом изменения угловой скорости чем у кривошипа, движение кулисы, если Сложное движение точки.

Таким образом, в точке Сложное движение точки механизма (рис.3.12) будем рассматривать три разные точки: Сложное движение точки, принадлежащая кривошипу 1; Сложное движение точки – ползуну 2 и Сложное движение точки – кулисе 3. Все эти точки лежат одна под второй на рис.3.11.

Перед решением задачи в произвольном масштабе построим схему механизма (рис.3.13,а) для заданного положения кривошипа.

Первой определим скорость точки Сложное движение точки, принадлежащей кривошипу 1, который вращается вокруг точки Сложное движение точки с угловой скоростью Сложное движение точки:

Сложное движение точки

Направлена скорость Сложное движение точки перпендикулярно Сложное движение точки в сторону вращения кривошипа 1 (рис.3.13, а).

Скорость точки Сложное движение точки, принадлежащей ползуну 2, который соединен с кривошипом 1 шарниром, равна скорости точки Сложное движение точки:

Сложное движение точки

Для определения скорости точки Сложное движение точки кулисы 3, примем движение ползуна 2 за переносное. Тогда кулиса 3 относительно ползуна 2 может двигаться поступательно и скорость точки Сложное движение точки кулисы 3 относительно точки Сложное движение точки ползуна 2 будет направлена вдоль направляющих, то есть вдоль Сложное движение точки.

Сложное движение точки

Запишем уравнение для скоростей при сложном движении точки Сложное движение точки относительно Сложное движение точки:

Сложное движение точки

где Сложное движение точки – переносная скорость точки Сложное движение точки ползуна, которая в настоящий момент времени совпадает с точкой Сложное движение точки кулисы. Эта скорость уже определена;

Сложное движение точки – относительная скорость точки Сложное движение точки относительно Сложное движение точки. Направлена эта скорость вдоль Сложное движение точки;

Сложное движение точки – абсолютная скорость точки Сложное движение точки кулисы 3. Учитывая, что кулиса 3 вращается вокруг неподвижной точки Сложное движение точки, то эта скорость будет направлена перпендикулярно Сложное движение точки.

Векторное уравнение (1) решим путем построения плана скоростей.

Поскольку направления скорости в правой и в левой части уравнения (1) известны, то из полюса плана скоростей сначала построим правую часть уравнения, а затем левую.

Согласно правой части уравнения (1) с полюса Сложное движение точки (рис.3.13,б) откладываем вектор Сложное движение точки по направлению Сложное движение точки (рис.3.13, а), который в масштабе будет изображать эту скорость. (Поскольку Сложное движение точки, то скорости этих точек на плане будут изображаться одним вектором, то есть на плане скоростей точки Сложное движение точки и Сложное движение точки совпадают). Через точку Сложное движение точки проведем линию Сложное движение точки параллельно Сложное движение точки, вдоль которой от точки Сложное движение точки будет направлен вектор, что будет изображать относительную скорость Сложное движение точки (величина и направление этой скорости неизвестны).

Теперь построим левую часть уравнения (1). Поскольку абсолютная скорость Сложное движение точки направлена перпендикулярно Сложное движение точки, то с полюса Сложное движение точки по этому направлению проводим линию к пересечению в точке Сложное движение точки  с линией Сложное движение точки. Точка пересечения Сложное движение точки будет решением векторного уравнения (1).

Вектор Сложное движение точки на плане скоростей в масштабе изображает абсолютную скорость Сложное движение точки, а вектор Сложное движение точки – относительную скорость Сложное движение точки.

Поскольку на плане скоростей вектор Сложное движение точки перпендикулярен Сложное движение точки, а Сложное движение точки перпендикулярен Сложное движение точки, то угол между этими векторами равен углу между Сложное движение точки и Сложное движение точки на схеме механизма, то есть Сложное движение точки.

Угол при вершине Сложное движение точки плана скоростей будет прямым, поскольку линия Сложное движение точки перпендикулярна Сложное движение точки, а линия Сложное движение точки параллельна Сложное движение точки.

Таким образом треугольник Сложное движение точки на плане скоростей прямоугольный, с углами при вершинах: Сложное движение точки и Сложное движение точки.

Из плана скоростей определяем:

Сложное движение точки или Сложное движение точки

Сложное движение точки или Сложное движение точки

Учитывая, что кулиса 3 вращается вокруг точки Сложное движение точки, то для угловой скорости кулисы Сложное движение точки получим:

Сложное движение точки

где Сложное движение точки – длина кулисы для этого положения механизма. С Сложное движение точки (рис.13.3,а): Сложное движение точки

Поскольку ползун 2 относительно кулисы 3 движется поступательно, то Сложное движение точки.

Для определения направления угловой скорости Сложное движение точки предварительно перенесем вектор Сложное движение точки в точку Сложное движение точки механизма (рис.3.13, а). Угловая скорость Сложное движение точки направлена против хода часовой стрелки.

Определим ускорение точек механизма.

Поскольку кривошип 1 вращается вокруг центра Сложное движение точки с постоянной угловой скоростью Сложное движение точки, то ускорение точки Сложное движение точки имеет только нормальную составляющую:

Сложное движение точки

Направлено ускорение точки Сложное движение точки вдоль кривошипа к центру вращения Сложное движение точки (рис.3.14, а).

Ускорение точки Сложное движение точки ползуна 2, учитывая, что кривошип и ползун соединены шарниром, равно ускорению точки Сложное движение точки:

Сложное движение точки

Сложное движение точки

Для ускорения точки Сложное движение точки кулисы 3 запишем векторное уравнение для сложного движения точки, учтя при этом, что движение ползуна 2 принято за переносное

Сложное движение точки

где Сложное движение точки – абсолютное ускорение точки Сложное движение точки;

Сложное движение точки – переносное ускорение точки Сложное движение точки ползуна, которая в настоящий момент времени совпадает с точкой Сложное движение точки кулисы;

Сложное движение точки – ускорение точки Сложное движение точки относительно Сложное движение точки, направлено по оси кулисы Сложное движение точки;

Сложное движение точки – ускорение Кориолиса точки Сложное движение точки.

Поскольку относительное движение происходит в плоскости, перпендикулярной оси вращения ползуна 2, то ускорения Кориолиса определим из формулы:

Сложное движение точки

где Сложное движение точки – угловая скорость вращательного переносного движения ползуна 2, Сложное движение точки

Сложное движение точки – относительная скорость точки Сложное движение точки относительно Сложное движение точки,

Сложное движение точки

Для определения направления ускорения Кориолиса необходимо вектор относительной скорости Сложное движение точки вернуть на Сложное движение точки в сторону переносного вращательного движения, то есть в направлении угловой скорости Сложное движение точки. Направление повернутого вектора (рис.3.13,в), который будет перпендикулярен оси кулисы Сложное движение точки, соответствует направлению ускорения Кориолиса.

С другой стороны, точка Сложное движение точки принадлежит кулисе 3, которая вращается вокруг центра Сложное движение точки. Таким образом, ускорение Сложное движение точки будет иметь две составляющие:

Сложное движение точки

где Сложное движение точки – нормальное ускорение точки Сложное движение точки при ее вращении вокруг точки Сложное движение точки направлено по оси кулисы от точки Сложное движение точки к точке Сложное движение точки (рис.3.14,а) и по модулю равно: Сложное движение точки

Сложное движение точки – тангенциальное ускорение точки Сложное движение точки при ее вращении вокруг точки Сложное движение точки, направлено перпендикулярно оси кулисы Сложное движение точки и по модулю равно: Сложное движение точки.

Решим систему векторных уравнений (2, 3) графически, путем построения плана ускорений.

Первым построим векторное уравнение (2). Из произвольного полюса Сложное движение точки (рис.3.14,б) отложим направленный отрезок Сложное движение точки, изображающий ускорение Сложное движение точки и направлен параллельно линии Сложное движение точки от точки Сложное движение точки к точке Сложное движение точки.

Длину отрезка Сложное движение точки выберем Сложное движение точки. Тогда масштабный коэффициент плана ускорений будет равен:

Сложное движение точки

От точки Сложное движение точки отложим вектор Сложное движение точки, который изображает ускорение Кориолиса Сложное движение точки. Направлен этот вектор перпендикулярно оси кулисы Сложное движение точки по определенному ранее направлению (рис.3.13, в).

Длина вектора Сложное движение точки равна:

Сложное движение точки

Через конец вектора Сложное движение точки проводим линию Сложное движение точки, вдоль которой будет направлен вектор Сложное движение точки, который будет изображать относительное ускорение Сложное движение точки. Направление и длина этого вектора неизвестны.

Следующим построим векторное уравнение (3). С полюса Сложное движение точки отложим вектор Сложное движение точки, изображающий нормальное ускорение Сложное движение точки. Направлен этот вектор параллельно оси кулисы Сложное движение точки от точки Сложное движение точки к точке Сложное движение точки и имеет длину:

Сложное движение точки

Через конец вектора Сложное движение точки проводим линию Сложное движение точки, вдоль которой будет направлен вектор Сложное движение точки, который будет изображать тангенциальное ускорение Сложное движение точки.

Решением системы (2, 3) будет точка пересечения линий Сложное движение точки и Сложное движение точки, а вектор Сложное движение точки будет изображать ускорение Сложное движение точки.

Из плана ускорений определяем:

Сложное движение точки

Угловое ускорение кулисы 3 и ползуна 2 определим через известное тангенциальное ускорение Сложное движение точки:

Сложное движение точки

Для определения направления углового ускорения Сложное движение точки надо перенести в точку Сложное движение точки механизма тангенциальное ускорение Сложное движение точки (рис.3.14, а). Угловое ускорение Сложное движение точки направлено против хода часовой стрелки.

Ответ: Сложное движение точки Сложное движение точки

Абсолютное, относительное и переносное движение точки

В кинематике точки, рассматривается движение точки относительно неподвижной системы координат (прямоугольной декартовой или относительно осей натурального трехгранника). Однако часто приходится исследовать движение точки в отношении двух и более систем координат (тел отсчета), из которых одна система координат осуществляет движение относительно другой, условно берется за неподвижную. Например, при изучении роботов-манипуляторов следует вводить несколько систем координат.  Итак, предположим, что система координат Сложное движение точки, неизменно связана с некоторым телом, движется относительно другой системы координат Сложное движение точки, которая условно взята за неподвижную (рис. 9.1).

Движение точки М относительно неподвижной системы координат называется абсолютным, а относительно подвижной системы координат – относительным. Скорости и ускорения точки, рассматриваемые в отношении данных систем, соответственно называются абсолютными и относительными.

Движение подвижной системы координат Сложное движение точки (или неизменно связанного с ней тела G) относительно неподвижной системы отсчета Сложное движение точки, является для подвижной точки переносным движением, то есть это движение той точки подвижной системы координат, с которой в данный момент времени совпадает подвижная точка М. Соответственно скорости и ускорения точки, неизменно связанной с подвижной системой координат, в которой в данный момент времени находится подвижная точка, называются переносными.

Основной задачей сложного движения точки является установление зависимости между кинематическими характеристиками абсолютного, переносного и относительного движений. Уравнениями абсолютного движения точки есть, например, зависимости координат точки М, заданных в неподвижной системе координат, как функции времени:

Сложное движение точки                                                                                                           (9.1)

Аналогично для уравнения относительного движения:
Сложное движение точки                                                                                                                (9.2)

Уравнения (9.1) и (9.2) определяют в параметрической форме в соответствии абсолютную и
относительную траектории. Если уравнение (9.1) и (9.2) известны, то проекции абсолютной и относительной скоростей определяются соответственно как первые производные по времени приведенных функций; тогда вторые производные по времени от этих функций
определяют проекции абсолютного и относительного ускорений. В дальнейшем введем такие обозначения: Сложное движение точки – абсолютная, относительная и переносная скорости, Сложное движение точки – абсолютное, относительное и переносное ускорение.

Сложное движение точки

Сложное движение точки

Пример 1. Пусть стержень ОА вращается вокруг неподвижной оси Сложное движение точки, (рис. 9.2). Вдоль
стержня движется гладкое кольцо, рассматриваемое как материальная точка М. Выясните характер относительного и переносного движений.

Решение. Выберем в точке О начало неподвижной системы координат Сложное движение точки. Движение точки М в этой системе координат называется абсолютным. Подвижная система координат Oxyz, связана со стержнем, приведена на рис. 9.2. Абсолютное движение точки М происходит в плоскости Сложное движение точки а относительное  вдоль подвижной оси Сложное движение точки. Для установления характера переносного движения выясним, какое движение, подвижная система координат Oxyz осуществляет по отношению к неподвижной. Согласно условию задачи, ось Сложное движение точки вращается вокруг оси Сложное движение точки. Итак, переносным движением здесь является  вращательное движение стержня вокруг оси Сложное движение точки.

Итак, сложное движение точки М (кольца) можно рассматривать как совокупность прямолинейного относительного (вдоль стержня ОА) и вращательного переносного вокруг неподвижной оси Oz вместе со стержнем. Установив характер абсолютного, относительного и переносного движений, можно решать, например, такие задачи:
 а) по заданным относительным и переносным движениями определять сложное (абсолютное) движение точки;
 б) по заданным сложным движениям точки определить составляющие простых движений.

Центральная операция кинематики и динамики. Абсолютная и относительная
производные по времени от вектора функции

Пусть Сложное движение точки – система координат, взятая
за неподвижную, a Сложное движение точки – подвижная система координат, орты которой Сложное движение точки (рис. 9.3, а).
 Рассмотрим произвольную точку М, которая движется относительно как подвижной, так и неподвижной систем координат. Пусть положение этой точки в подвижной системе координат определяется радиусом-вектором Сложное движение точки в виде:

Сложное движение точки                                                                                                          (9.3)

Установим связь между производными от функции, вычисленными в подвижной и неподвижной системах координат. Для этого сначала найдем производную по времени от вектора Сложное движение точки в неподвижной системе, которая называется абсолютной производной от вектора Сложное движение точки. по времени и:

Сложное движение точкиСложное движение точки                                                                                 (9.4)

Первые три члена этого выражения представляют собой производную от вектора Сложное движение точки,  вычисленную по предположениям, что орты подвижной системы координат по направлению не меняются, что соответствует вычислению производной в подвижной системе координат. Это выражение называется локальной (относительной) производной и обозначается Сложное движение точки

Сложное движение точки                                                                                                    (9.5)

Рассмотрим теперь последние три слагаемых в (9.4), которые обозначим через: 

Сложное движение точки                                                                                                           (9.6)

Сложное движение точки

Умножив обе части  (9.6) скалярно на  Сложное движение точки получим:

Сложное движение точки                                                                                              (9.7)

Правые части этих выражений являются проекциями вектора Сложное движение точки на оси подвижной системы координат. Обозначим их через Сложное движение точкиВоспользуемся очевидными соотношениями (рис. 9.3, б):

Сложное движение точки                                                                                                      (9.8)

Продифференцировав их по времени, получим:

Сложное движение точки                                                                                                     (9.9)

Введем обозначения:

Сложное движение точки                                                                                                    (9.10)

Тогда выражения (9.7) с учетом соотношений (9.8)-(9.10) можно записать в форме:

Сложное движение точки                                                                                                     (9.11)

Если ввести на рассмотрение вектор:

Сложное движение точки                                                                                                            (9.12)

то выражение (9.6) можно подать в виде:

Сложное движение точки                                                                                                           (9.13)

Подставив (9.13) и (9.5) в выражение (9.4) получим формулу, которая устанавливает связь между производной не только вектора Сложное движение точки но и произвольного вектора Сложное движение точки по времени, вычисленного в неподвижной и подвижной системах координат:

Сложное движение точки                                                                                                     (9.14)

Отметим, что во второй формуле (9.14) указана система координат, в которой  вычисляется соответствующая производная.

Здесь вектор to можно рассматривать как угловую скорость вращения подвижной системы координат Oxyz относительно неподвижной Сложное движение точкиФормулу (9.14) называют формулой
Бура. Она имеет следующее содержание: абсолютная производная произвольного вектора Сложное движение точки по времени:

Сложное движение точки равна сумме локальной производной иСложное движение точки векторному произведению вектора Сложное движение точкивращения подвижной системы координат на дифференцируемый вектор Сложное движение точки 

Поскольку формула (9.14) может быть распространена на любой вектор, то в дальнейшем будем широко пользоваться ею не только в кинематике, но и в динамике.
 Рассмотрим теперь частные случаи.
 1. Если система Oxyz неподвижная, то 
Сложное движение точки следовательно, Сложное движение точки то есть 

Сложное движение точки                                                                                                                (9.15)

2.  Если вектор Сложное движение точкинеподвижный относительно неподвижных осей координат Сложное движение точки то

Сложное движение точки                                                                                                           (9.16)

3. Если вектор Сложное движение точки неизменно связанный с  системой координат Сложное движение точки то 

Сложное движение точки                                                                                                        (9.17)

Отметим, что в формуле (9.14) не раскрыто пока физического смысла вектора Сложное движение точки
Полностью он будет установлен в кинематике в разделе “Движение свободного твердого тела”. Сейчас ограничимся рассмотрением некоторых случаев, которые частично отвечают на этот вопрос.
4. Рассмотрим движение подвижной системы координат, считая, что последняя неизменно связана с телом, которое вращается вокруг неподвижной оси, например Сложное движение точки Тогда Сложное движение точки и Сложное движение точки
являются скоростями точек, которые совпадают с концами векторов Сложное движение точки и Сложное движение точки и вычисленные относительно неподвижной системы координат, то есть являются скоростями точек неизменной системы, которой является система координат Oxyz. Причем эти скорости имеют направления в соответствии ортовСложное движение точки и Сложное движение точки (рис. 9.3, б). Итак, выражение для скоростей
точек, которые совпадают с концами единичных векторов Сложное движение точки и Сложное движение точки, можно записать в виде:

Сложное движение точки                                                                                                        (9.18)

Сравнив эти выражения полученной ранее формуле Эйлера, делаем вывод, что вектор Сложное движение точки имеет реальный физический смысл.
А именно – это вектор угловой скорости тела, которое вращается вокруг неподвижной оси.
Этот вывод легко обобщается на случай произвольной точки М, положение которой
в подвижной системе координат определяется радиусом-вектором Сложное движение точки Тогда вектор Сложное движение точкив выражении (9.14) имеет смысл скорости точки, неизменно связанной с телом, которое вращается в неподвижной системе координат, то есть:

Сложное движение точки                                                                                                     (9.19)

что соответствует формуле (8.23)

5. Если скалярно умножить обе части выражения (9.18) соответственно на Сложное движение точкии Сложное движение точки, то
получим:

Сложное движение точки                                                                                                               (9.20)

Левые части этих выражений являются соответственно проекциями вектора Сложное движение точки на ортСложное движение точки и Сложное движение точки на орт Сложное движение точки, а правые части имеют значения соответственно Сложное движение точки и Сложное движение точки, поскольку Сложное движение точки
Сложное движение точки. Итак, проекциями скоростей единичных векторов Сложное движение точки и Сложное движение точки являются  Сложное движение точки и Сложное движение точки
(рис. 9.3, б).
 6. Рассмотрим подвижную систему координат и предположим, что она совершает вращательное движение как твердое тело вокруг неподвижной оси Сложное движение точки, которое  определяется углом поворота Сложное движение точки, который задается относительно положения Сложное движение точки
(Рис. 9.4). тогда:

Сложное движение точки                                                                                                    (9.21)

где Сложное движение точки – орты осей Сложное движение точки

Отсюда получим соотношение, с которыми уже встречались в полярной системе
координат:

Сложное движение точки                                                                                                         (9.22)

Умножив теперь скалярно обе части полученных выражений соответственно на j и
и, будем иметь:

Сложное движение точки                                                                                                               (9.23)

Как видим, производная от угла поворота является ничем иным, как угловой скоростью вращения подвижной системы координат. Таким образом, для одной из компонентов в (9.10) также установлено физический смысл.
 7. Пусть подвижная система отсчета осуществляет поступательное движение. Тогда:Сложное движение точки

Сложное движение точки

Следовательно, Сложное движение точки и формула (9.14)  имеет такую ​​физическую интерпретацию: все точки тела движутся с равными по величине и направлением скоростями, что было установлено нами ранее при изучении поступательного движения тела.  Таким образом, для отдельных случаев движения подвижной системы координат Oxyz установлен физический смысл вектора Сложное движение точки – это вектор угловой скорости тела, или подвижной системы координат Oxyz. Далее будут приведены соответствующее обоснования и для общего случая движений подвижной системы отсчета, неизменно связанной с движением твердого тела.

Теорема о сложении скоростей

Теорема. Абсолютная скоростьСложное движение точки точки при сложном движении равна векторной сумме относительной Сложное движение точки и переносной Сложное движение точки скоростей.
 Доказательство. Рассмотрим движение точки М относительно некоторого тела G (рис. 9.1), с которым неизменно связана подвижная система координат Oxyz, которая, в свою очередь, движется относительно условно неподвижной системы координат.  Пусть положение точки М в подвижной системе координат определяется радиусом-вектором Сложное движение точки, в неподвижной – радиусом-вектором Сложное движение точки, а положение начала О подвижной системы координат относительно неподвижной Сложное движение точки, – радиусом-вектором Сложное движение точки. Тогда:

Сложное движение точки                                                                                                             (9.24)

Продифференцировав это выражение в соответствии формуле (9.14):

Сложное движение точки                                                                                                               (9.25)

Здесь индекс Сложное движение точки отражает то, что вектор Сложное движение точки характеризует переносное движение. На основании определения абсолютной, относительной и переносной скоростей получим:

Сложное движение точки                                                                                                   (9.26)

С учетом этих обозначений, выражение (9.25) будет иметь следующий вид:

Сложное движение точки                                                                                                                  (9.27)

который отражает теорему о распределении скоростей точек при сложном движении. Очевидно, что формула (9.27) отражает правило параллелограмма для сложения скоростей.
 Модуль абсолютной скорости Сложное движение точкина основании теоремы косинусов определяется в виде:

Сложное движение точки                                                                                                   (9.28)

Пример 2. Вдоль хорды АВ (рис. 95) вращающегося диска движется точка М от точки
А к точке В  в соответствии с уравнением Сложное движение точки. Закон вращения диска Сложное движение точки. Определить абсолютную скорость точки в момент, когда она находится от оси вращения диска на расстоянии Сложное движение точки

Сложное движение точки
 Решение. Движение точки М вдоль хорды подвижного диска относительно. Поэтому относительная скорость и направлена ​​по хорде АВ

Сложное движение точки

Диск вращается вокруг оси, перпендикулярной к его плоскости. Итак, переносное движение диска будет вращательным, поэтому переносная скорость точки М направлена ​​перпендикулярно к ОМ в сторону вращения диска. По теореме о сложении скоростей абсолютная скорость Сложное движение точки Поскольку Сложное движение точкиСложное движение точки

В некоторых задачах кинематики сложного движения точки нужно определить относительную скорость Сложное движение точки. С формулы (9.27) видно, что:

Сложное движение точки

Итак, чтобы построить вектор относительной скорости, следует добавить вектор абсолютная скорости к вектору, направленному противоположно переносной скорости.

Теорема о сложении ускорений

Теорема Кориолиса. Абсолютное ускорение точки при сложном движении равно
векторной сумме относительного, переносного ускорений и ускорения Кориолиса.

 Доказательство. По определению ускорения точки, с учетом (9.27), имеем:

Сложное движение точки                                                                                                    (9.29)

где

Сложное движение точки                                                                                                                    (9.30)

С помощью формулы (9.14) для абсолютной производной, определим каждое слагаемое ускорения отдельно, учитывая, что векторы Сложное движение точки и Сложное движение точки заданные в подвижной системе
координат Oxyz и поэтому именно на них распространяются формулы (9.14):

Сложное движение точки                                                                                                                      (9.31)

Сложное движение точкиСложное движение точкиСложное движение точки                         )9.32)

Введем обозначения:

Сложное движение точки                                                                                                                   (9.33)

Тогда (9.32) перепишем в виде:

Сложное движение точкиСложное движение точки                                                                                                 (9.34)

где Сложное движение точки

Введем обозначения в соответствии с определениями абсолютного, относительного и переносного ускорений:

Сложное движение точки                                                                                                       (9.35)

Подставив (9.31) и (9.34) в выражение  (9.29), с учетом (9.35), получим:

Сложное движение точки                                                                                                         (9.36)

Последнее слагаемое в этой формуле, который не входит ни в относительное, ни в переносное ускорения, называется поворотным или кориолисовым ускорением Сложное движение точки:

Сложное движение точки                                                                                                           (9.37)

Окончательно получим:

Сложное движение точки                                                                                                                 (9.38)

Теорема доказана.
 Заметим, что в ряде случаев может стать полезной формула для определения ускорения, которая  непосредственно следует из (9.14):

Сложное движение точки                                                                                                         (9.39)

Отметим, что когда переносное движение подвижной системы координат Oxyz является поступательным Сложное движение точки, ускорение Кориолиса обращается в ноль. Тогда формула (9.38)
принимает вид:

Сложное движение точки                                                                                                                  (9.40)

то есть при поступательном движении абсолютное ускорение точки равно геометрической
сумме относительного и переносного ускорений.
Следовательно, эта формула отражает правило параллелограмма для сложения ускорений в данном случае. В следующих разделах проанализируем выражения для каждой составляющей ускорения более детально.

Вращательное и осевое ускорение в случае вращения тела вокруг неподвижной оси

Проанализируем две составляющие переносного ускорение точки в выражении (9.35) Сложное движение точки и  Сложное движение точки, обусловленные движением тела относительно полюса О.

Сложное движение точки

Поскольку кинематическое содержание векторов  Сложное движение точки и Сложное движение точки в общем случае движения тела, а следовательно, подвижной системы координат еще до конца не раскрыто , пока ограничимся рассмотрением только частного случая вращения тела вокруг неподвижной оси Сложное движение точки (рис. 9.6), для которого физический смысл векторов Сложное движение точки и Сложное движение точкиполностью определен.
Введем следующие обозначения:

Сложное движение точки                                                                                                       (9.41)

и будем называть ускорение Сложное движение точки вращательным, а  Сложное движение точки осевым.

Рассмотрим ускорения произвольной точки М, неизменно связанной с телом, вращения вокруг неподвижной оси (рис. 9.6).
В этом случае Сложное движение точкиСложное движение точки поэтому ускорения точки М согласно
 (9.38), запишем в виде, опустив индекс Сложное движение точкипри Сложное движение точки и Сложное движение точки:

Сложное движение точкиСложное движение точки                                                                                                 (9.42)

Кроме того, ускорение этой же точки, согласно п. 8.3, можно представить в виде векторной суммы нормального и тангенциально ускорений:

Сложное движение точки                                                                                                                 (9.43)

Установим связь между составляющими ускорения точки М которые есть в выражениях (9.42) и (9.43). Прежде всего покажем, что составляющая ускорения точки Сложное движение точки направлена ​​вдоль перпендикуляра MN, который опущен с точки М на ось вращения Сложное движение точки. Для того чтоб
подчеркнуть это обстоятельство, его называют осевым ускорением. Действительно, если Сложное движение точки (рис. 9.6) – это радиус-вектор точки М то вектор ее скорости Сложное движение точки направленный по касательной к траектории (круга) точки, перпендикулярно к плоскости треугольника OMN. Тогда вектор осевого ускорения

Сложное движение точки                                                                                                               (9.44)

будет направлен перпендикулярно к плоскости KLM, которая содержит прямую МК, параллельную оси вращения Сложное движение точки(рис. 9.6). Итак, вектор Сложное движение точки направленный вдоль MN. Учитывая, что

Сложное движение точкиСложное движение точки                                                                                            (9.45)

получим:

Сложное движение точки                                                                                                         (9.46)

Сравнив последнее выражение с соответствующим выражением (8.27) для нормального ускорения точки, которое всегда направлено по главной нормали к абсолютной траектории с центром кривизны в точке N,  которая лежит на оси вращения, получим:

Сложное движение точки                                                                                                                 (9.47)

Рассмотрим теперь вторую составляющую ускорения Сложное движение точки, которую называют вращательным ускорением.  Поскольку выполняется равенство (9.47), то  с учетом (9.42) и (9.43), получим:

Сложное движение точки                                                                                                                            (9.48)

Далее будет показано, что в общем случае движение твердого тела  Сложное движение точкиСложное движение точки Если учесть, что при вращении тела вокруг неподвижной оси направления векторов Сложное движение точки и Сложное движение точки всегда совпадают (и совпадают с осью вращения), то в каждой точке вектора скорости и касательного ускорения направлены вдоль одной прямой – касательной к траектории. Модуль вращательного ускорения запишем в виде:

Сложное движение точкиСложное движение точки                                                                                                        (9.49)

Ускорение Кориолиса

По формуле (9.37) ускорение Кориолиса появляется тогда, когда переносное движение является вращательным:

Сложное движение точки                                                                                                                   (9.50)

Как видно из приведенной формулы, ускорение Кориолиса равно удвоенному векторному произведению вектора Сложное движение точки на относительную скорость точки Сложное движение точки Направление ускорения Кориолиса определяется по правилу векторного произведения. Оно направлено вдоль
нормали к плоскости, в которой расположены векторы Сложное движение точкии Сложное движение точки, в той части пространства, с
которой, если смотреть с конца вектора Сложное движение точки, видно поворот на наименьший угол от вектора Сложное движение точки к вектору Сложное движение точки против хода часовой стрелки (в правой системе координат).
 Модуль ускорения Кориолиса находим по формуле:

Сложное движение точки                                                                                                     (9.51)

Спроектировав обе части равенства  (9.50) на подвижные оси координат, получим такие выражения для проекций ускорения Кориолиса :

Сложное движение точки                                                                                                        (9.52)

где Сложное движение точки– проекции угловой скорости на оси подвижной системы координат Сложное движение точкиСложное движение точки – проекции относительной скорости на эти самые оси.

Тогда модуль  ускорения Кориолиса :

Сложное движение точки                                                                                                             (9.53)

Направление Сложное движение точки определяется направляющими косинусами углов, которые вектор Сложное движение точки образует соответственно с ортами Сложное движение точкиподвижных осей:

Сложное движение точки                                                                                                     (9.54)

Случаи превращения в ноль ускорения Кориолиса

Как следует из (9.51),  ускорение Кориолиса  равно нулю в те моменты (или на тех промежутках времени), когда:
 1) вектор Сложное движение точки равен нулю, то есть переносное движение является поступательным; 

2) относительная скорость Сложное движение точки равна нулю, то есть нет относительного движения;

3) Сложное движение точкито есть вектор Сложное движение точки и Сложное движение точки – коллинеарные.

Следует отметить, что в те моменты времени, когда ускорения Кориолиса превращается в ноль, абсолютное ускорение точки определяется по правилу параллелограмма.
тогда:

Сложное движение точки                                                                                                          (9.55)

а модуль этого ускорения определяется по теореме косинусов:

Сложное движение точки                                                                                                 (9.56)

Физические причины возникновения ускорения Кориолиса

Покажем, что ускорение Кориолиса возникает вследствие таких двух причин:
 1. Представим себе два прямолинейных отрезка Сложное движение точки, и Сложное движение точки, по которым движутся
точки Сложное движение точки и Сложное движение точки (рис. 9.7). Отрезок Сложное движение точки движется поступательно, а отрезок Сложное движение точки вращается вокруг точки Сложное движение точки Обозначим через Сложное движение точки и Сложное движение точки соответственно относительную и переносную скорости точки М. Переносным движением точки (рис. 9.7, а) является поступательное движение, обусловленное движением отрезка Сложное движение точки. Через элементарный промежуток времени отрезок Сложное движение точки

Сложное движение точки

займет положение Сложное движение точки Поскольку переносное движение – поступательное, то переносные
скорости точки Сложное движение точки и Сложное движение точки одинаковы.
 Переносным движением точки Сложное движение точки (рис. 9.7, б) является вращательное движение, вызванное вращением отрезка Сложное движение точки вокруг точки Сложное движение точки. Поэтому переносные скорости точки М2 на отрезке Сложное движение точки и Сложное движение точки разные: Сложное движение точкиСложное движение точки

Итак, переносная скорость точки Сложное движение точки меняется в зависимости от ее относительного движения вдоль отрезка Сложное движение точки. При этом скорость изменения переносной скорости Сложное движение точки точки Сложное движение точки  во времени, которая создает дополнительное ускорение, пропорциональна относительной скорости Сложное движение точки и  угловой скорости переносного движения Сложное движение точки В этом суть первой физической причины возникновения ускорения Кориолиса.
 2. Вторая физическая причина возникновения  ускорения Кориолиса такова:
относительная скорость точки Сложное движение точки, то есть Сложное движение точки, зависит от переносного вращательного движения, поскольку при вращении отрезка Сложное движение точки меняется направление относительной скорости Сложное движение точки (Рис. 9.7, б).

Следовательно, скорость изменение во времени относительной скорости точки (т.е. ускорение точки, которое зависит от приведенной выше причины) также будет пропорционально относительной скорости Сложное движение точки и угловой скорости Сложное движение точки переносного движения.
 А. И. Сомов обратил внимание на то, что ускорения Кориолиса как будто вращает вектор относительной скорости в направлении переносного вращательного движения, из-за чего назвал ускорение Кориолиса поворотным.
 Подводя итог изложенного и обращаясь к формуле (9.34), видим, что  изменение во времени переносной скорости при условии, что переносное движение является непоступательным, вызывается не только переносным, но и относительным движением точки. Дополнительное ускорение равно векторному произведению Сложное движение точки. Так же из формулы (9.31) следует, что изменение относительной скорости во времени вызвано не только относительным, но и переносным движением точки. Дополнительное ускорение и в этом случае равна Сложное движение точки

Ускорение Кориолиса  Сложное движение точки, таким образом, равно удвоенному векторному произведению
векторов Сложное движение точки и Сложное движение точки, то есть Сложное движение точки и характеризует изменение во времени относительной скорости через переносное непоступательное движение и переносной скорости – через относительное движение точки.

Пример 3. Определить абсолютное ускорение точки в примере 2, приведенном в п. 9.3.
 Решение. Поскольку переносное движение является  вращательным, то абсолютное ускорение точки М (Рис. 9.5) определим по теореме Кориолиса:

Сложное движение точки

Поскольку Сложное движение точки и переносная угловая скорость- постоянная Сложное движение точкито Сложное движение точки и Сложное движение точки Следовательно, 

Сложное движение точки

Сложное движение точкиСложное движение точки

Относительное движение точки М происходит вдоль прямой АВ, поэтому относительное ускорение Сложное движение точки направлено вдоль АВ, ускорение Сложное движение точки– вдоль ОМ к центру вращения. Направление ускорения Кориолиса определяем по правилу векторного произведения Сложное движение точки . Вектор Сложное движение точки направленный перпендикулярно к диску , а Сложное движение точки -вдоль хорды. Итак,  ускорения Кориолиса  Сложное движение точки также направлено по ОМ от центра О вращения диска. Вектор абсолютного ускорения направлен по диагонали прямоугольника со сторонами Сложное движение точки  (рис. 9.8), и 

Сложное движение точки

Сложное движение точки

Пример 4. На подвижных объектах (самолетах, кораблях и т.д.) используются гироскопические приборы маятникового типа для определения отклонения объектов от горизонтали. При движении относительно Земли в этих приборах возникают так называемые скоростные и баллистические девиации (погрешности), обусловленные тем, что эти объекты, двигаясь горизонтально по поверхности Земли (или по сфере радиусом Сложное движение точки , где h – высота полета), на самом деле вращаются в инерциальном пространстве и поэтому они движутся с ускорением в инерциальной системе координат, если даже их скорость относительно Земли является постоянной. Поэтому необходимо найти
угловую скорость вращения подвижного объекта и его ускорение в географической системе координат, если составляющая относительной скорости объекта к северу Сложное движение точки, на восток – Сложное движение точки (рис. 9.9), а угловая скорость суточного вращения Земли – Сложное движение точки.

Решение. Движение объекта (точку О) задано в сферической системе координат: Сложное движение точки – географическая долгота, что отсчитывается от меридиана Гринвича; Сложное движение точки – географическая широта, что отсчитывается от экватора; Сложное движение точки – радиус сферы, по которой движется объект: Сложное движение точки где Сложное движение точки – средний радиус Земли. Отметим, что линейная скорость точки на земной поверхности, расположенной на экваторе равна 1852 км/ч относительно неподвижной системы координат.

Ось  Сложное движение точки направлена ​​на север (N) по касательной к меридиану, Сложное движение точки – на восток ) по касательной к параллели, а Сложное движение точки – по вертикали вверх.

Очевидно, что движение объекта с составляющей скорости Сложное движение точки вызванной изменением угла Сложное движение точки– географической широты, а движение по составляющей скорости на восток Сложное движение точки – географической долготы Сложное движение точки.  Итак, угловая скорость Сложное движение точки направлена ​​перпендикулярно к плоскости параллели и параллельная угловой скорости вращения Земли Сложное движение точки, а угловая скорость Сложное движение точки направлена ​​в сторону, противоположную направлению оси Сложное движение точки.

С учетом этого, очевидно, что:

Сложное движение точки                                                                                                              (1)

Если теперь учесть и угловую скорость вращения Земли Сложное движение точки, то проекции угловой скорости на оси географической системы координат будут:

Сложное движение точкиСложное движение точки

Сложное движение точкиСложное движение точки                                                                             (2)

Сложное движение точки

В данном случае вращательное движение Земли является переносным, а движение объекта по поверхности относительным. С учетом этого и формул (2) приведем формулы для абсолютной скорости объекта в проекциях на оси географической системы координат:

Сложное движение точки                                                                                                           (3)

Используя уравнение (3) выражение (2) можно переписать в форме:

Сложное движение точки

Сложное движение точкиСложное движение точки                                                                                                 (4)

Сложное движение точки

Найдем теперь абсолютное ускорение подвижного объекта, воспользовавшись формулой
 (9.39):

Сложное движение точки                                                                                                               (5)

тут Сложное движение точки– угловая скорость вращения системы координат Сложное движение точки относительно неподвижной системы координат, которая определяется выражениями (2) или (4)

Сложное движение точки

Проектируя  (5) на оси Сложное движение точки будем иметь:

Сложное движение точки                                                                                                     (6)

Подставив  в (6) выражения (3) и (4), получим:

Сложное движение точки                                                                                       (7)

При горизонтальном движении объекта Сложное движение точки то есть Сложное движение точки поэтому формулы (7) немного упрощаются:

Сложное движение точки

Сложное движение точки                                                                                                                         (8)

Сложное движение точкиСложное движение точки

В выражениях (8) не видно явно ускорения Кориолиса, хотя понятно, что оно должно было иметь место, потому что переносное движение Земли является вращательным.

Для того, чтобы выделить явно ускорение Кориолиса, осевое ускорение, вращательное и относительное, нужно формулы (8) записать в развернутом виде:

Сложное движение точкиСложное движение точки

Сложное движение точкиСложное движение точки                                                                                                (9)

Сложное движение точкиСложное движение точки

Перепишем в конечном итоге формулы (9) так, чтобы на первом месте было переносное, дальше относительное и в конце  ускорения  Кориолиса (таблица).
 Таким образом, задача решена.

Пример 5. Точка М неравномерно движется по ободу колеса радиусом R с относительной
скоростью  вращается с переменной угловой скоростью Сложное движение точки Найти двумя методами ускорения точки:
 1) задавая движение точки в натуральной системе координат;
 2) используя понятие сложного движения точки.
 Решение. 1.  При заданном движения точки в натуральной системе координат нужно учесть, что ускорение в данном случае имеет две составляющие  – тангенциальноеСложное движение точки и нормальное  Сложное движение точкиускорения:

Сложное движение точки                                                                                                             (1)

Следовательно, для определения ускорений по формулам (1) нужно найти Сложное движение точки.
 Очевидно, что Сложное движение точки – это по сути абсолютная скорость точки, поэтому:

Сложное движение точки                                                                                                       (2)

Подставив (2) в (1), получим:

Сложное движение точки                                                                                               (3)

Если спроектировать эти ускорения на оси ортогональной системы координат Сложное движение точки то получим:

Сложное движение точки                                                                                                  (4)

При Сложное движение точкии Сложное движение точки соответственно получим:

Сложное движение точки                                                                                                                           (5)

Сложное движение точки

2. Использование понятия сложного движения точки. В этом случае (рис. 9.10,б)

Сложное движение точки                                                                                                                 (6)

Переносное ускорение имеет две составляющие Сложное движение точки и Сложное движение точкиВращающаяся составляющая ускорения Сложное движение точки направленная в данном случае по оси Сложное движение точки и равна: 

             Сложное движение точкиСложное движение точки                                                                                                                                          (7)

Осевое ускорения будет направлено к оси вращения, проходящей через точку О (рис. 9.10, б) и равно:

Сложное движение точки                                                                                                                                           (8)

Ускорение Кориолиса в этом случае направлено по оси Оу и равно:

Сложное движение точки                                                                                                                    (9)

Относительное ускорение в этом случае определяется по формуле (9.31), в которой нужно учесть только ту составляющую угловой скорости Сложное движение точки, которая обусловлена ​​только относительным движением, потому что взаимодействие вращательного переносного движения и относительной скорости учтено в ускорении Кориолиса:

Сложное движение точки                                                                                                             (10)

Очевидно, что 

Сложное движение точки                                                                                                                           (11)

Спроектировав выражение (10) на оси Сложное движение точки и Сложное движение точки и учитывая (11), получим:

Сложное движение точки                                                                                                                     (12)

Найдем теперь проекции абсолютных ускорений на осях  Сложное движение точкии Сложное движение точки

Сложное движение точки                                                                                                        (13)

Сравнивая выражения (3), (4) и (13), видим, что проекции ускорения на оси Сложное движение точки и Сложное движение точки совпадают. Причем в этом случае при любой Сложное движение точки

Сложное движение точки                                                                                                            (14)

Для сравнения найдем ускорение по формуле (9.39)

Сложное движение точки                                                                                                          (15)

Отметим, что в данном случае в формуле (15) нужно задать полную угловую скорость
вращения подвижной системы координат:

Сложное движение точки                                                                                                            (16)

В нашем случае Сложное движение точки определяется по формуле (6), Сложное движение точки Из формулы (15) с учетом (6) и (16), получим:

Сложное движение точки                                                                                                              (17)

или

Сложное движение точки                                                                                                       (18)

Нетрудно заметить, что выражения (3), (13) и (18) одинаковые, то есть приведенный способ решения задачи оказался достаточно эффективным.  Задача решена.

Сложное движение материальной точки. Относительное, переносное и абсолютное движение материальной точки

Сложное движение материальной точки — это такое движение, при котором точка может одновременно участвовать в двух и более движениях.

Для представления о сложном движение приведем такой пример. Если человека принять за материальную точку, то ее движение по палубе корабля будет сложным, когда это движение рассматривать относительно палубы и относительно берега (поверхности Земли). Движение человека относительно палубы является относительным, вместе с кораблем — переносным, а относительно поверхности Земли — абсолютным.

При сложном движении можно рассматривать точку, тело переноса или подвижное переносное пространство, с которым связана подвижная система координат, и неподвижную систему координат, которая скреплена с поверхностью Земли.

Движение точки относительно тела переноса или подвижной системы отсчета называется относительным, а скорость и ускорение точки в этом движении — относительными скоростью и ускорением, они обозначаются Сложное движение точки, Сложное движение точки (relative — относительный).

Движение точки вместе с подвижным пространством, а точнее вместе с той точкой подвижного пространства, с которой в данный момент совпадает заданная точка, называется переносным движением, а скорость и ускорение точки в этом движении — переносными скоростью и ускорением, они обозначаются Сложное движение точки, Сложное движение точки (exporter — захватить).

Движение материальной точки относительно неподвижной системы координат называется абсолютным, а скорость и ускорение — абсолютными, они   обозначаются Сложное движение точки, Сложное движение точки.

Теорема о сложении скоростей в сложном движении материальной точки

Сформулируем эту теорему.  

Абсолютная скорость материальной точки при сложном ее движении равна геометрической сумме ее переносной и относительной скоростей:

Сложное движение точки .

Докажем это. Выберем материальную точку М (рис. 2.45), что движется независимо по своему закону относительно подвижной системы отсчета Oxyz, которая жестко связана с телом S, и вместе с ним перемещается относительно неподвижной системы координат Сложное движение точки. Начало подвижной системы координат Oxyz (центр O) выбрано в теле S произвольно, на соответствующих осях координат показаны единичные векторы (орты) Сложное движение точки, Сложное движение точки и Сложное движение точки.

Определим положение материальной точки М относительно выбранных осей координат. Так, относительно подвижной системы координат Oxyz ее положение определяется радиус-вектором Сложное движение точки. Положение точки М относительно неподвижной системы координат Сложное движение точки определяется радиус-вектором Сложное движение точки.

Положение начала (центр O) подвижной системы координат Oxyz относительно неподвижной системы координат Сложное движение точки будет определяться радиус-вектором Сложное движение точки.

Как видно из образованного на рис. 2.46 векторного треугольника Сложное движение точки, всегда сохраняется векторное соотношение:

Сложное движение точки  ,

или, если представить радиус-вектор Сложное движение точки в проекциях на оси координат Oxyz с учетом единичных векторов Сложное движение точки, Сложное движение точки и Сложное движение точки :

Сложное движение точки  .

Сложное движение точки

Используя выражение определим абсолютную скорость Сложное движение точки  материальной точки М.

При произвольном переносном движении тела орты Сложное движение точки, Сложное движение точки и Сложное движение точки меняют свое направление и поэтому являются переменными векторами. Тогда все члены, входящие в выражение выше, считаются переменными величинами. На основании формулы искомая скорость будет равна:

Сложное движение точки.  

Перегруппируем правую часть выражения и перепишем его:

Сложное движение точки 

Рассмотрим подробно выражение. Так, в последней скобке в этом выражении можно сделать следующие обозначения:

Сложное движение точки ,

Сложное движение точки ,

Сложное движение точки .

Тогда она представляет собой

Сложное движение точки — относительную скорость точки.

Рассмотрим далее первую скобку в выражении, где

Сложное движение точки — скорость начала подвижной системы координат Oxyz или скорость полюса O.

По формулам Пуассона другие составляющие первой скобки выражения можно представить так:

Сложное движение точки ,

 Сложное движение точки,

Сложное движение точки ,

где Сложное движение точки— угловая скорость переносного движения, или скорость вращения подвижных осей координат и неизменно связанных с ними ортов Сложное движение точки, Сложное движение точки и Сложное движение точки.

Подставим в первую скобку выражения:

Сложное движение точки

                                    Сложное движение точки .

Тогда выражение окончательно будет иметь следующий вид:

Сложное движение точки .

Сумма Сложное движение точки является скоростью переносного движения, где Сложное движение точки0 — скорость полюса или начала отсчета подвижной системы координат.

Поскольку переносное движение в общем случае является сложным, то он разделяется на поступательное вместе с полюсом (точкой О) и вращательное вокруг полюса

Окончательно имеем:

Сложное движение точки .

Что и необходимо было доказать.

Выражение называют параллелограммом скоростей.

Когда угол Сложное движение точки , тогда модуль абсолютной скорости равен:

Сложное движение точки,

Если  Сложное движение точки, так модуль абсолютной скорости Сложное движение точки движения материальной точки определяется по теореме косинусов:

Сложное движение точки.

Теорема Кориолиса

Сформулируем эту теорему.

Абсолютное ускорение материальной точки при произвольном переносном движении равно геометрической сумме трех ускорений: переносного, относительного и дополнительного ускорения, которое называется поворотным ускорением или ускорением Кориолиса.

Итак:

Сложное движение точки ,

где Сложное движение точки — абсолютное ускорение материальной точки; Сложное движение точки — переносное ускорение; Сложное движение точки — относительное ускорение; Сложное движение точки  — ускорение Кориолиса.

Предположим, что материальная точка М имеет сложное движение. Считаем, что она движется относительно подвижной системы координат Oxyz, которая сама произвольным образом перемещается относительно другой — неподвижной системы Сложное движение точки(рис. 2.46). Покажем Сложное движение точки, Сложное движение точкиСложное движение точки — орты подвижной системы координат Oxyz. Координаты точки M в подвижной системе отсчета — x, y, z.

Как и в предыдущем случае, определим положение материальной точки М. Так, положение точки М в подвижной системе координат Oxyz определяется радиус-вектором Сложное движение точки. Ее положения относительно неподвижной системы координат Сложное движение точки определяется радиус-вектором Сложное движение точки. Положение точки О (начала отсчета подвижной системы координат Oxyz) в неподвижной системе координат Сложное движение точки определяется радиус-вектором Сложное движение точки.

Абсолютное ускорение материальной точки М равна производной по времени от абсолютной скорости:

Сложное движение точкиСложное движение точки.

Проведем преобразование и анализ выражения. В первой скобке составляющая

Сложное движение точки — ускорение полюса O.

Превратим дальше выражение первой скобки, пользуясь формулами Пуассона:

Сложное движение точкиСложное движение точкиСложное движение точкиСложное движение точкиСложное движение точкиСложное движение точки

Сложное движение точки — ускорение точки в переносном сферическом движении тела вокруг полюса.

Во второй скобке

  Сложное движение точки — относительное ускорение точки.

В уравнении есть еще такие два выражения, которые также надо превратить:

Сложное движение точки

Сложное движение точки

Сложное движение точки — ускорение Кориолиса или поворотное ускорение.

Учитывая сделанные преобразования, окончательно запишем:

Сложное движение точки . 

Что и требовалось доказать.

Сложное движение точки ,

где Сложное движение точки — ускорение начала подвижной системы координат (полюса О) и независимого сферического движения тела вокруг полюса, что выражается составляющей ускорения  Сложное движение точки.

Модуль, направление и физические причины возникновения  ускорения Кориолиса

Рассмотрим подробно ускорения Кориолиса и его свойства. Оно, согласно формуле, имеет следующий вид:

Сложное движение точки .

Ускорение Кориолиса равна двойному векторном произведения векторов переносной угловой скорости и относительной скорости точки.

Как известно, модуль векторного произведения равен:

Сложное движение точки

Из выражения видно, что модуль ускорения Кориолиса равен нулю Сложное движение точки в следующих случаях:

1. Сложное движение точки переносное движение не является вращательным, поэтому ускорение Кориолиса называют также поворотным ускорением;

2. Сложное движение точки движение точки в данный момент времени не является сложным;

3. Сложное движение точки ,или  Сложное движение точки — векторы переносной угловой скорости и относительной скорости параллельны.

Модуль ускорения Кориолиса будет максимальным, если угол между векторами Сложное движение точки и Сложное движение точкисоставляет 90º или 270º, в этом случае:

Сложное движение точки              

Направление ускорения Кориолиса можно найти по двум методами: математическим — по определению векторного произведения двух векторов и физическим — по способу Жуковского.

Рассмотрим первый способ.

Предположим, что тело S вращается вокруг оси z против направления хода часовой стрелки.

Это тело переноса и вектор Сложное движение точки направлен вверх вдоль оси z (рис. 2.47). Независимо по телу S по своей траектории движется точка М со скоростью Сложное движение точки (вектор АМ). Перенесем условно вектор Сложное движение точки в точку М. Вектор ускорения Кориолиса Сложное движение точки, как итоговый вектор векторного произведения, перпендикулярный плоскости, которую образуют эти векторы (параллелограмм МАВС). Остается определить, к нам этот вектор направлен, или от нас. В данном случае (рис. 2.47) вектор Сложное движение точки направлен к нам, потому что кратчайший переход от вектора Сложное движение точки к вектору Сложное движение точки  происходит против направления хода часовой стрелки.

Сложное движение точки

Таким образом, вектор ускорения Кориолиса перпендикулярен плоскости, которую образуют векторы переносной угловой скорости и относительной скорости, и направлен в ту сторону, откуда видим, что кратчайший переход от вектора угловой скорости к вектору относительной скорости происходит против часовой стрелки.

Переходим к рассмотрению определения направления вектора ускорения Кориолиса по методу Жуковского.

Для определения направления вектора ускорения Кориолиса этим методом необходимо вектор относительной скорости Сложное движение точки спроецировать на плоскость π, перпендикулярной оси переносного вращения Сложное движение точки, затем вернуть проекцию Сложное движение точки в плоскости π на угол 90º в направлении переносного вращения (рис. 2.48).

Нетрудно понять, что в плоских механизмах, которые являются объектом курсового проекта по теории механизмов и машин, вектор Сложное движение точки всегда будет расположен в плоскости движения механизма. Поэтому для определения направления ускорения Кориолиса достаточно повернуть вектор  Сложное движение точки на 90º в направлении переносного поворота ωе.

Сложное движение точки

Рассмотрим далее физические причины возникновения поворотного ускорения или ускорение Кориолиса.

Пусть по пластине, расположенной в плоскости рисунка и равномерно вращается вокруг вертикальной оси с постоянной угловой скоростью Сложное движение точки (направление вращения показано стрелкой), движется прямолинейно вдоль ее радиуса материальная точка М с постоянной относительной скоростью Сложное движение точки (рис. 2.49). Через некоторое время пластина повернется на угол 𝞿 и точка М окажется в положении M1 на большем расстоянии от оси вращения А. В результате этого вернется вектор  Сложное движение точки результате переносного вращения, увеличится по модулю и вернется вектор переносной скорости  Сложное движение точки.

Сложное движение точки

Из выше приведенного можно сформулировать две физические причины возникновения ускорения Кориолиса:

— изменение направления вектора относительной скорости материальной точки в результате переносного вращения;

— изменение модуля и направления вектора переносной скорости точки в результате ее относительного движения; это видно из следующих выражений переносной скорости движения для различных ее положений M и M1 (расстояние Сложное движение точки):

Сложное движение точки,

Сложное движение точки .

Следовательно, ускорение Кориолиса — это новый кинематический эффект, который возникает в результате взаимодействия, взаимовлияния векторов относительной и переносной скоростей при вращательном переносном движении.

Влияние ускорения Кориолиса наблюдается в природе и технике.

Так, за счет сил инерции масс воды, которые формируются этим ускорением, размываются правые берега рек, текущих вдоль меридиана. Поэтому правые берега в северном полушарии всегда являются крутыми. В южном полушарии – наоборот, левые берега являются крутыми.

В технике ускорения Кориолиса возникает в так называемых кулисных механизмах (кулиса — это подвижная направляющая). Относительно кулисы движется кулисный камень, а переносным движением является поворот кулисы относительно недвижимого центра.

Методика решения задач на сложное движение материальной точки

1. Выяснить, движение точки является относительным, какое является переносным, проанализировать законы движения и условие задачи.

2. Для определения характеристик относительного движения необходимо условно остановить переносное движение. Найти положение точки в заданный момент времени на траектории относительного движения.

3. Для определения характеристик переносного движения необходимо условно остановить относительное движение и рассмотреть движение точки, принадлежащей телу переноса, которая совпадает в данный момент с этой точкой.

4. Для определения параметров абсолютного движения точки необходимо выбрать систему координат с началом в самой точке, затем методом проекций определить проекции абсолютных скорости и ускорения и, наконец, полные скорости и ускорения

Пример.

Кольцевая трубка (рис. 2.50) радиуса 16 см вращается вокруг горизонтальной диаметра ОА по закону Сложное движение точки  рад. Внутри трубки движется жидкость согласно уравнению Сложное движение точкисм. Определить абсолютную скорость и абсолютное ускорение частицы М жидкости в момент времениСложное движение точки , если в начальный момент частица была в точке А.

Решение

Определяем положение точки М в момент времени t1. Положение точки M удобно определить углом α. Определим его с помощью такого выражения:

Сложное движение точки   рад,

Сложное движение точки .

Сложное движение точки

 Точка М в заданный момент времени изображена на рис. 2.50. Выберем подвижную систему координат, жестко связанную с кольцевой трубкой.

Выделяем переносное движение точки M. Для этого скрепляем точку М с подвижной системой координат. В этом случае точка M будет описывать круг в плоскости, перпендикулярной к диаметру ОА, радиус которого будет равен:

Сложное движение точки ,

Вычислим переносную скорость точки М как скорость вращения данной точки вокруг оси ОА. Она равна:

Сложное движение точки

Определим угловую скорость вращения трубки.

Сложное движение точки Сложное движение точки . 

Вектор угловой скорости направлен вдоль оси вращения.

Переносная скорость Сложное движение точки точки M равна:

Сложное движение точки.

Для момента времени Сложное движение точки имеем такое значение переносной скорости точки M:

Сложное движение точки .

Вектор переносной скорости направлен перпендикулярно к плоскости чертежа в направлении вращения.

Относительное движение точки М — это движение жидкости относительно трубки. В этом случае точка М будет двигаться по кругу диаметром ОА.

Вычисляем относительную скорость точки М. Она равна:

Сложное движение точки.

Для момента времени Сложное движение точки находим значение относительной скорости движения Сложное движение точки:

Сложное движение точки

Направляем вектор относительной скорости Сложное движение точки по касательной к упомянутой окружности в точке M.

Векторы переносной Сложное движение точки и относительно Сложное движение точки скоростей изображены на рис. 2.50.

Учитывая, что векторы Сложное движение точки и Сложное движение точки взаимно перпендикулярны, находим абсолютную скорость точки M. Она равна:

Сложное движение точки.

Абсолютное ускорение точки M будет равно:

Сложное движение точки .

Находим переносное нормальное ускорение точки M:

Сложное движение точки.

При Сложное движение точки значение переносного нормального ускорения равно:

Сложное движение точки.

Направленный вектор переносного нормального ускорения  Сложное движение точки по перпендикуляру к оси вращения OA.

Переносное касательное ускорение Сложное движение точки точки М равно:

Сложное движение точки .

Определим угловое ускорение трубки. Оно будет равно:

Сложное движение точки.

Угловое ускорение Сложное движение точки положительное, следовательно, вращения трубки являются ускоренными.

Вычисляем переносное касательное ускорение Сложное движение точки точки M. Оно будет равно:

Сложное движение точки.

Для Сложное движение точки  имеем значение этого ускорения:

Сложное движение точки.

Направленное переносное касательное ускорение Сложное движение точки точки M так же, как и переносная скорость Сложное движение точки, перпендикулярна к плоскости трубки.

Находим относительное касательное ускорение Сложное движение точки  точки М. Оно равно:

Сложное движение точки .

Вектор относительного касательного ускорения  Сложное движение точки  совпадает с направлением вектора относительной скорости Сложное движение точки , потому что относительное движение ускоренно, о чем говорит положительный знак в касательном ускорении Сложное движение точки .

Вычислим относительное нормальное ускорение Сложное движение точки :

Сложное движение точки .

Для момента времени Сложное движение точки  имеем такое значение этого ускорения:

Сложное движение точки .

Направленный вектор нормального относительного ускорения  Сложное движение точки  по радиусу к центру кольца трубки.

Находим ускорение Кориолиса Сложное движение точки . Оно будет равно:

Сложное движение точки .

Направлено ускорение Кориолиса перпендикулярно плоскости, в которой лежат векторы

Сложное движение точки и Сложное движение точки, таким образом, что если посмотреть с положительного конца этого вектора, то поворот от Сложное движение точки к Сложное движение точки  на наименьший угол происходит против направления хода часовой стрелки. Таким образом, вектор ускорения Кориолиса Сложное движение точки  направлен по одной прямой с вектором переносного касательного ускорения Сложное движение точки , но имеет направление в противоположную сторону.

Находим относительное касательное ускорение Сложное движение точки  точки М. Оно равно:

Сложное движение точки .

Вектор относительного касательного ускорения  Сложное движение точки  совпадает с направлением вектора относительной скорости Сложное движение точки, потому что относительное движение ускоренно, о чем говорит положительный знак в касательном ускорении Сложное движение точки .

Вычислим относительное нормальное ускорение Сложное движение точки :

Сложное движение точки .

Для момента времени Сложное движение точки  имеем такое значение этого ускорения:

Сложное движение точки .

Направленный вектор нормального относительного ускорения  Сложное движение точки по радиусу к центру кольца трубки.

Находим ускорение Кориолиса Сложное движение точки . Оно будет равно:

Сложное движение точки .

     Направлено ускорение Кориолиса перпендикулярно плоскости, в которой лежат векторы Сложное движение точки и Сложное движение точки, таким образом, что если посмотреть с положительного конца этого вектора, то поворот о т Сложное движение точки к Сложное движение точки на наименьший угол происходит против направления хода часовой стрелки. Таким образом, вектор ускорения Кориолиса Сложное движение точки направлен по одной прямой с вектором переносного касательного ускорения Сложное движение точки , но имеет направление в противоположную сторону.

Векторы относительного, переносного и ускорение Кориолиса изображены на рис. 2.51.

Сложное движение точки

Для нахождения абсолютного ускорения Сложное движение точки выберем систему координат, как показано на рис. 2.51, и спроектируем векторное равенство, которое определяет абсолютное ускорение точки М, на оси данной системы координат:

Сложное движение точки/Сложное движение точки

Сложное движение точки/Сложное движение точки

Сложное движение точки .

Модуль абсолютного ускорения Сложное движение точки равен:

Сложное движение точки .

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика материальной точки
  24. Динамика механической системы
  25. Динамика плоского движения твердого тела
  26. Динамика относительного движения материальной точки
  27. Динамика твердого тела
  28. Кинематика простейших движений твердого тела
  29. Общее уравнение динамики
  30. Работа и мощность силы
  31. Обратная задача динамики
  32. Поступательное и вращательное движение твердого тела
  33. Плоскопараллельное (плоское) движение твёрдого тела
  34. Сферическое движение твёрдого тела
  35. Движение свободного твердого тела
  36. Сложное движение твердого тела
  37. Плоское движение тела
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Добавить комментарий