Электрохимический ряд активности металлов (ряд напряжений, ряд (вытеснения) Бекетова, ряд стандартных электродных потенциалов) — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов E0, отвечающих полуреакции восстановления катиона металла Men+: Men+ + nē → Me
Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.
История[править | править код]
Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам[1]. Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.
Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов. Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах. Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений[2].
В 1793 году Алессандро Вольта, конструируя гальванический элемент (Вольтов столб), установил относительную активность известных тогда металлов: Zn, Pb, Sn, Fe, Cu, Ag, Au. «Сила» гальванического элемента оказывалась тем больше, чем дальше стояли друг от друга металлы в этом ряду (ряд напряжений). Однако Вольта не связал этот ряд с химическими свойствами металлов.
В 1798 году Иоганн Вильгельм Риттер указал, что ряд Вольта эквивалентен ряду окисления металлов (то есть последовательности уменьшения их сродства с кислородом). Таким образом, Риттер высказал гипотезу о возникновении электрического тока вследствие протекания химической реакции[3].
В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.
Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым. Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими». В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов — тем, что называется химическим сродством»[4]. Открытие Бекетовым вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять другие из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые (поэтому данный ряд часто также называют вытеснительный ряд Бекетова, или просто ряд Бекетова).
Не отрицая значительных заслуг Бекетова в становлении современных представлений о ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда[5][6]. Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности». Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl2 и свинец — из кислого раствора PbCl2; она же способна к растворению в концентрированной соляной кислоте с выделением водорода. Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl2.
Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» — расположению металлов по значению стандартных электродных потенциалов. Таким образом, вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов.
Теоретические основы[править | править код]
Значения электрохимических потенциалов являются функцией многих переменных и поэтому обнаруживают сложную зависимость от положения металлов в периодической системе. Так, окислительный потенциал катионов растёт с увеличением энергии атомизации металла, с увеличением суммарного потенциала ионизации его атомов и с уменьшением энергии гидратации его катионов.
В самом общем виде ясно, что металлы, находящиеся в начале периодов, характеризуются низкими значениями электрохимических потенциалов и занимают места в левой части ряда напряжений. При этом чередование щелочных и щёлочноземельных металлов отражает явление диагонального сходства. Металлы, расположенные ближе к серединам периодов, характеризуются большими значениями потенциалов и занимают места в правой половине ряда. Последовательное увеличение электрохимического потенциала (от −3,395 В у пары Eu2+/Eu[7] до +1,691 В у пары Au+/Au) отражает уменьшение восстановительной активности металлов (свойство отдавать электроны) и усиление окислительной способности их катионов (свойство присоединять электроны). Таким образом, самым сильным восстановителем является металлический европий, а самым сильным окислителем — катионы золота Au+.
В ряд напряжений традиционно включается водород, поскольку практическое измерение электрохимических потенциалов металлов производится с использованием стандартного водородного электрода.
Практическое использование ряда напряжений[править | править код]
Ряд напряжений используется на практике для сравнительной [относительной] оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе:
- Металлы, стоящие левее водорода, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu2+ → Zn2+ + Cu возможно только в прямом направлении.
- Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) — и при взаимодействии с водой.
- Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
- При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.
Примечания[править | править код]
- ↑ Рабинович В. Л. Алхимия как феномен средневековой культуры. — М.: Наука, 1979
- ↑ Пути познания / Головнер В. Н. Взгляд на мир глазами химика
- ↑ Штрубе В. Пути развития химии: в 2-х томах. Том 2. От начала промышленной революции до первой четверти XX века
- ↑ Беляев А. И. Николай Николаевич Бекетов — выдающийся русский физико-химик и металлург. М., 1953
- ↑ Леенсон И. А. Ряд активности металлов Бекетова: миф или реальность? // Химия в школе. — 2002. — № 9. — С. 90-96.
- ↑ Мчедлов-Петросян Н. О. Труды Н. Н. Бекетова и ряд активности металлов // Вестник Харьковского национального университета. — 2003. — № 596. — Химия. Вып. 10 (33). — С. 221—225.
- ↑ Справочник химика : в 7 т. / гл. ред. Б. П. Никольский. — 2-е изд., перераб. и дополн. — М., Л. : Химия, 1965. — Т. 3 : Химическое равновесие и кинетика. Свойства растворов. Электродные процессы. — С. 743. — 1008 с. — 16 000 экз.
Литература[править | править код]
- Корольков Д. В. Основы неорганической химии. — М.: Просвещение, 1982. — 271 с.
Ссылки[править | править код]
- Petr Vanýsek. Electrochemical Series // Handbook of Chemistry and Physics: 81th Edition. — CRC Press LLC, 2000. — ISBN 978-0849304811.
Что такое электрохимический ряд напряжений металлов
Электрохимический ряд напряжений это последовательность, где металлы расположены в порядке увеличения их стандартных электрохимических потенциалов, отвечающих полу-реакции восстановления катиона металла.
На основании взаимодействия металлов (например, магния, цинка, железа, олова, свинца, меди, серебра) с растворами соответствующих солей, а также с кислотой (например, хлороводородной) располагают металлы в ряд: Mg, Zn, Fe, Ni, Sn, Pb, Cu, Ag.
Каждый последующий металл вытесняется из раствора его соли предыдущим металлом. В этом ряду помещают и водород между свинцом и медью. В свете электронной теории делается вывод, что тенденция отдавать электроны и переходить в водный раствор в виде положительно заряженных ионов у металлов как простых веществ ослабевает при переходе в указанном ряду слева направо.
Почему назвали электрохимическим рядом напряжений
Этот ряд называют также электрохимическим рядом напряжений металлов, желая этим подчеркнуть, что он установлен в растворах электролитов и принципиально отличается от рядов, устанавливаемых термохимическим путем, например по вытеснению одних металлов другими из их оксидов (хлоридов, фторидов и т. д.).
Название «электрохимический ряд напряжений металлов» неточное! Речь должна идти об определении стандартных электродных потенциалов металлов, т. е. потенциалов, возникающих на границе между металлом и раствором с одномолярной концентрацией ионов этого металла. Потенциалы эти определяют по нормальному водородному электроду, условно принятому за ноль. В качестве потенциала сравнения берут потенциал одного из металлов, погруженного в раствор его соли (например, медь или серебро).
Рис. 2 . Установка для определения электрохимического ряда напряжений металлов:
1—вертикальная рама, 2 — ванночка для электролита, 3 — стеклянные трубки, 4 — пружинящие хомутики, 5 — пористые диафрагмы, 6 — полихлорвиниловые трубки, 7 — штекерные гнезда, 8 — проводники, 9 — зажимы, 10 — символы металлов, 11 — пластины металлов, 12 — резиновые кружки-держатели пластин, 13 — проводники для подключения прибора к гальванометру.
Как определяют ряд напряжений
В настоящее время установка для определения электрохимического ряда напряжений металлов осваивается промышленностью. До появления промышленного образца ограничимся некоторыми рекомендациями по его самодельному изготовлению (рис. 2). Для прибора нужна вертикальная рама 1 из металла, пластмассы, фанеры или другого материала размером 350X300X Х15 мм, на которой крепят ванночку для электролита 2 (310Х X30X60 мм) и стеклянные трубки (l=150 мм и 25 мм, 3— 6 шт.).
Ванночку изготавливают из оргстекла, а стеклянные трубки— из демонстрационных пробирок или подбирают готовые трубки соответствующих длину и диаметра. Ванночку и стеклянные трубки закрепляют на раме с помощью пружинящих хомутиков 4, расположенных на поперечной планке рамы. Нижние отверстия стеклянных трубок герметично закрывают пористыми диафрагмами 5, которые представляют собой плоские диски из необожженной керамики, имеющие диаметр, соответствующий диаметру стеклянной трубки.
Для закрепления диафрагмы на стеклянной трубке изготовляют специальное приспособление: диафрагму зажимают между двумя уплотнительными резиновыми шайбами и стягивают накидной гайкой из оргстекла. Устройство для закрепления диафрагмы герметично соединяют со стеклянной трубкой при помощи отрезка хлорвиниловой или резиновой трубки 6 (длина отрезка 40 мм).
Для изготовления диафрагмы можно воспользоваться рекомендациями, данными в статье Л. В. Буглая [4]. На верхней панели рамы размещены штекерные гнезда 7 (0 4 мм) с проводниками 8, заканчивающимися зажимами 9. На передней стенке рамы нанесены химические знаки металлов 10 в той же последовательности, в какой они размещаются в электрохимическом ряду напряжений металлов: цинк, железо, никель, олово, медь, серебро. В комплект с прибором должны входить пластинки перечисленных выше металлов 11 (размер пластинок 100X8X15 мм). В связи с тем, что серебро — дефицитный и дорогостоящий металл, можно использовать посеребренную пластинку или ограничиться пятью металлами (серебро исключить).
Чтобы пластинки металлов не проваливались в трубки, их следует вставить в резиновые кружочки 12, диаметр которых чуть больше диаметра трубок. Для соединения пар металлических пластинок с гальванометром используют два проводника 13, один конец которых имеет штекер (диаметр его соответствует диаметру штекерного гнезда рамы), а второй конец — лепесток для подсоединения к клеммам гальванометра.
Предлагаемый в данном пособии прибор имеет преимущества перед вышеупомянутым; он более надежен и удобен в работе и дает более точные результаты. В приборе, показанном в школьном учебнике, происходит подсыхание полосок фильтровальной бумаги, нередко неравномерное, что отрицательно сказывается на результатах опыта. Прибор позволяет демонстрировать опыты в нескольких параллельных классах без перезарядки.
Для иллюстрации электрохимического ряда напряжений металлов с помощью данного прибора стеклянные трубки 3 заполняют растворами солей соответствующих металлов одинаковой молярной концентрации и погружают в них металлические пластинки. Ванночку 2 заполняют раствором соли любого электролита, например хлорида калия. С помощью проводников со штекерами 13 соединяют попарно металлические пластинки 11 с гальванометром. Отклонение стрелки гальванометра будет тем большим, чем дальше отстоят друг от друга металлы.
Аналогичные опыты могут быть спроецированы на экран с помощью графопроектора, а также используют чашки Петри для раствора солей и соответствующие металлы в виде стерженьков.
Статья на тему Электрохимический ряд напряжений
Электрохимический ряд напряжений металлов (ЭХРН) наглядно демонстрирует возрастание электродного потенциала полуреакции восстановления металла: Men+ + nē → Me. Чем больше значение электродного потенциала (чем правее металл в ряду), тем менее выражены восстановительные свойства этого металла, соответственно, из двух любых металлов в данном ряду активнее тот, что находится левее.
По ЭХРН удобно определять, какие металлы будет вытеснять ионы других металлов из раствора: если в раствор соли некого металла помещается металл, находящийся левее (т. е. активнее) в данном ряду, он будет вытеснять изначальный металл и переходить в раствор в виде иона. Например: цинк (Zn) находится левее меди (Cu), а значит, возможна реакция замещения Zn + CuSO4 = ZnSO4 + Cu.
Также по ЭХРН несложно узнать продукты катодного восстановления при электролизе водных растворов солей металлов. Все металлы, стоящие справа от водорода (H), выделяются в чистом виде на катоде при электролизе растворов их солей (CuSO4, AgNO3…); металлы, стоящие между марганцем (Mn) и свинцом (Pb) включительно выделяются совместно с газом водородом (из молекул воды); металлы левее алюминия не выделяются на катоде при электролизе водных растворов: на катоде образуется только водород из воды.
У ряда следующие обозначения:
Изучая курс общей и неорганической химии мы с вами упустили очень важную тему, на который постоянно ссылаемся при изучении свойств простых веществ и их соединений, но ни разу не пояснили что это такое и почему именно так, а не иначе. Речь сегодня пойдет про ряд напряжений и химические свойства металлов. Понять, что в заданиях ЕГЭ по химии нет прямого вопроса по этой теме, но без знания и понимая электрохимического ряда вы не сможете ответить на многие вопросы правильно. Давайте разбираться вместе
Вы наверняка знаете, что атомы типичных металлов могут отдавать электроны (не принимать, а только отдавать, они – доноры). Поэтому металлы в виде простых веществ в химических реакциях играют роль восстановителей. В случае действия сильных окислителей и при соблюдении определенных условий (к примеру нагревании) практически любой металл может быть окислен до положительной степени окисления.
Различная восстановительная способность металлов дает возможность разместить их в так называемый ряд напряжений и как его еще называют электрохимический ряд металлов. В этом ряду металлы располагаются в порядке уменьшения их восстановительных свойств и возрастания окислительных свойств соответствующих гидратированных катионов (посмотрите внимательно на таблицу, которые есть в любом справочнике)
Таким образом, мы видим, что в ряду напряжений слева располагаются металлы, которые вступая в реакцию с водными растворами будут проявлять сильные восстановительные свойства. Напротив, ионы, которые образуются при окислении этих металлов, будут проявлять слабые окислительные свойства. Поэтому такие металлы легко окисляются, а отвечающие им ионы трудно восстанавливаются.
Расположение металла в ряду напряжений определяет процесс окисления металла с образованием гидратированного иона, соответствующего низшей устойчивой в водном растворе степени окисления данного металла.
Данный металл может восстанавливать из растворов их соей металлы, которые расположены справа от него в ряду напряжений. Иными словами, металл левее вытесняет из солей металл, который находится правее него.
Металлы, расположенные в электрохимическом ряду правее водорода, не могут замещать его в молекулах кислот. Эти металлы хоть и реагируют с кислотами, которые обладают сильными окислительными свойствами, но в ходе реакции выделения водорода не будет (вспоминайте предыдущую нашу статью, какие продукты реакции будут в этом случае?).
Металлы, которые у нас расположены в ряду напряжений слева от водорода, могут вступать в реакции замещения с кислотами, вытесняя из последних водород. При этом помним, что ЭДС на основании которого и устанавливается расположение металла и водорода в ряду, измеряется в строго определенных условиях.
От чего же зависит положение металла в ряд?
- От энергии ионизации атома металла.
- От энергии гидратации, получаемого иона.
- От заряда иона.
- От размеров иона.
Рассмотрим теперь кто у нас в ряду напряжений из щелочных металлов стоит первым? Правильно, литий, но почему не цезий? Ведь, по логике он электрон отдает намного быстрее, чем литий. Но мы с вами вспоминаем правило выше, которое вы должны запомнить очень хорошо: ряд напряжений отражает процесс окисления металла с образованием гидратированного иона. Чем лучше и быстрее протекает процесс окисления, тем левее будет находится металл в электрохимическом ряду.
Вернемся к нашему коварному литию. В его случае имеет значение высокая энергия гидратации иона. Маленький размер приводит к притягиванию отрицательных концов полярных молекул воды гораздо сильнее, нежели у более «громоздкого» цезия, так как расстояние между центрами отрицательного и положительного зарядов в случае лития будет меньше. В итоге общий процесс (отдача электронов с последующей гидратацией полученного иона) энергетически более выгоден у лития чем у цезия.
Окисление металлов водой и раствором щелочей
Вытеснять водород из воды в состоянии только те металлы, которые стоят в ряду напряжений перед кадмием, но тут есть нюансы: ввиду ограничений кинетических порядков (образование нерастворимой в воде оксидной пленки тех же амфотерных металлов) при комнатной температуре в реакцию с водой вступают только щелочные и щелочноземельные металлы.
А вот металлы, располагающиеся правее в ряду, могут восстанавливать водород до воды при нагревании. К примеру магний, измельченный в порошок, реагирует с горячей водой, а алюминий, тоже в виде порошка реагирует с кипящей водой.
А такие металлы как цинк и алюминий могут восстанавливать водород даже из раствора щелочи:
2Al+2NaOH+ 6H2O=2Na[Al(OH)4]+3H2
По какому же принципу тот или иной металл растворяется в щелочи? Как это можно определить?
- Металл должен быть сильным восстановителем и окисляться ионами водорода даже в малых концентрациях последних, находящихся в растворе щелочей.
- Ион металла в степени окисления до которой он окисляется ионами водорода, образует в щелочном растворе растворимое соединение.
Мы должны всегда помнить, что восстановительные свойства металлов в одной и безводной среде могут отличаться. А значит и порядок расположения металлов исходя из их восстановительной способности отличается. К примеру, в безводной среде сильным восстановителем будет цезий, а в водной среде – литий.
Содержание
- Ряд активности металлов, когда им пользоваться
- Электрохимический ряд напряжений металлов и его использование при выполнении самостоятельных работ (окончание)
- Ряд активности металлов
- Практическое использование ряда активности металлов
- Электрохимический ряд напряжений металлов (ЭРН)
- Какую информацию можно получить из ряда напряжений?
- Взаимодействие металлов с кислотами
- Взаимодействие металлов с водой
- Взаимодействие металлов с водными растворами солей
- Процесс термического распада нитратов
- Ряд напряжений и химические свойства металлов
- Ряд напряжений и химические свойства металлов
Ряд напряжений (ряд активности или электрохимический ряд напряжения ЭХРН) металлов используется на практике для относительной оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе.
ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ
Восстановительная активность металлов (свойство отдавать электроны) уменьшается, а окислительная способность их катионов (свойство присоединять электроны) увеличивается в указанном ряду слева направо.
- Металлы, стоящие левее, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu 2+ → Zn 2+ + Cu возможно только в прямом направлении. Цинк вытесняет медь из водного раствора её соли. При этом цинковая пластинка растворяется, а металлическая медь выделяется из раствора.
- Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) — и при взаимодействии с водой.
- Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
- При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.
Источник
Согласно этому ряду каждый металл, стоящий в нем, в принципе может вытеснить все следующие за ним металлы из растворов их солей, но практически такие реакции не всегда осуществимы. Это связано с рядом реальных причин, например с образованием на поверхности металлов плохо растворимых защитных пленок, которые нарушают контакт раствора с металлом, с характером раствора, и с другими причинами. Так, например, алюминий вытесняет медь из раствора хлорида меди, но не вытесняет ее из сульфата меди. Это связано с тем, что хлорид-ионы способны намного быстрее, чем сульфат-ионы, разрушать защитную пленку алюминия.
При решении вопроса о практическом протекании окислительно-восстановительных реакций следует учитывать характер реагентов и реальные условия протекания реакции.
Для подбора конкретных примеров окислительно-восстановительных реакций металлов и для написания уравнений реальных процессов следует учитывать такие рекомендации.
1. Активные металлы, стоящие в начале ряда напряжений до магния, окисляются ионом водорода Н + (H3О + ) как воды, так и растворов кислот и солей, вытесняя при реакции с ними молекулярный водород. (Практически при обычных условиях водой окисляются металлы, стоящие до цинка, но магний реагирует только с горячей водой, а алюминий окисляется ее ионом Н + лишь после снятия защитной пленки.)
2. Металлы средней активности (Mn—Н) окисляются ионом гидроксония, как правило, лишь в кислой среде; металлы, имеющие амфотерные защитные пленки, — как в кислой, так и в щелочной среде.
3. Металлы, стоящие в ряду напряжений левее водорода, вытесняют его из растворов кислот, за исключением азотной, у которой окислительные свойства ее нитрат-иона NO^ сильнее, чем иона гидроксония Н + (Н3О + ).
4. При взаимодействии металлов с растворами солей практически вытесняются из них менее активные металлы (от Мп и вправо):
- активные металлы окисляются ионами Н + воды и вытесняют молекулярный водород, а не металл;
- многие металлы средней активности при взаимодействии с кислотами и солями покрываются труднорастворимыми пленками, что является причиной затруднения контакта с ионами раствора.
Часто, решая вопрос о химической активности металлов, мы обращаемся к периодической системе Д.И. Менделеева, но положение металлов в периодической системе и в ряду напряжений различно, так как в них отражены разные объекты; в первом случае — элементы, во втором — реальные вещества.
Так, в соответствии с положением щелочных металлов в периодической системе и согласно закономерным изменениям свойств элементов в подгруппе активность калия больше, чем лития, а активность натрия меньше, чем калия. По положению в ряду напряжений наиболее активным является литий, а калий занимает промежуточное положение между литием и натрием. В периодической системе и ее IV периоде медь и цинк стоят рядом, имеют близкие энергии ионизации и приблизительно равную химическую активность. А в электрохимическом ряду они далеко отстоят друг от друга и имеют различные электродные потенциалы.
Дело в том, что в периодической системе расположены химические элементы, мерой химической активности которых служат особенности строения их атомов и значения их энергии ионизации.
В электрохимическом ряду напряжений расположены кристаллические простые вещества — металлы и их ионы. Мерой их восстановительной и окислительной активности является их стандартный электродный потенциал.
Электрохимический ряд напряжений отражает также способность металла переходить в гидратированный ион, где мерой активности металла является энергия, которая складывается из трех слагаемых:
- энергия атомизации — энергия превращения кристалла металла в изолированные атомы;
- энергия ионизации — энергия отрыва валентных электронов от атома;
- энергия гидратации образующихся ионов металла.
Первые два процесса — эндотермические, последний — экзотермический.
Источник
Электрохимический ряд активности металлов (ряд напряжений, ряд стандартных электродных потенциалов) — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ 0 , отвечающих полуреакции восстановления катиона металла Me n+ : Me n+ + nē → Me
Практическое использование ряда активности металлов
Ряд напряжений используется на практике для сравнительной оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе:
- Металлы, стоящие левее водорода, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu 2+ → Zn 2+ + Cu возможно только в прямом направлении.
- Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) — и при взаимодействии с водой.
- Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
- При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.
Источник
Li | K | Ba | Ca | Na | Mg | Al | Mn | Zn | Cr | Fe | Ni | Sn | Pb | H | Cu | Hg | Ag | Pt | Au |
Какую информацию можно получить из ряда напряжений?
Ряд напряжений металлов широко используется в неорганической химии. В частности, результаты многих реакций и даже возможность их осуществления зависят от положения некоторого металла в ЭРН. Обсудим этот вопрос подробнее.
Металлы, находящиеся в ряду напряжений левее водорода, реагируют с кислотами — неокислителями. Металлы, расположенные в ЭРН правее Н, взаимодействуют только с кислотами — окислителями (в частности, с HNO 3 и концентрированной H 2 SO 4 ).
Пример 1 . Цинк расположен в ЭРН левее водорода, следовательно, способен реагировать практически со всеми кислотами:
Zn + 2HCl = ZnCl 2 + H 2
Zn + H 2 SO 4 = ZnSO 4 + H 2
Пример 2 . Медь находится в ЭРН правее Н; данный металл не реагирует с «обычными» кислотами (HCl, H 3 PO 4 , HBr, органические кислоты), однако вступает во взаимодействие с кислотами-окислителями (азотная, концентрированная серная):
Cu + 4HNO 3 (конц.) = Cu(NO 3 ) 2 + 2NO 2 + 2H 2 O
Cu + 2H 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2H 2 O
Обращаю внимание на важный момент: при взаимодействии металлов с кислотами-окислителями выделяется не водород, а некоторые другие соединения. Подробнее об этом можно почитать здесь!
Металлы, расположенные в ряду напряжений левее Mg, легко реагируют с водой уже при комнатной температуре с выделением водорода и образованием раствора щелочи.
Пример 3 . Натрий, калий, кальций легко растворяются в воде с образованием раствора щелочи:
2Na + 2H 2 O = 2NaOH + H 2
2K + 2H 2 O = 2KOH + H 2
Ca + 2H 2 O = Ca(OH) 2 + H 2
Металлы, расположенные в ряду напряжений от водорода до магния (включительно), в ряде случаев взаимодействуют с водой, но реакции требуют специфических условий. Например, алюминий и магний начинают взаимодействие с Н 2 О только после удаления оксидной пленки с поверхности металла. Железо не реагирует с водой при комнатной температуре, но взаимодействует с парами воды. Кобальт, никель, олово, свинец практически не взаимодействуют с H 2 O не только при комнатной температуре, но и при нагревании.
Металлы, расположенные в правой части ЭРН (серебро, золото, платина) не реагируют с водой ни при каких условиях.
Речь пойдет о реакциях следующего типа:
металл (*) + соль металла (**) = металл (**) + соль металла (*)
Хотелось бы подчеркнуть, что звездочки обозначают в данном случае не степень окисления, не валентность металла, а просто позволяют различить металл № 1 и металл № 2.
Для осуществления подобной реакции необходимо одновременное выполнение трех условий:
- соли, участвующие в процессе, должны растворяться в воде (это легко проверить, пользуясь таблицей растворимости);
- металл (*) должен находиться в ряду напряжений левее металла (**);
- металл (*) не должен реагировать с водой (что тоже легко проверяется по ЭРН).
Пример 4 . Рассмотрим несколько реакций:
Zn + CuSO 4 = ZnSO 4 + Cu
Pb + FeSO 4 ≠
K + Ni(NO 3 ) 2 ≠
Первая реакция легко осуществима, все перечисленные выше условия выполнены: сульфат меди растворим в воде, цинк находится в ЭРН левее меди, Zn не реагирует с водой.
Вторая реакция невозможна, т. к. не выполнено первое условие (сульфид меди (II) практически не растворяется в воде). Третья реакция неосуществима, поскольку свинец — менее активный металл, нежели железо (находится правее в ЭРН). Наконец, четвертый процесс НЕ приведет к осаждению никеля, поскольку калий реагирует с водой; образовавшийся гидроксид калия может вступить в реакцию с раствором соли, но это уже совершенно другой процесс.
Процесс термического распада нитратов
Напомню, что нитраты — это соли азотной кислоты. Все нитраты разлагаются при нагревании, но вот состав продуктов разложения может быть разным. Состав определяется положением металла в ряду напряжений.
Нитраты металлов, расположенных в ЭРН левее магния, при нагревании образуют соответствующий нитрит и кислород:
2KNO 3 = 2KNO 2 + O 2
В ходе термического разложения нитратов металлов, расположенных в ряду напряжений от Mg до Cu включительно, образуются оксид металла, NO 2 и кислород:
2Cu(NO 3 ) 2 = 2CuO + 4NO 2 + O 2
Наконец, при разложении нитратов наименее активных металлов (расположенных в ЭРН правее меди) образуются металл, диоксид азота и кислород:
Источник
Ряд напряжений и химические свойства металлов
Ряд напряжений и химические свойства металлов
Изучая курс общей и неорганической химии мы с вами упустили очень важную тему, на который постоянно ссылаемся при изучении свойств простых веществ и их соединений, но ни разу не пояснили что это такое и почему именно так, а не иначе. Речь сегодня пойдет про ряд напряжений и химические свойства металлов. Понять, что в заданиях ЕГЭ по химии нет прямого вопроса по этой теме, но без знания и понимая электрохимического ряда вы не сможете ответить на многие вопросы правильно. Давайте разбираться вместе
Вы наверняка знаете, что атомы типичных металлов могут отдавать электроны (не принимать, а только отдавать, они – доноры). Поэтому металлы в виде простых веществ в химических реакциях играют роль восстановителей. В случае действия сильных окислителей и при соблюдении определенных условий (к примеру нагревании) практически любой металл может быть окислен до положительной степени окисления.
Различная восстановительная способность металлов дает возможность разместить их в так называемый ряд напряжений и как его еще называют электрохимический ряд металлов. В этом ряду металлы располагаются в порядке уменьшения их восстановительных свойств и возрастания окислительных свойств соответствующих гидратированных катионов (посмотрите внимательно на таблицу, которые есть в любом справочнике)
Таким образом, мы видим, что в ряду напряжений слева располагаются металлы, которые вступая в реакцию с водными растворами будут проявлять сильные восстановительные свойства. Напротив, ионы, которые образуются при окислении этих металлов, будут проявлять слабые окислительные свойства. Поэтому такие металлы легко окисляются, а отвечающие им ионы трудно восстанавливаются.
Расположение металла в ряду напряжений определяет процесс окисления металла с образованием гидратированного иона, соответствующего низшей устойчивой в водном растворе степени окисления данного металла.
Данный металл может восстанавливать из растворов их соей металлы, которые расположены справа от него в ряду напряжений. Иными словами, металл левее вытесняет из солей металл, который находится правее него.
Металлы, расположенные в электрохимическом ряду правее водорода, не могут замещать его в молекулах кислот. Эти металлы хоть и реагируют с кислотами, которые обладают сильными окислительными свойствами, но в ходе реакции выделения водорода не будет (вспоминайте предыдущую нашу статью, какие продукты реакции будут в этом случае?).
Металлы, которые у нас расположены в ряду напряжений слева от водорода, могут вступать в реакции замещения с кислотами, вытесняя из последних водород. При этом помним, что ЭДС на основании которого и устанавливается расположение металла и водорода в ряду, измеряется в строго определенных условиях.
От чего же зависит положение металла в ряд?
- От энергии ионизации атома металла.
- От энергии гидратации, получаемого иона.
- От заряда иона.
- От размеров иона.
Рассмотрим теперь кто у нас в ряду напряжений из щелочных металлов стоит первым? Правильно, литий, но почему не цезий? Ведь, по логике он электрон отдает намного быстрее, чем литий. Но мы с вами вспоминаем правило выше, которое вы должны запомнить очень хорошо: ряд напряжений отражает процесс окисления металла с образованием гидратированного иона. Чем лучше и быстрее протекает процесс окисления, тем левее будет находится металл в электрохимическом ряду.
Вернемся к нашему коварному литию. В его случае имеет значение высокая энергия гидратации иона. Маленький размер приводит к притягиванию отрицательных концов полярных молекул воды гораздо сильнее, нежели у более «громоздкого» цезия, так как расстояние между центрами отрицательного и положительного зарядов в случае лития будет меньше. В итоге общий процесс (отдача электронов с последующей гидратацией полученного иона) энергетически более выгоден у лития чем у цезия.
Окисление металлов водой и раствором щелочей
Вытеснять водород из воды в состоянии только те металлы, которые стоят в ряду напряжений перед кадмием, но тут есть нюансы: ввиду ограничений кинетических порядков (образование нерастворимой в воде оксидной пленки тех же амфотерных металлов) при комнатной температуре в реакцию с водой вступают только щелочные и щелочноземельные металлы.
А вот металлы, располагающиеся правее в ряду, могут восстанавливать водород до воды при нагревании. К примеру магний, измельченный в порошок, реагирует с горячей водой, а алюминий, тоже в виде порошка реагирует с кипящей водой.
А такие металлы как цинк и алюминий могут восстанавливать водород даже из раствора щелочи:
По какому же принципу тот или иной металл растворяется в щелочи? Как это можно определить?
- Металл должен быть сильным восстановителем и окисляться ионами водорода даже в малых концентрациях последних, находящихся в растворе щелочей.
- Ион металла в степени окисления до которой он окисляется ионами водорода, образует в щелочном растворе растворимое соединение.
Мы должны всегда помнить, что восстановительные свойства металлов в одной и безводной среде могут отличаться. А значит и порядок расположения металлов исходя из их восстановительной способности отличается. К примеру, в безводной среде сильным восстановителем будет цезий, а в водной среде – литий.
Источник