Последовательный колебательный контур обозначение на схеме
Последовательный колебательный контур — это цепь, состоящая их катушки индуктивности и конденсатора, которые соединяются последовательно.
Идеальный последовательный колебательный контур
На схемах идеальный последовательный колебательный контур обозначается вот так:
где
L — индуктивность, Гн
С — емкость, Ф
Реальный последовательный колебательный контур
Реальный колебательный контур имеет сопротивление потерь катушки и конденсатора. Это суммарное суммарное сопротивление потерь обозначается буквой R. В результате, реальный последовательный колебательный контур будет иметь такой вид:
R — это суммарное сопротивление потерь катушки и конденсатора
L — собственно сама индуктивность катушки
С — собственно сама емкость конденсатора
Принцип работы последовательного колебательного контура
Генератор частоты и последовательный колебательный контур
Давайте проведем классический эксперимент, который есть в каждом учебнике по электронике. Для этого соберем вот такую схему:
Генератор (Ген)у нас будет выдавать синус.
Для того, чтобы снять осциллограмму силы тока через последовательный колебательный контур, мы подключим в схему шунтовый резистор с малым сопротивлением в 0,5 Ом и с него уже будем снимать напряжение. То есть в данном случае мы шунт используем для наблюдения силы тока в цепи.
А вот и сама схема в реальности:
Слева-направо: шунтовый резистор, катушка индуктивности и конденсатор. Как вы уже поняли, сопротивление R — это суммарное сопротивление потерь катушки и конденсатора, так как нет идеальных радиоэлементов. Оно «прячется» внутри катушки и конденсатора, поэтому в реальной схеме отдельным радиоэлементом мы его не увидим.
Теперь нам осталось подцепить эту схему к генератору частоты и осциллографу, и прогнать по некоторым частотам, снимая осциллограмму с шунта Uш , а также снимая осциллограмму с самого генератора UГЕН .
С шунта мы будем снимать напряжение, которое у нас отображает поведение силы тока в цепи, а с генератора собственно сам сигнал генератора. Давайте прогоним нашу схемку по некоторым частотам и глянем что есть что.
Влияние частоты генератора на сопротивление колебательного контура
В схеме я взял конденсатор на 1мкФ и катушку индуктивности на 1 мГн. На генераторе настраиваю синус размахом в 4 Вольта. Вспоминаем правило: если в цепи соединение радиоэлементов идет последовательно друг за другом, значит, через них течет одинаковая сила тока.
Красная осциллограмма — это напряжение с генератора частоты, а желтая осциллограмма — отображение силы тока через напряжение на шунтовом резисторе.
Частота 200 Герц с копейками:
Как мы видим, при такой частоте ток в этой цепи есть, но очень слабый
Добавляем частоту. 600 Герц с копейками
Здесь мы уже отчетливо видим, что сила тока возросла, а также видим, что осциллограмма силы тока опережает напряжение. Попахивает реактивным сопротивлением конденсатора.
Добавляем частоту. 2 Килогерца
Сила тока стала еще больше.
3 Килогерца
Сила тока увеличилась. Заметьте также, что сдвиг фаз стал уменьшаться.
4,25 Килогерц
Осциллограммы почти уже сливаются в одну. Сдвиг фаз между напряжением и силой тока становится почти незаметным.
И вот на какой-то частоте у нас сила тока стала максимальной, а сдвиг фаз стал равен нулю. Запомните этот момент. Для нас он будет очень важен.
Ну а давайте далее будем увеличивать частоту. Смотрим, что получается в итоге.
Еще совсем недавно ток опережал напряжение, а сейчас уже стал запаздывать после того, как выровнялся с ним по фазе. Так как ток уже отстает от напряжения, здесь уже попахивает реактивным сопротивлением катушки индуктивности.
Увеличиваем частоту еще больше
Сила тока начинает падать, а сдвиг фаз увеличивается.
22 Килогерца
74 Килогерца
Как вы видите, с увеличением частоты, сдвиг приближается к 90 градусов, а сила тока становится все меньше и меньше.
Резонанс последовательного колебательного контура
Давайте подробнее рассмотрим тот самый момент, когда сдвиг фаз был равен нулю и сила тока, проходящая через последовательный колебательный, контур была максимальна:
Это явление носит название резонанса.
Не будем углубляться в теорию высшей математики и комплексных чисел. Дело в том, что в этот самый момент реактивное сопротивление катушки и конденсатора становятся равными, но противоположными по знаку. Поэтому, эти реактивные сопротивления как-бы вычитаются друг из друга, что в сумме дает ноль, и в цепи остается только активная составляющая сопротивления, то есть то самое паразитное сопротивление катушки и конденсатора, или иначе, сопротивление потерь R.
Как вы помните, если у нас сопротивление становится малым, а в данном случае сопротивления потерь катушки и конденсатора очень маленькие, то в цепи начинает течь большая сила тока согласно закону Ома: I=U/R. Если генератор мощный, то напряжение на нем не меняется, а сопротивление становится пренебрежимо малым и вуаля! Ток растет как грибы после дождя, что мы и увидели, посмотрев на желтую осциллограмму при резонансе.
Формула Томсона (резонанса) для последовательного колебательного контура
Если при резонансе у нас реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора XL=XC , то можно уравнять их реактивные сопротивления и уже отсюда вычислить частоту, на которой произошел резонанс. Итак, реактивное сопротивление катушки у нас выражается формулой:
Реактивное сопротивление конденсатора вычисляется по формуле:
Приравниваем обе части и вычисляем отсюда F:
В данном случае мы получили формулу резонансной частоты. Это формула по другому называется формулой Томсона, как вы поняли, в честь ученого, который ее вывел.
Давайте по формуле Томсона посчитаем резонансную частоту нашего последовательного колебательного контура. Для этого я буду использовать свой RLC-транзисторметр.
Замеряем индуктивность катушки:
И замеряем нашу емкость:
Высчитываем по формуле нашу резонансную частоту:
У меня получилось 5, 09 Килогерц.
С помощью регулировки частоты и осциллографа я поймал резонанс на частоте 4,78 Килогерц (написано в нижнем левом углу)
Спишем погрешность в 200 с копейками Герц на погрешность измерений приборов. Как вы видите, формула Томпсона работает.
Резонанс напряжений
Давайте возьмем другие параметры катушки и конденсатора и посмотрим, что у нас происходит на самих радиоэлементах. Нам ведь надо досконально все выяснить ;-). Беру катушку индуктивности с индуктивностью в 22 микрогенри:
и конденсатор в 1000 пФ
Из них собираю последовательный колебательный контур. Итак, чтобы поймать резонанс, я не буду в схему добавлять резистор. Поступлю более хитрее.
Так как мой генератор частоты китайский и маломощный, то при резонансе у нас в цепи остается только активное сопротивление потерь R. В сумме получается все равно маленькое значение сопротивления, поэтому ток при резонансе достигает максимальных значений. В результате этого, на внутреннем сопротивлении генератора частоты падает приличное напряжение и выдаваемая амплитуда частоты генератора падает. Я буду ловить минимальное значение этой амплитуды. Следовательно это и будет резонанс колебательного контура. Перегружать генератор — это не есть хорошо, но что не сделаешь ради науки!
Ну что же, приступим ;-). Давайте сначала посчитаем резонансную частоту по формуле Томсона. Для этого я открываю онлайн калькулятор на просторах интернета и быстренько высчитываю эту частоту. У меня получилось 1,073 Мегагерц.
Ловлю резонанс на генераторе частоты по его минимальным значениям амплитуды. Получилось как-то вот так:
Размах амплитуды 4 Вольта
Хотя на генераторе частоты размах более 17 Вольт! Вот так вот сильно просело напряжение. И как видите, резонансная частота получилась чуток другая, чем расчетная: 1,109 Мегагерц.
Теперь небольшой прикол 😉
Вот этот сигнал мы подаем на наш последовательный колебательный контур:
Как видите, мой генератор не в силах выдать большую силу тока в колебательный контур на резонансной частоте, поэтому сигнал получился даже чуть искаженным на пиках.
Ну а теперь самое интересное. Давайте замеряем падение напряжения на конденсаторе и катушке на резонансной частоте. То есть это будет выглядеть вот так:
Смотрим напряжение на конденсаторе:
Размах амплитуды 20 Вольт (5х4)! Откуда? Ведь подавали мы на колебательный контур синус с частотой в 2 Вольта!
Ладно, может с осциллографом что-то произошло?. Давайте замеряем напряжение на катушке:
Народ! Халява!!! Подали 2 Вольта с генератора, а получили 20 Вольт и на катушке и на конденсаторе! Выигрыш энергии в 10 раз! Успевай только снимать энергию с конденсатора или с катушки!
Ну ладно раз такое дело… беру лампочку от мопеда на 12 Вольт и цепляю ее к конденсатору или катушке. Лампочке ведь вроде как по-барабану на какой частоте работать и какой ток кушать. Выставляю амплитуду, чтобы на катушке или конденсаторе было где то Вольт 20 так как среднеквадратичное напряжение будет где-то Вольт 14, и цепляю поочередно к ним лампочку:
Как видите — полный ноль. Лампочка гореть не собирается, так что побрейтесь фанаты халявной энергии). Вы ведь не забыли, что мощность определяется произведением силы тока на напряжение? Напряжения вроде как-бы хватает, а вот силы тока — увы! Поэтому, последовательный колебательный контур носит также название узкополосного (резонансного) усилителя напряжения, а не мощности!
Объяснение резонанса напряжения
При резонансе напряжение на катушке и на конденсаторе оказались намного больше, чем то, которое мы подавали на колебательный контур. В данном случае у нас получилось в 10 раз больше. Почему же напряжение на катушке при резонансе равняется напряжению на конденсаторе. Это легко объясняется. Так как в последовательном колебательном контуре катушка и кондер идут друг за другом, следовательно, в цепи протекает одна и та же сила тока.
При резонансе реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора. Получаем по правилу шунта, что на катушке у нас падает напряжение UL = IXL , а на конденсаторе UC = IXC . А так как при резонансе у нас XL = XC , то получаем что UL = UC , ток ведь в цепи один и тот же ;-). Поэтому резонанс в последовательном колебательном контуре называют также резонансом напряжений, так как напряжение на катушке на резонансной частоте равняется напряжению на конденсаторе.
Добротность последовательного колебательного контура
Ну раз уж мы начали задвигать тему колебательных контуров, поэтому мы не можем обойти стороной такой параметр, как добротность колебательного контура. Так как мы уже провели некоторые опыты, то нам будет проще определить добротность, исходя из амплитуды напряжений. Добротность обозначается буквой Q и вычисляется по первой простой формуле:
Давайте посчитаем добротность в нашем случае.
Так как цена деления одного квадратика по вертикали 2 Вольта, следовательно, амплитуда сигнала генератора частоты 2 Вольта.
А это то, что мы имеем на зажимах конденсатора или катушки. Здесь цена деления одного квадратика по вертикали 5 Вольт. Считаем квадратики и умножаем. 5х4=20 Вольт.
Считаем по формуле добротности:
Q=20/2=10. В принципе немного и не мало. Пойдет. Вот так вот на практике можно найти добротность.
Есть также вторая формула для вычисления добротности.
где
R — сопротивление потерь в контуре, Ом
L — индуктивность, Генри
С — емкость, Фарад
Зная добротность, можно легко найти сопротивление потерь R последовательного колебательного контура.
Также хочу добавить пару слов о добротности. Добротность контура — это качественный показатель колебательного контура. В основном его стараются всегда увеличить различными всевозможными способами. Если взглянуть на формулу выше, то можно понять, для того, чтобы увеличить добротность, нам надо как-то уменьшить сопротивление потерь колебательного контура. Львиная доля потерь относится к катушке индуктивности, так как она уже конструктивно имеет большие потери. Она намотана из провода и в большинстве случаев имеет сердечник. На высоких частотах в проводе начинает проявляться скин-эффект, который еще больше вносит потери в контур.
Видео на тему «Как работает колебательный контур. Резонанс»:
Резюме
Последовательный колебательный контур состоит из катушки индуктивности и конденсатора, соединенных последовательно.
Катушка и конденсатор имеют паразитные омические потери, так как не являются идеальными радиоэлементами. Сумма этих потерь называется сопротивлением потерь R последовательного колебательного контура.
На какой-то частоте реактивное сопротивление катушки становится равным реактивному сопротивлению конденсатора и в цепи последовательного колебательного контура наступает такое явление, как резонанс.
При резонансе реактивные сопротивления катушки и конденсатора хоть и равны по модулю, но противоположны по знаку, поэтому они вычитается и в сумме дают ноль. В цепи остается только активное сопротивление потерь R.
При резонансе сила тока в цепи становится максимальной, так как сопротивление потерь катушки и конденсатора R в сумме дают малое значение.
При резонансе напряжение на катушке равняется напряжению на конденсаторе и превышает напряжение на генераторе.
Коэффициент, показывающий во сколько раз напряжение на катушке либо на конденсаторе превышает напряжение на генераторе, называется добротностью Q последовательного колебательного контура и показывает качественную оценку колебательного контура. В основном стараются сделать Q как можно больше.
На низких частотах колебательный контур имеет емкостную составляющую тока до резонанса, а после резонанса — индуктивную составляющую тока.
В
цепи три последовательном соединении
R,
L, С
возможен резонанс напряжений. Такую
цель называют последовательным
колебательным контуром.
На
рис. 7.6 а
представлена эта цепь, а на рис. 7.6 б
приведена векторная диаграмма цеди для
случая резонанса напряжений.
Входное
комплексное сопротивление данной цепи
где
– реактивное сопротивление контура;R
– активное и
–полное
сопротивление (по модулю).
Угол
сдвига фаз между приложенным напряжением,
и токов запишется в виде
.
Условие
резонанса напряжений: х
=0
при
,.
Угловая
резонансная частота
.
Отметим,
сто режим резонанса может наступит и
при изменении или индуктивности катушки
или ёмкости конденсатора; в этом случае
;.
Условимся,
что будем рассматривать случай изменения
частоты источника питания.
Модуль
тока в цепи при заданном напряжений С:
В
режиме резонанса ток наибольший и равен
При
резонансе ток совпадает по фазе с
приложенным напряжением и это отмечено
на векторной диаграмме (рис. 7.6
б).
Характеристическое
сопротивление контура
равно
сопротивлению катушки индуктивностипри резонансе или сопротивлению
конденсатора при резонансе
(учтем,
что
):
;
.
На
рис. 7.7 приведены частотные характеристики
последовательного контура, кривые
построены по формулам
;
;;.
Кривая
тока
имеет максимум при резонансной частоте.
Если(постоянная ЭДС), ток равен нулю, так как
постоянный ток через конденсатор не
проходит. Если,
тогдаи
ток в цепи также стремится к нулю.
Напряжение
на конденсаторе UС
при
равно
напряжению генератора UГ.
Затем, по мере возрастания тока, напряжение
UС
вначале
увеличивается, достигает максимума при
частоте
,
а затем начинает уменьшаться. Максимум
напряжения на конденсаторе наступает
на частоте, которая меньше резонансной.
Это можно показать и аналитически, для
этого нужно определить максимум функцииUС
= UС()
из уравнения dUС/d
=
0.
При этом оказывается, что частота
максимального напряжения на конденсаторе
рассчитывается пo формуле
Напряжение
на катушке индуктивности
вначале
возрастает, становится равным напряжению
на конденсаторе при резонансе, затем
достигает максимума на частоте
более
высокой, чем резонансная частота. Это
же можно доказать аналитически, определив
максимум функция UL
= UL()
из уравнения dUL/d
=
0.
Частота
максимального напряжения на катушке
индуктивности может быть рассчитана
по формуле
Следует
иметь в виду, что
.
При
неограниченном увеличении частоты UL
стремится к напряжению UR.
Кривая
определяет сдвиг по фазе между током и
приложенным напряжением. При частотах,
меньших резонансной, в цепи преобладает
емкостное сопротивление и поэтому уголотрицательный, а после резонанса
сопротивлениеL,
больше, чем
,
и поэтому уголстанет положительным.
7.4. Энергетические соотношения при резонансе
Пусть
в последовательном колебательном
контуре R,
L, С
при резонансе ток равен
.
Тогда
напряжение на конденсаторе равно
.
Суммарная
энергия электрического поля конденсатора
и магнитного поля
катушки
индуктивности
равна
При
выводе этих формул учитывалось следующее
(при
):
При
резонансе суммарный запас энергии
магнитного поля и электрического поля
не меняется. Происходит перекачка
энергии от одного накопителя энергии
в другой. Уменьшение энергии электрического
поля конденсатора сопровождается
увеличением энергии магнитного поля
катушки индуктивности и наоборот.
Энергия, поступающая от источника
питания в любой промежуток времени,
целиком переходит в тепло. Поэтому
относительно источника питания цепь
эквивалентна одному активному
сопротивлению. При этом
;.
Соседние файлы в папке Пособие по ТОЭ-1ч
- #
- #
- #
- #
- #
- #
- #
- #
Резонансные явления наблюдаются в колебательных системах, когда частота собственных колебаний элементов системы совпадает с частотой внешних (вынужденных) колебательных процессов. Данное утверждение справедливо и для цепей с циркулирующим переменным током. В таких электрических цепях при наличии определённых условий возникает резонанс напряжений, что влияет на параметры тока. Явление резонанса в электротехнике может быть полезным или вредным, в зависимости от ситуации, в которой происходит процесс.
Описание явления
Если в некой электрической цепи (см. рис. 1) имеются ёмкостные и индуктивные элементы, которые обладают собственными резонансными частотами, то при совпадении этих частот амплитуда колебаний резко возрастёт. То есть происходит резкий всплеск напряжений на этих элементах. Это может вызвать разрушение элементов электрической цепи.
Давайте рассмотрим на этом примере, какие явления будут происходить при подключении генератора переменного тока к контактам схемы. Заметим, что катушки и конденсаторы обладают свойствами, которые можно сравнить с аналогом реактивного резистора. В частности, дроссель в электрической цепи создаёт индуктивное сопротивление. Конденсатор является причиной ёмкостного сопротивления.
Индуктивный элемент вызывает сдвиг фаз, характеризующийся отставанием тока от напряжения на ¼ периода. Под действием конденсатора ток, наоборот, на ¼ периода опережает напряжение.
Другими словами, действие индуктивности противоположно действию на сдвиг фаз ёмкостного сопротивления. То есть катушки индуктивности и ёмкостные элементы по-разному воздействуют на генератор и по-своему корректируют фазовые соотношения между электрическим током и напряжением.
Формула
Общее реактивное сопротивление рассматриваемых нами элементов равно сумме сопротивлений каждого из них. С учётом противоположности действий можно записать: Xобщ = XL — Xc , где XL = ωL — индуктивное реактивное сопротивление, выражение Xc = 1/ωC — это ёмкостное реактивное сопротивление.
На рисунке 2 изображены графики зависимости полного сопротивления цепи и связанной с ним силы тока, от реактивного сопротивления индуктивного элемента. Обратите внимание на то, как падает полное сопротивление при уменьшении реактивной сопротивляемости RL (график б) и как при этом возрастает ток (график в).
Электрические цепи, состоящие из последовательно соединённых конденсаторов, пассивный резисторов и катушек индуктивности называют последовательными резонансными (колебательными) контурами (см. рис. 2). Существуют также параллельные контуры, в которых R, L, C элементы подключены параллельно (рис. 3).
В режиме резонанса мощность источника питания будет рассеиваться только на активных сопротивлениях (в том числе на активном сопротивлении катушки). Для резонансных контуров характерны потери только активной мощности, которая израсходуется на поддержание колебательного процесса. Реактивная мощность на L C — элементах при этом не расходуется. Ток в резонансном режиме принимает максимальное значение:
Величину Q принято называть термином «Добротность контура». Данный параметр показывает, во сколько раз напряжение, возникшее на контактах реактивных элементов, превышает входное напряжение U электрической сети. Для описания соотношения выходного и входного напряжений часто применяют коэффициент K. При резонансе:
K = Uвых / Uвх = UC0 / U = Q
Формулировка
На основании вышеописанных явлений, сформулируем определение резонансного напряжения: «Если общее падение напряжения на ёмкостно-индуктивных элементах равно нулю, а амплитуда тока – максимальна, то такое особое состояние системы называется резонансом напряжений». Для лучшего понимания явления, немного перефразируем определение: резонансом напряжений является состояние, когда напряжение на CL — цепочке больше чем на входе электрической цепи.
Описанное явление довольно распространено в электротехнике. Иногда с ним борются, а иногда специально создают условия для образования резонанса. Основными характеристиками всякого резонансного контура являются параметры добротности и частоты [ 1 ].
В случае, если XL = Xc – справедливо равенство: ωL = 1/ωC , отсюда получаем:
Если ω = ω0 – возникает резонанс напряжений. Частоты совпадают в том случае, когда индуктивное сопротивление сравняется с ёмкостным сопротивлением конденсатора. В таких случаях в цепи будет действовать только активное сопротивление R. Наличие реактивных элементов в схеме приводит к увеличению полного сопротивления цепи (Z):
где R – общее активное сопротивление.
Учитывая, что по закону Ома U = I/Z, можно утверждать, что общее напряжение в цепи зависит, в том числе, и от слагаемых индуктивного и ёмкостного сопротивлений.
Если бы в рассматриваемой схеме (рис. 1) отсутствовало активное сопротивление R, то значение полного сопротивления Z стремилось бы к 0. Следовательно, напряжение на реактивных элементах при этом возрастает до критического уровня.
Поскольку XL и Xc зависят от частоты входного напряжения, то для возникновения резонанса следует подобрать соответствующую частоту сети, или изменять параметры катушки, либо конденсатора до тех пор, пока резонансные частоты не совпадут. Любое нарушение условий резонанса немедленно приводит к выходу системы из резонансного режима с последующим падением напряжения.
Условия наступления
Резонансные явления наступают только при наличии следующих условий:
- Наличие минимального активного сопротивления на участке электрической цепи.
- Равенство реактивных сопротивлений, возникших на цепочке LC.
- Совпадение входной частоты источника питания с резонансной частотой колебательного контура.
При резонансе в контуре напряжения на его элементах могут повышаться на порядок и больше.
Примеры применения на практике
Классическим примером применения резонанса колебательных контуров является настройка радиоприёмника на частоту соответствующей радиостанции. В качестве рабочего элемента настроечного узла используется конденсатор с регулируемой ёмкостью. Вращение ручки настройки изменяет ёмкость конденсатора, а значит и резонансную частоту контура.
В момент совпадения резонансной частоты с рабочей частотой какой-либо радиостанции возникает резонанс напряжений, в результате которого резко возрастает амплитуда колебаний принятой радиоприёмником частоты. Специальные фильтры отделяют эти колебания от несущих радиочастот, а усилители усиливают полученные сигналы. В динамике появляются звуки, генерируемые передатчиком радиостанции.
Колебательные контуры, построенные на принципе последовательного соединения LC-элементов, применяются в цепях питания высокоомных нагрузок, потребляющих токи повышенного напряжения. Такие же устройства применяют в полосовых фильтрах.
Последовательный резонанс применяют при пониженных напряжениях сети. В этом случае используют реактивную энергию обмоток трансформатора, соединённых последовательно.
Конденсаторы и различные катушки индуктивности (рис. 5) входят в конструкцию практически всех аналоговых устройств. Они используются для настройки фильтров или для управления токами в отдельных узлах.
Важно знать, что резонансные контуры не увеличивают количество электрической энергии в цепях. Они лишь могут повышать напряжения, иногда до опасных значений. Постоянный ток не причиной резонансных явлений.
Наряду с полезными свойствами резонансных явлений, в практической электротехнике часто возникают ситуации, когда резонанс напряжений приносит вред. В основном это связано с нежелательным повышением параметров тока на участках цепей. Примером могут служить опасное резонансные явления в кабельных линиях без нагрузки, что может привести к пробоям изоляции. Чтобы этого не случилось, на концевых участках таких линий устанавливают балластные нагрузочные элементы.
Содержание:
Резонанс в электрических цепях:
Явление резонанса можно наблюдать в любых колебательных системах, в том числе механических и электрических. Электрический резонанс возникает при определенных условиях в электрических цепях переменного тока, содержащих индуктивности и емкости.
Изучение электрического резонанса
Изучение электрического резонанса необходимо, так как это явление широко используется в технике электросвязи, а в установках сильного тока, где его возникновение специально не предусматривается, резонанс может оказаться опасным (могут возникнуть перенапряжения и пробой изоляции).
Колебательный контур
Для того чтобы понять резонансные явления, переходные процессы в электрических цепях переменного тока, которые рассматриваются далее, важно иметь представление о процессах в колебательном контуре, состоящем из идеальных катушки и конденсатора, т. е. в контуре без потерь.
Колебательный процесс в таком контуре заключается во взаимном преобразовании электрического и магнитного полей. При этом изменяется энергия полей, поэтому колебательный процесс в контуре с количественной стороны будем, как и раньше, характеризовать изменением энергии.
Ток и напряжение в колебательном контуре
Предположим, что конденсатор с емкостью С получил от источника запас энергии
В первую часть периода (0 — T/4) конденсатор разряжается и в цепи существует ток. В это время в обособленной цепи конденсатор играет роль источника энергии (рис. 17.1, б). В начальный момент ток равен нулю, далее он увеличивается. Увеличение тока в цепи вызывает возникновение э. д. с. самоиндукции eL и накопление энергии в магнитном поле катушки. Э. д. с. самоиндукции уравновешивает напряжение на конденсаторе:
Напряжение на конденсаторе в процессе разрядки уменьшается, поэтому вызываемый в цепи ток растет все медленнее, соответственно с этим уменьшается и э. д. с. самоиндукции, которая пропорциональна скорости изменения тока. Таким образом, к концу разрядки конденсатора () энергия электрического поля перешла в энергию магнитного ноля и накопилась в количестве
Рис. 17.1. К анализу колебательного контура
С этого момента ток начинает уменьшаться (но не прекращается), сохраняя свое направление. В следующую часть периода (от T/4 до T/2) направление тока сохраняется, потому что э. д. с. самоиндукции при уменьшении тока меняет свой знак, и роль источника энергии переходит к катушке. Уменьшающийся ток теперь является зарядным током конденсатора, заряжающегося в обратном направлении (рис. 17.1, в). Напряжение на конденсаторе увеличивается, уравновешивая теперь э. д. с. самоиндукции:
При увеличении напряжения на конденсаторе его зарядный ток уменьшается все быстрее, в результате чего э. д. с. eL увеличивается. Таким образом, к концу зарядки конденсатора напряжение на его обкладках достигает наибольшего значения, э. д. с. самоиндукции тоже максимальна, а ток становится равным нулю. Энергия магнитного поля снова перешла в энергию электрического поля . С этого момента рост э. д. с. самоиндукции прекращается и начинается ее уменьшение. Роль источника энергии снова переходит к конденсатору. Начинается третья часть периода (от Т/2 до 3T/4). В рассматриваемом процессе конденсатор второй раз становится источником энергии. Но по сравнению с первым он имеет обратную полярность, поэтому его разрядный ток изменяет направление и далее увеличивается. Снова энергия убывает в электрическом поле и накапливается в магнитном поле (рис. 17.1, г).
В момент времени t = 3T/4 напряжение на конденсаторе и э. д. с. самоиндукции становятся равными нулю, а ток — наибольшим. В последнем отрезке времени (от 3T/4 до Т) процесс протекает в том же порядке, что и во втором, но при обратном направлении тока (рис. 17.1, д).
В момент времени t = Т конденсатор заряжен в том же направлении и тем же количеством энергии, как и при t = 0. Ток переходит через нуль к положительным значениям и далее увеличивается. Процесс повторяется в порядке, рассмотренном ранее.
Характеристики колебательного контура
Энергетический процесс в колебательном контуре имеет периодический характер с периодом Т. Колебания в электрической цепи, не связанной с источником энергии, называют собственными или свободными.
Этот процесс рассмотрен по графикам изменения тока i, напряжения uC и э.д.с. eL, которые приняты синусоидальными функциями времени.
Для такого предположения имеется полное основание, так как эти величины взаимно связаны соотношением
Вместе с тем ток в контуре пропорционален скорости изменения заряда конденсатора, причем он увеличивается, когда конденсатор разряжается. Следовательно,
Такая взаимная связь переменных величин говорит о синусоидальном законе изменения тока и напряжения, но при наличии сдвига фаз между ними на 90°, т. е. при
Это можно проверить:
Величину ω0 в уравнениях тока и напряжения называют угловой частотой собственных колебаний в контуре. Найдем ее, используя равенство наибольшего количества энергии в конденсаторе и катушке:
и связь между амплитудами тока и напряжения:
Сокращая, получим
Частота собственных колебаний
Период собственных колебаний
Из равенства (17.1) вытекает еще одно важное соотношение
Величина, стоящая в знаменателе, имеет размерность сопротивления и называется волновым сопротивлением контура:
Колебательный контур с потерями энергии
Незатухающие колебания в контуре получаются в предположении, что потери энергии отсутствуют, т. е. R = 0.
Если активное сопротивление контура не равно нулю, то запас энергии в контуре сокращается (энергия превращается в тепло), амплитуды тока и напряжения с каждым периодом убывают, как показано на рис. 17.2.
Более детальное исследование колебательного контура показывает, что частота собственных колебаний зависит от активного сопротивления:
При R = 0 это выражение совпадает с (17.2).
При колебания в контуре не возникают, в чем нетрудно убедиться, подставив значение R в формулу (17.7). В этом случае процесс в контуре после подключения конденсатора к катушке является апериодическим, напряжение на конденсаторе с максимальной величины постепенно падает до нуля, а ток сначала растет, а потом тоже падает до нуля, не меняя знака (рис. 17.3).
Рис. 17.2. График изменения тока в колебательном контуре с потерями
Рис. 17.3. Апериодический разряд конденсатора на катушку индуктивности
Резонанс напряжений
При рассмотрении различных режимов электрических цепей был отмечен случай равенства реактивных сопротивлений ХL = ХC при последовательном соединении элементов, содержащих индуктивность и емкость.
В этом случае электрическая цепь находится в режиме резонанса напряжений, который характеризуется тем, что реактивная мощность цепи равна нулю, ток и напряжение совпадают по фазе.
Условие возникновения резонанса
Резонанс напряжений возникает при определенной для данной цепи частоте источника энергии (частоте вынужденных колебании), которую называет резонансной частотой ωр.
При резонансной частоте, как будет показано далее, .
Режим электрической цепи при последовательном соединении участков с индуктивностью и емкостью, характеризующийся равенством индуктивного и емкостного сопротивлений, называют резонансом напряжений.
Резонанс напряжений рассмотрим, сначала на схеме идеализированной цепи (рис. 17.4, а), в которой последовательно с резистором R включены идеальные (без потерь) катушка L и конденсатор С.
Рис. 17.4. К вопросу о резонансе напряжений
Реактивные сопротивления ХL и ХC (рис. 17.4, б) зависят от частоты вынужденных колебаний ω:
Приравнивая реактивные сопротивления и учитывая, что ω = ωр, получим
.
Отсюда резонансная частота
В данном случае выражение для резонансной частоты совпадает с формулой (17.3) для частоты собственных колебаний в контуре без потерь.
Основные соотношения между величинами, характеризующими режим электрической цепи и энергетические процессы. Нужно отметить, что в неразветвленной цепи обмен энергией между катушкой и конденсатором совершается через источник энергии, который восполняет потери энергии в активных сопротивлениях.
Резонансные кривые
Резонанс напряжений в цепи можно установить двумя путями: 1) изменением параметров L и С (одного из них или обоих вместе) при постоянной частоте источника или 2) изменением частоты источника энергии при постоянных L и С.
В связи с этим большой практический интерес представляют зависимости напряжений и токов на отдельных элементах цепи от частоты. Эти зависимости называют резонансными кривыми (рис. 17.4, в).
Реактивные сопротивления с изменением частоты меняются, как показано на рис. 17.4, б. При увеличении частоты ХL увеличивается пропорционально частоте, а ХC уменьшается по закону обратной пропорциональности.
Соответственно полное сопротивление Z цепи при резонансной частоте ωр оказывается наименьшим, равным активному сопротивлению R; при частоте полное сопротивление увеличивается с уменьшением частоты за счет роста ХC; при частотах полное сопротивление растет с увеличением частоты за счет роста ХL .
Такая зависимость полного сопротивления от частоты определяет характер изменения тока при постоянном напряжении в цепи (рис. 17.4, в). При ток равен нулю, далее с увеличением частоты ток увеличивается и при достигает максимума Iр. Дальнейшее увеличение частоты ведет к постепенному уменьшению тока до нуля при Аналогично изменяется напряжение на активном сопротивлении UR, которое пропорционально току: .
Напряжение на конденсаторе UC при равно напряжению на зажимах источника U, так как сопротивление конденсатора что соответствует разрыву цепи на его зажимах. С ростом частоты UC увеличивается, достигая наибольшей величины при частоте, несколько меньшей резонансной, и далее уменьшается до нуля при
Индуктивное напряжение при частоте так как сопротивление Увеличение частоты ведет к увеличению UL, которое при частоте, несколько большей резонансной, достигает максимума, а затем уменьшается до величины напряжения источника при когда сопротивление что соответствует разрыву цепи на зажимах катушки.
При частотах, меньших резонансной, реактивное сопротивление цепи имеет емкостный характер (отрицательно), поэтому и угол сдвига фаз в цепи отрицательный. Уменьшаясь с ростом частоты, он становится равным нулю при резонансе , а затем меняет знак и увеличивается при дальнейшем увеличении частоты.
Добротность контура
При резонансе напряжений отношение напряжения на индуктивности или емкости к напряжению, приложенному к цепи (напряжению источника), равно отношению волнового сопротивления к активному. Действительно, при резонансе сопротивления реактивных элементов
Поэтому
Из этого выражения следует, что при напряжение на реактивных элементах больше напряжения источника.
Такое превышение может оказаться значительным, если реактивные сопротивления много больше активного, и изоляция катушки или конденсатора может быть пробита. На практике подобный случай возможен, если на конце кабельной линии включается приемник, обладающий индуктивностью.
В радиотехнике качество резонансного контура считается тем выше, чем больше отношение называемое добротностью контура Q:
Чем меньше мощность потерь энергии в контуре (этому соответствует меньшая величина R), тем больше добротность контура.
Большей величине добротности соответствует больший ток Iр при резонансе и более острая резонансная кривая.
На рис. 17.5 показаны две резонансные кривые тока, построенные в относительных единицах при двух величинах добротности. По горизонтальной оси отложены отношения изменяющейся частоты источника энергии к резонансной частоте ω/ωр, а по вертикальной —отношения тока при данной частоте к току при резонансной частоте I/Iр.
Рис. 17.5. Резонансные кривые при двух значениях добротности контура
Все рассуждения о резонансе напряжений в идеализированной цепи можно распространить и на цепи, содержащие последовательно соединенные катушку и конденсатор с потерями. Как известно, реальные катушки и конденсатор могут быть представлены схемами последовательного соединения активного и реактивного сопротивлений (рис. 17.5). Активные сопротивления катушки и конденсатора можно рассматривать как часть общего активного сопротивления цепи R, тогда схема на рис. 17.4, а будет пригодна и в этом случае.
Резонанс в электрических цепях
Резонансные (колебательные) цепи:
Резонансными или колебательными цепями называются электрические цепи, в которых могут возникать явления резонанса напряжений или токов.
Резонанс представляет собой такой режим пассивной электрической цепи, содержащей индуктивности и емкости, при котором реактивное сопротивление и реактивная проводимость цепи равны нулю; соответственно равна нулю реактивная мощность на выводах цепи.
Резонанс напряжения наблюдается в электрической цепи с последовательным соединением участков, содержащих индуктивности и емкости. Неразветвленная цепь, состоящая из последовательно соединенных элементов r, L и С, рассмотренная, представляет собой один из простейших случаев такой цепи. В радиотехнике ее называют последовательным колебательным контуром.
При резонансе напряжений индуктивное сопротивление одной части цепи компенсируется емкостным сопротивлением другой ее части, последовательно соединенной с первой. В результате реактивное сопротивление и реактивная мощность на выводах цепи равны нулю.
В свою очередь резонанс токов наблюдается в электрической цепи с параллельным соединением участков, содержащих индуктивности и емкости. Один из простейших примеров такой цепи, состоящей из параллельно соединенных элементов r, L и С. В радиотехнике такую цепь называют параллельным колебательным контуром.
При резонансе токов индуктивная проводимость одной части цепи компенсируется емкостной проводимостью другой ее части, параллельно соединенной с первой. В результате реактивная проводимость и реактивная мощность на выводах цепи равны нулю.
Частоты, при которых наблюдается явление резонанса, называются резонансными частотами.
Исследование резонансных режимов в электрических цепях заключается в нахождении резонансных частот,
зависимостей различных величин от частоты или параметров L и С, а также в рассмотрении энергетических соотношений при резонансе.
Резонансные цепи очень широко применяются в электротехнике и представляют собой неотъемлемую часть всякого радиотехнического устройства. Изучению явления резонанса, свойств и частотных характеристик простейших резонансных цепей посвящена данная глава.
Последовательный колебательный контур. Резонанс напряжений
Резонансная цепь с последовательным соединением r, L и С (рис. 5-1) является простейшей цепью для изучения явления резонанса напряжений и подробно рассматривается ниже. Комплексное сопротивление такой цепи зависит от частоты:
Резонанс напряжений наступает при частоте когда
отсюда
Мгновенные энергии выражаются формулами:
Если принять
Поэтому
и
Такие зависимости называются частотными характеристиками
Максимальные значения этих энергий равны друг другу, так как
Это следует и из того, что реактивное сопротивление цепи, содержащей индуктивность и емкость, при любой схеме соединений пропорционально разности максимальных значений энергии, запасаемой в магнитном и электрическом полях:
Поэтому условию резонанса (х = 0) соответствует равенство
Мгновенные значения колеблются с удвоенной частотой около среднего значения причем происходит непрерывное перераспределение энергии магнитного и электрического полей, суммарное значение которой постоянно:
.
В рассматриваемом случае (резонанс напряжений, рис. 5-1) в цепи не происходит обмена энергии между источником и реактивными элементами цепи, а вся электрическая энергия, поступающая от источника, расходуется в сопротивлении r.
Мы уже встречались с понятием добротности индуктивной катушки и конденсатора . Умножив и разделив выражение для получим:
Здесь — максимум энергии, периодически запасаемой индуктивностью L; Р — активная мощность, расходуемая в сопротивлении при амплитуде тока
Аналогично рассуждая, т. е. умножив и разделив выражение получим:
где — максимум энергии, периодически запасаемой емкостью С, а Р— активная мощность потерь в параллельном сопротивлении r при амплитуде напряжения на емкости Следовательно, в обоих случаях добротность определяется в, зависимости от отношения максимума энергии реактивного элемента к энергии РТ, выделяемой в виде тепла за период.
В случае резонансной цепи также пользуются понятием добротности цепи, подразумевая под этим в общем случае величину
здесь — резонансная частота; — сумма максимальных значений энергии, периодически запасаемой при резонансе в индуктивных (или емкостных) элементах; Р — активная мощность на выводах цепи при резонансе.
Знак в (5-3) относится к случаю, когда число индуктивных (или емкостных) элементов превышает единицу. В рассматриваемом нами случае резонанса напряжений в цепи рис. 5-1 знак опускается.
Для схемы рис. 5-1 на основании (5-3) получаем:
где
называется характеристическим (а также волновым) сопротивлением резонансного контура.
Условимся называть относительной расстройкой частоты по отношению к резонансной
частоте контура величину
Сопротивление контура согласно (5-1) и с учетом (5-2) и (5-4)
откуда, используяполучаем:
Следовательно, полное сопротивление цепи
и угол
Ток в цепи
При частоте, близкой к резонансной, значительно меньше единицы, и поэтому приближенно
Выражения (5-7) практически достаточно точны при . При погрешность в сопротивлении z меньше 10%.
На рис. 5-2 кривые даны в относительных значениях: по оси абсцисс отложена относительная расстройка частоты по оси ординат — отношение полного сопротивления z к активному сопротивлению r (рис. 5-2, а) и угол (рис. 5-2, б).
Следует обратить внимание на то, что частотам выше резонанснойсоответствуют положительные значения расстройки а частотам ниже резонансной — отрицательные значения нулевой частотесоответствует при резонансной частоте
Полное сопротивление цепи минимально при резонансе напряжений при этом ток в цепи достигает своего максимального значения
На рис. 5-3 изображены резонансные кривые тока в относительных значениях: по оси абсцисс, как и на предыдущих графиках, отложены значения по оси ординат — отношения токов к максимальному току при резонансе:
Чем выше добротность цепи Q, тем острее резонансные кривые. Таким образом, величина Q характеризует остроту резонансной кривой («остроту настройки»); согласно (5-3) чем больше отношение максимума энергии поля реактивного элемента к количеству теплоты, рассеиваемой за один период в резонансном контуре, тем острее резонансная кривая.
Резонансные кривые были построены здесь в зависимости от относительной расстройки частоты Можно
вывести расчетные выражения и построить резонансные кривые в зависимости от или относительной частоты Следует заметить, что максимумы резонансных кривых на рис: 5-3 равны, так как по оси ординат отложено отношение Если откладывать ток I, то при разных r максимумы резонансных кривых, естественно, не совпадут в одной точке.
Полосу частот вблизи резонанса, на границах которой ток снижается домаксимального (резонансного) значения принято называть полосой пропускания резонансного контура. При токе мощность, расходуемая в сопротивлении r, равна:
т. е. составляет половину мощности, расходуемой при резонансе. Поэтому полосу пропускания характеризуют как полосу, границы которой соответствуют половине максимальной мощности. На границах полосы пропускания резонансного контура активное и реактивное сопротивления равны Это следует из условия
что дает
Соответственно и фазовый сдвиг между напряжением на выводах цепи и током составляет на нижней границе комплексное сопротивление цепи имеет емкостный характер (ток опережает напряжение) и = —45°; на верхней границе комплексное сопротивление цепи имеет индуктивный характер (ток отстает от напряжения) и = 45°.
На основании (5-8) условие для границы полосы пропускания записывается в следующем виде:
или
откуда
(знак минус перед корнем, получающийся в результате решения квадратного уравнения, опускается, как не имеющий смысла). Индексы 1 и 2 и соответственно знаки минус и плюс в выражении (5-9) относятся к границам ниже и выше резонанса.
По определению полоса пропускания резонансного контура находится из условия
или
Величина d, обратная добротности контура, называется затуханием контура.
При достаточно высокой добротности резонансного контура подкоренное выражение (5-9) может быть приравнено единице, откуда т.е. пропуская практически симметрична относительно резонансной частоты.
В радиотехнических устройствах к одному из реактивных элементов колебательного контура, например емкости, подключается нагрузка в виде сопротивления Вследствие этого возрастают потери в цепи и соответственно уменьшается добротность. Для определения добротности нагруженного контура параллельное соединение и С может быть заменено эквивалентным при резонансной частоте последовательным соединением емкости и «вносимого сопротивления» С этой целью используются условия эквивалентности цепей с последовательным и параллельным соединениями.
Так как обычно С учета того,что получаем: При этом, как отмечалось в конце емкости эквивалентных схем могут быть практически приравнены друг другу.
Таким образом, добротность нагруженного контура равна:
а затухание увеличивается на вносимое затухание
Если вносимое сопротивление значительно превышает сопротивление к, то
Внутреннее сопротивление источника э. д. с. добавляемое к сопротивлению r, влияет на добротность и полосу пропускания колебательного контура: чем больше тем ниже добротность и шире полоса пропускания
контура. Поэтому с точки зрения сокращения полосы пропускания последовательного колебательного контура выгоден источник напряжения с малым внутренним сопротивлением.
В условиях, близких к резонансу, напряжения на индуктивности и емкости могут быть весьма велики, что необходимо учитывать во избежание повреждения изоляции.
На рис. 5-4 показана векторная диаграмма тока и напряжений при резонансе. Напряжения на реактивных элементах при резонансе определяются из выражения
При Q > 1 эти напряжения превышают напряжение U — Е, приложенное к резонансному контуру. Однако значения, получаемые на основании (5-11), не являются максимальными: максимум напряжения располагается
несколько выше (правее), а максимум Uc — ниже (левее) резонансной частоты (рис. 5-5).
Напряжение на индуктивности равное нулю при = 0, с увеличением может возрастать только до тех пор, пока ток не начнет снижаться быстрее, чем возрастает . После этого спадает, стремясь, в пределе к Е. Напряжение на емкости равное при = О приложенному напряжению U = Е, увеличивается, пока ток растет быстрее, чем ; затем спадает, стремясь в пределе к нулю. Кривые пересекаются при резонансе, причем ордината точки пересечения в соответствии с (5-11) равна QE.
Эго также вытекает из анализа следующих ниже выражений, полученных с учетом (5-5) и (5-6):
и
Напряжение достигает максимума при
а напряжение
Пренебрегая по сравнению с единицей, получаем приближенную формулу
Возвращаясь к определению понятия добротности рассматриваемой резонансной цепи, мы видим, что наряду с формулами (5-3) и (5-4) добротность цепи характеризуется выражениями (5-10) и (5-11), а именно:
Последняя формула показывает, что добротность рассматриваемой цепи определяется как кратность перенапряжения на L и С при резонансной частоте.
Выше была рассмотрена неразветвленная электрическая цепь с последовательно соединенными r, L н С. Для исследования явления резонанса в более сложных разветвленных цепях, где резонанс напряжений может возникать на одной или нескольких частотах, наряду с аналитическим методом расчета, иллюстрированным выше, целесообразно также пользоваться методом геометрических мест.
Следует отметить, что при максимум функции наступает при т. е. в этом случае с ростом частоты непрерывно стремится к значению приложенного напряжения U — Е; максимум же функции в рассматриваемом случае имеет место при = —1, т. е. при нулевой частоте когда
Параллельный колебательный контур и резонанс токов
Явление резонанса токов удобно изучать применительно к электрической цепи с параллельно соединенными r, L и С (рис. 5-6), так как при этом можно непосредственно воспользоваться результатами, полученными в предыдущем параграфе.
Действительно, выражение для комплексной проводимости такой цепи
по своей структуре аналогично выражению (5-1), причем резонансная частота определяется согласно (5-2).
Добротность резонансной цепи на основании (5-3)
По аналогии с предыдущим выражение (5-13) приводится к виду:
Сравнивая полученный результат с (5-6), убеждаемся в том, что выражение Y/g для схемы рис. 5-6 имеет тот же вид, что и выражение для схемы рис. 5-1.
Поэтому кривые рис. 5-2 применимы и в данном случае: кривые рис. 5-2, а выражают зависимость от 6 Отношения y/g, а кривые рис. 5-2, б — зависимость угла —
Кривые рис. 5-2, а показывают, что при резонансе токов полная проводимость цепи минимальна, т. е. входное сопротивление достигает максимума.
При заданном напряжении на выводах цепи ток, идущий от источника в цепь, равен:
Этот ток достигает минимума при резонансной частоте, так как при этом
Следовательно, отношение. токов определяется из выражения
правая часть которого полностью совпадает с (5-8).
В связи с этим резонансные кривые рис. 5-3 выражают применительно к схеме рис. 5-6 зависимость
В случае резонанса токов токи в индуктивном и емкостном элементах схемы рис. 5-6 равны и противоположны по знаку:
Полученное выражение показывает, что добротность рассматриваемой цепи определяется как кратность токов в L и С по отношению к суммарному току
При Q > 1 эти токи превышают
Если параллельный колебательный контур питается от источника тока с внутренним сопротивлением то чем меньше сопротивление присоединяемое параллельно сопротивлению r, тем ниже добротность и шире полоса пропускания контура. Поэтому в отличие от последовательного колебательного контура с точки зрения сокращения. полосы пропускания параллельного колебательного контура выгоден источник тока с большим внутренним сопротивлением.
Для схемы рис. 5-6 при резонансе токов остается в силе вывод, сделанный в предыдущем параграфе о непрерывном обмене энергией между индуктивным и емкостным элементами при резонансе напряжений.
Схема рис. 5-6 является идеализированной, так как она не учитывает активных потерь в ветвях L и С. Поэтому рассмотрим другие схемы,’приняв во внимание активные сопротивления в ветвях L и С (рис. 5-7, а и б).
Условие резонанса токов для схемы рис. 5-7, а записывается в виде равенства реактивных проводимостей:
Откуда
Явление резонанса возможно при этом только в случае, если подкоренное выражение (5-15) имеет положительный
знак или, что то же, величиныимеют одинаковый знак Если то цепь резонинует на любой частоте.
.
На рис. 5-8 показана векторная диаграмма при резонансе токов в цепи рис. 5-7, а. Токи в индуктивной и емкостной ветвях слагаются из активных и реактивных составляющих, причем
Чем меньше по сравнению си тем ближе
к угол фазового сдвига между при этом токи в ветвях образуют как бы один контурный ток замыкающийся в колебательном контуре
При резонансе вся цепь имеет только активную проводимость
откуда с учетом (5-14)
Для колебательного контура с малыми потерями можно пренебречь слагаемым по сравнению с и считать,
что При этом проводимость колебательного контура приближенно выразится формулой, широко распространенной в практике радиотехнических расчетов:
При (5-15)
Кроме того, если при любой
частоте (резонанс в такой цепи называют «безразличным» резонансом).
Легко убедиться в том, что и в. случае резонансной цепи с двумя параллельными ветвями (см. рис. 5-7) соблюдается условие Для этого достаточно
умножить обе части уравнения (5-14) на
Выше отмечалось, что в схеме с параллельно соединенными r, L и С (см. рис. 5-6) полная проводимость всей цепи имеет минимум при резонансной частоте.
Для схемы рис. 5-7, б нетрудно показать, что при изменении частоты о) или индуктивности L минимум полной проводимости цепи, а также минимум общего тока наступают не при резонансной частоте. В том же случае, когда переменным параметром является емкость С, проводимость и общий ток достигают минимума при резонансе токов.
Добротность параллельного колебательного контура рис. на основании (5-3) равна:
но
откуда
где резонансная частота определяется по формуле (5-15).
Часто в ветви с емкостью сопротивлением можно пренебречь. Тогда формулы значительно упрощаются.
Рассмотрим этот случай (см. рис. 5-7, б).
Резонанасная частота такого контура согласно (5-15)
а добротность цепи в соответствии с полученным выше выражением
Из сопоставления (5-16) и (5-2) видно, что при одних и тех же параметрах r, L и С резонансные частоты для схем рис. 5-1 и 5-7, б отличаются множителем
При разность резонансных частот не превышает 1%. Кроме того, выражение (5-16) показывает, что резонанс токов возможен в охеме рис. 5-7,6 только при
Общее сопротивление колебательного контура (см. рис, 5-7, б)
На основании соотношений (5-16) и (5-17) можно получить:
Учитывая также соотношения
получаем выражение для сопротивления колебательного контура:
.
При резонансной частоте
В тех случаях, когда весьма велико по сравнению с единицей выражение (5-18) упрощается:
В режиме, близком к резонансу, когданесоизмеримо меньше единицы, данное выражение заменяется приближенным:
При высокой добротности колебательного контура
Приэтом токи в ветвях
Здесь — ток, входящий в цепь.
Напряжение на выводах цепи связано с током I следующим образом:
Приближенные выражения (5-19) и (5-20) аналогичны при заданном Q выражениям(5-12) и (5-7), выведенным для цепи рис. 5-1, при условии замены напряжений токами и обратно. Поэтому кривые сопротивлений, токов и напряжений, соответствующие схеме рис. 5-1, в известном масштабе приближенно выражают проводимости, напряжения и токи в схеме рис. 5-7, б.
Следует обратить внимание на то, что в схеме рис. 5-6 мгновенная мощность в цепи при резонансе токов равна мгновенной мощности, расходуемой в сопротивлении r; в схемах с двумя параллельными ветвями (рис. 5-7) мгновенная мощность на выводах цепи отлична от мгновенной мощности, расходуемой в сопротивлениях ветвей. Например, в тот момент, когда ток, входящий в цепь, проходит через нулевое значение, мгновенная мощность на выводах цепи равна нулю; в этот момент токи в ветвях, сдвинутые по фазе относительно суммарного тока цепи, отличны от нуля и поэтому мгновенная мощность, расходуемая в сопротивлениях ветвей, также не равна нулю. Объясняется это тем, что в схемах ~рис. 5-7, а и б энергия, накапливаемая реактивными элементами, периодически преобразуется частично в теплоту (в сопротивлениях ветвей), а затем вновь пополняется за счет энергии источника.
Для повышения крутизны резонансных характеристик, необходимой для более четкого разделения колебаний разных частот, в радиотехнике широко применяются двухконтурные резонансные цепи: два резонансных контура, настроенных каждый в отдельности на одну и ту же частоту, связываются индуктивно или электрически. В отличие от «одногорбой» резонансной кривой одиночного контура в связанных цепях получаются «двугорбые» кривые; например, ток в каждом контуре может иметь максимумы при двух частотах, расположенных ниже и выше резонансной частоты одиночного контура.
Частотные характеристики сопротивлений и проводимостей реактивных двухполюсников
Двухполюсником называется любая электрическая цепь или часть электрической цепи, имеющая два вывода. Ниже рассматриваются только линейные двухполюсники, т. е. такие, которые состоят из линейных элементов.
Различают двухполюсники активные и пассивные.
Активным называется двухполюсник, содержащий источники электрической энергии, которые не компенсируются взаимно внутри двухполюсника.
Пассивным называется двухполюсник, не содержащий источников электрической энергии; в случае линейного двухполюсника он может содержать источники электрической энергии, взаимно компенсирующиеся таким образом, что напряжение на его разомкнутых выводах равно нулю. Такой линейный двухполюсник относится к категории пассивных; его сопротивление, измеренное на выводах, не изменится, если источники электрической энергии внутри него заменить пассивными элементами — внутренними сопротивлениями источников э. д. с. или соответственно внутренними проводимостями источников тока. Пример двухполюсника, содержащего компенсированные источники, показан на рис. 5-9.
По числу элементов, входящих в двухполюсник, различают одноэлементный, двухэлементный и многоэлементный двухполюсники.
По характеру этих элементов двухполюсники делятся на реактивные, т. е. состоящие из индуктивностей и емкостей, и двухполюсники с потерями, содержащие активные сопротивления. Реактивные двухполюсники представляют собой идеализированные электрические системы, приближающиеся по своим свойствам к физически существующим цепям с малыми потерями.
Частотные характеристики сопротивлений или проводимостей двухполюсников, образующих электрическую цепь, предопределяют частотные и резонансные свойства цепи, т. е. зависимости амплитуд и фаз токов и напряжений от частоты.
Настоящий параграф посвящен изучению частотных характеристик пассивных реактивных двухполюсников.
Одноэлементные реактивные двухполюсники
Индуктивность и емкость представляют собой простейшие одноэлементные реактивные двухполюсники. Знак комплексного сопротивления и комплексной проводимости каждого из этих двухполюсников не зависит от частоты; этим они существенно отличаются от других, более сложных реактивных двухполюсников, содержащих неоднородные реактивные элементы, т. е. индуктивность и емкость в разных сочетаниях.
Комплексное сопротивление индуктивного элемента во всем спектре частот имеет положительный знак, а комплексная проводимость — отрицательный:
Комплексное сопротивление емкостного элемента во всем спектре частот имеет отрицательный знак, а комплексная проводимость — положительный:
В рассматриваемом случае реактивных двухполюсников комплексные сопротивления и проводимости являются мнимыми. Поэтому для сохранения знаков частотные ха-рактернстнкн сопротивлений и проводимостей удобно рисовать в прямоугольной системе координат, в которой вверх откладываются мнимые величины со знаком плюс, а вниз — со знаком минус.
Частотные характеристики построенные в прямоугольной системе координат, представляют собой прямые линии, а частотные характеристики — равнобочные гиперболы (рис. 5-10). Таким образом, кривые и аналогичны кривым
Следует заметить, что как сопротивления, так и проводимости рассматриваемых здесь одноэлементных реактивных двухполюсников возрастают (с учетом знака) по мере повышения частоты, т. е.
Это является общим свойством всех реактивных двухполюсников, а не только одноэлементных.
Двухполюсник, состоящий из последовательно или параллельно соединенных однородных элементов (индуктивностей или емкостей), относится к числу одноэлементных двухполюсников, так как последовательно или параллельно соединенные однородные элементы могут быть заменены одним эквивалентным реактивным элементом того же характера.
Двухэлементные реактивные двухполюсники
Двухэлементные двухполюсники, составленные из индуктивности и емкости, представляют собой простейшие резонансные цепи.
При последовательном соединении индуктивности и емкости алгебраически складываются комплексные сопротивления. На рис. 5-11, а жирной линией показана частотная характеристика двухполюсника, полученная в результате графического сложения кривых Она пересекает ось абсцисс при резонансной частоте (резонанс напряжений). Эта частота, при которой функция Z обращается в нуль, называется нулем данной функции; точка на оси абсцисс, которая соответствует нулю функции, обозначается кружком.
Частотная характеристика проводимости того же двухполюсника представляет собой функцию, обратную сопротивлению:
Кривая Y показана на рис. 5-11, б.
При резонансной частоте проводимость рассматриваемого двухполюсника обращается в бесконечность; эта точка носит название полюса функции Y и обозначается на чертеже крестиком
Частотные характеристики Z и Y, построенные таким образом1, соответствуют уравнениям:
и
или с учетом(5-2):
На осях ординат частотных характеристик чисто реактивных цепей откладываются мнимые значения сопротивлений и проводимостей.
В области частот ниже резонансной сопротивление емкостного элемента превышает по абсолютному значению сопротивление индуктивного элемента; при этом сопротивление двухполюсника имеет емкостный характер.
В области частот выше резонансной абсолютное значение емкостного сопротивления меньше, чем индуктивного; сопротивление двухполюсника имеет индуктивный характер.
При параллельном соединении индуктивности и емкости алгебраически складываются их комплексные проводимости. На рис. 5-12, а жирной линией показана частотная
характеристика двухполюсника, полученная в результате графического сложения
Частотная характеристика сопротивления того же двухполюсника представляет собой функцию, обратную проводимости: Z — 1/Y. Кривая Z показана на рис. 5-12, б.
Частота, при которой характеристика Y пересекает ось абсцисс (нуль функции У), а характеристика Z уходит в бесконечность (полюс функции Z), является резонансной частотой (резонанс токов).
Частотные характеристики, построенные на рис. 5-12, соответствуют уравнениям:
И
или с учетом (5-22)
В области частот ниже резонансной проводимость индуктивного элемента перекомпенсирует проводимость емкостного элемента и сопротивление двухполюсника получается, индуктивным. В области частот выше резонансной наблюдается обратное явление и сопротивление двухполюсника имеет емкостный характер.
Таким образом, в зависимости от частоты двухэлементный реактивный двухполюсник может иметь либо индуктивное, либо емкостное сопротивление. При этом, так же как и в случае одноэлементного реактивного двухполюсника, кривые Z и Y возрастают, т. е. производные от и по частоте положительны.
В отличие от сопротивлений одноэлементных двухполюсников, которые выражаются только через текущую частоту, сопротивления двухэлементных реактивных двухполюсников зависят также и от разности квадратов резонансной и текущей частот (формулы (5-21) и (5-22)1.
Как видно из выражений (5-21), для построения частотных характеристик двухполюсника, состоящего из последовательно соединенных элементов L и С, достаточно знать нуль функции Z или, что то же, полюс функции Y. Параметр L, входящий в (5-21), влияет только на выбор масштаба Z и Y по оси ординат.
Аналогично в соответствии с (5-22) для построения частотных характеристик двухполюсника, состоящего из параллельно соединенных элементов L и С, достаточно знать полюс Z или, что то же, нуль Y, причем параметр С влияет только на масштаб Z и Y.
Двухполюсники, имеющие одинаковые частотные характеристики Z или Y, эквивалентны.
Многоэлементный реактивный двухполюсник
Многоэлементный реактивный двухполюсник может быть получен в результате различных сочетаний одноэлементных и двухэлементных двухполюсников. Пользуясь частотными характеристиками, приведенными выше, можно построить частотные характеристики для трех-, четырех- и много-элементных реактивных двухполюсников. При этом одно-
родные элементы (или группы элементов с одинаковыми резонансными частотами), соединенные параллельно или последовательно, должны быть сначала заменены одним элементом (или эквивалентной группой элементов, как это, например, показано на рис. 5-13).
Такие двухполюсники будем называть «приведенными».
Из свойства положительности производной (или следует, что нули и полюсы функций Z (или Y) должны чередоваться, так как при наличии двух последовательных нулей, не разделенных полюсом, имелся бы участок характеристики с отрицательной производной.
В общем случае, если при сопротивление реактивного двухполюсника равно нулю, т. е. имеется путь для постоянного тока, то первым наступает резонанс токов, за ним следует резонанс напряжений и т. д.
В противном случае порядок расположения резонансов обратный: первым наступает резонанс напряжений, вторым — резонанс токов и т. д.
На рис. 5-14, а дана схема многоэлементного двухполюсника, а на рис. 5-14, б — соответствующая ему частотная характеристика сопротивления.
У реактивных двухполюсников сумма чисел полюсов и нулей (не считая точек на единицу меньше числа элементов данного «приведенного» двухполюсника.
Расположение нулей и полюсов, как указывалось выше, поочередное, а все ветви частотной характеристики с увеличением возрастают.
- Соединение звездой и треугольником в трехфазных цепях
- Принцип действия асинхронного и синхронного двигателей
- Метод симметричных составляющих
- Цепи периодического несинусоидального тока
- Расчет неразветвленной однородной магнитной цепи
- Энергия магнитного поля
- Синусоидальные Э.Д.С. и ток
- Электрические цепи с взаимной индуктивностью
Для школьников.
В предыдущей статье рассматривалось протекание собственных электромагнитных колебаний в идеальном колебательном контуре, когда активным сопротивлением контура можно было пренебречь (из-за его малости).
Частота возникающих собственных колебаний колебательного контура определяется ёмкостью конденсатора и индуктивностью катушки:
Реальный колебательный контур обладает активным сопротивлением R, поэтому возникшие в контуре колебания со временем затухают.
Скорость затухания колебаний определяется величиной активного сопротивления R контура – чем оно больше, тем быстрее идёт процесс затухания.
Продолжительность существования свободных колебаний в контуре определяется его добротностью Q.
Под добротностью понимается отношение реактивного сопротивления колебательного контура (емкостного или индуктивного) к его активному сопротивлению.
На практике нужно, чтобы колебания в контуре были незатухающими.
Этого можно добиться периодически добавляя в колебательный контур энергию, то есть колебания в контуре должны совершаться не за счёт первоначального запаса энергии заряженного конденсатора, как это происходит при свободных колебаниях, а под непрерывным действием источника переменной эдс высокой частоты (о таких источниках – генераторах высокой частоты – будет говориться в следующей статье), то есть колебания в контуре должны быть вынужденными.
Так как механические и электрические колебания имеют одинаковые закономерности, то сначала прочтите статью ” Вынужденные колебания. Резонанс” о механических колебаниях, затем перейдите к электрическим колебаниям, которые сейчас будут рассматриваться.
Для создания вынужденных электрических колебаний, в колебательный контур включается источник переменной эдс высокой частоты.
Этот источник можно подключить в колебательный контур двояко: ввести его внутрь контура последовательно с катушкой и конденсатором или включить источник переменной эдс параллельно катушке и конденсатору (показано на рисунке ниже):
Рассмотрим сначала первый способ получения вынужденных колебаний в колебательном контуре, затем второй.
Последовательное соединение катушки, конденсатора и источника переменной эдс. Резонанс напряжений
О резонансе напряжений в электрической цепи переменного промышленного тока частотой 50 Гц подробно говорилось в Занятии 71.
Из электротехники известно, что при последовательном соединении источника переменной эдс, катушки и конденсатора, напряжение источника уравновешивается суммой трёх напряжений: эдс самоиндукции, возникающей между концами катушки L, напряжением между пластинами конденсатора C и падением напряжения на активном сопротивлении R (см. Занятие 71).
В радиотехнике такую же цепь называют колебательным контуром с включенным в него источником переменной эдс высокой частоты.
Допускать резонанса в электротехнике нельзя из-за нарушения работы электрической цепи.
В радиотехнике же резонанс необходим, поэтому здесь резонансу уделяется особое внимание.
в колебательном контуре, изображённом на рисунке выше, проявляется в резком возрастании силы тока в контуре.
Наступает резонанс (резкое возрастание силы тока в контуре) при равенстве частоты эдс источника и собственной частоты контура:
Резонанс устанавливается не сразу после подключения источника.
Амплитуда колебаний силы тока нарастает до тех пор, пока энергия, выделяющаяся за период на активном сопротивлении контура не сравняется с энергией, поступающей в контур за период от источника..
Более чётко резонанс в колебательном контуре выражается при малом активном сопротивлении R контура (при большом активном сопротивлении говорить о резонансе нет смысла).
Одновременно при резонансе напряжений с ростом силы тока резко возрастают напряжения на конденсаторе и катушке индуктивности.
Эти напряжения при малом активном сопротивлении контура во много раз превышают эдс источника, поэтому резонанс и назвали резонансом напряжений.
Известно, что в контуре совершаются электромагнитные колебания – совершается преобразование электрической энергии, запасённой в конденсаторе, в энергию магнитного поля, охватывающего катушку, и обратно.
Когда конденсатор оказывается заряженным, то его разряду через катушку препятствует напряжение, существующее на концах катушки. Следовательно, напряжение на катушке оказывается в этом случае включенным навстречу напряжению на конденсаторе.
Аналогичное явление происходит и при перезарядке конденсатора. ЭДС самоиндукции заставляет двигаться электрические заряды на пластины заряженного конденсатора, но возникающее на пластинах напряжение препятствует притоку зарядов на конденсатор. Таким образом, напряжения, образующиеся на катушке и конденсаторе колебательного контура, всегда действуют навстречу друг другу.
При свободных колебаниях в контуре практически вся энергия из конденсатора переходит в катушку и обратно. Поэтому напряжения на конденсаторе и катушке всегда равны по величине друг другу.
При вынужденных колебаниях катушка и конденсатор могут запасать разное количество энергии, тогда напряжения на них будут разными. В случае же резонанса эти напряжения, как и при свободных колебаниях, становятся одинаковыми. Так как напряжения на катушке и конденсаторе действуют навстречу друг другу, то в схеме
противодействовать ЭДС источника будет только их разность.
При резонансе напряжений напряжения на катушке и конденсаторе равны, поэтому полностью компенсируют друг друга и не влияют на величину тока, создаваемого источником внешней эдс.
Величина этого тока определяется лишь величиной активного сопротивления контура, поэтому оказывается очень большой.
Вблизи резонанса (при частоте источника эдс, близкой к резонансной) напряжения на катушке и конденсаторе окажутся различной величины и уже не будут компенсировать полностью друг друга. Разность этих напряжений будет препятствовать протеканию тока от источника эдс, и ток в контуре будет меньше, чем при резонансе.
При возрастании тока в контуре в момент резонанса напряжения на катушке и конденсаторе становятся наибольшими и в Q раз (Q- добротность контура) превышают напряжение внешнего источника.
То, что при резонансе напряжений напряжения на конденсаторе и катушке гораздо больше эдс источника широко используется в радиотехнике.
Например, используя резонанс напряжений во входных контурах приёмника, получают усиление слабого сигнала, воздействующего на приёмную антенну.
Практически явление резонанса напряжений можно получить двумя способами: путём изменения частоты эдс внешнего источника, при неизменной частоте собственных колебаний контура, и путём изменения частоты собственных колебаний контура при неизменной частоте эдс внешнего источника.
Но удобнее резонанс проследить первым способом, изменяя частоту внешней эдс при неизменной собственной частоте контура.
Подключив источник к колебательному контуру, плавно изменяют частоту колебаний источника, следя за током в контуре.
По мере приближения к резонансу ток в контуре будет увеличиваться. В момент резонанса он достигнет наибольшей величины, а при дальнейшем изменении частоты начнёт уменьшаться.
На рисунке ниже представлены такие экспериментальные кривые, называемые резонансными кривыми.
Чем выше добротность Q (чем меньше активное сопротивление R) контура, тем более острый вид имеет его резонансная кривая.
Из рисунка видим, что по мере приближения к резонансу
ток в колебательном контуре увеличивается, достигая максимума в момент резонанса, а по мере удаления от резонанса уменьшается.
При рассмотрении отдельной резонансной кривой видно, что величина тока, возникающего в контуре, получается разной для разных частот источника, хотя эдс источника остаётся неизменной.
Поэтому при воздействии на колебательный контур приёмника одновременно нескольких переменных эдс, большой ток в контуре появляется лишь при той эдс, частота которой равна частоте собственных колебаний контура. Это свойство колебательного контура называется избирательностью.
Из многочисленных радиостанций, имеющих каждая свою частоту, колебательный контур выделяет частоту, равную его собственной частоте.
В приёмнике используется контур с острой резонансной кривой.
Если бы в приёмнике использовался колебательный контур с тупой резонансной кривой, то наряду с сигналами от принимаемой радиостанции были бы слышны сигналы и от других радиостанций.
Параллельное соединение источника с ветвями колебательного контура. Резонанс токов
В случае параллельного соединения источника эдс с ветвями колебательного контура имеет место особый случай резонанса, называемый резонансом токов. (Ранее о резонансе токов говорилось при рассмотрении промышленного переменного тока в статье “Параллельное соединение активного сопротивления, индуктивности и ёмкости в цепях переменного тока. Резонанс токов”).
Опыт показывает, что при приближении частоты источника к собственной частоте колебательного контура резко уменьшается амплитуда силы тока во внешней цепи, питающей колебательный контур.
Это объясняется тем, что при приближении частоты источника к частоте собственных колебаний контура реактивные сопротивления обеих параллельных ветвей (емкостное и индуктивное) оказываются одинаковыми по величине.
Поэтому в обеих ветвях текут токи примерно одинаковой амплитуды, но почти противоположные по фазе.
Вследствие этого амплитуда тока во внешней цепи, равная алгебраической сумме токов в отдельных ветвях, оказывается гораздо меньше амплитуды тока в ветвях.
Ток в ветвях при этом достигает наибольшей величины, поэтому резонанс и называется резонансом токов.
Вблизи резонанса токов, когда частота источника немного отличается от резонансной, энергия, запасённая электрическим полем конденсатора, окажется больше или меньше энергии, запасённой магнитным полем катушки. Поэтому при колебаниях в контуре часть этой энергии будет периодически то отдаваться источнику эдс, то отбираться от него.
Таким образом, резонанс токов можно обнаружить не только по увеличению тока в контуре, но и по уменьшению тока источника.
Резонанс токов, как и резонанс напряжений, выражается тем резче, чем меньше активное сопротивление колебательного контура.
Использование резонанса в радиотехнике
Резонансные свойства колебательного контура широко используются в радиотехнике, например, для усиления и выделения радиосигнала входными контурами приёмника.
Обычно антенна радиоприёмника включается по схеме, изображённой на рисунке:
Приходящие к антенне радиоволны создают в ней эдс, которая вызывает переменный ток.
Так как в антенну включена катушка, то протекающий по ней ток антенны образует вокруг неё переменное магнитное поле, силовые линии которого пересекают витки катушки приёмного контура.
В катушке контура появляется переменная эдс, имеющая частоту, равную частоте приходящего сигнала. В приёмном контуре образуется переменный ток и напряжение.
Если частоту собственных колебаний приёмного контура сделать равной частоте принимаемого сигнала, то в контуре возникнет резонанс и ток в нём достигнет наибольшей величины, превысив величину тока в антенне.
Поэтому напряжение на конденсаторе приёмного контура окажется также наибольшим и будет во много раз превышать эдс, наведённую в антенне. Таким образом, получится усиление сигнала за счёт резонанса напряжений.
Одновременно все сигналы других частот будут создавать в контуре весьма слабые колебания, так как для них условие резонанса не выполняется.
Таким образом, настроив контур в резонанс, то есть подобрав частоту собственных колебаний контура равной частоте принимаемых сигналов, получают не только усиление нужного сигнала, но и выделяют его из других сигналов.
К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Спасибо.
Предыдущая запись: Колебательный контур. Свободные электромагнитные колебания
Следующая запись:Генераторы высокой частоты. Электрические автоколебания.
Ссылки на занятия до электростатики даны в Занятии 1 .
Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45 .
Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 58.
Ссылки на занятия, начиная с переменного тока, даны в конце Занятия 70 .