Найти напряжение, которое покажет вольтметр, включенный в схему так, как показано на рисунке?
Найти напряжение, которое покажет вольтметр, включенный в схему так, как показано на рисунке.
ЭДС источников тока и их внутренние сопротивление равны соответственно ε1 , r1 и ε2, r2.
Сопротивление нагрузки равно R.
Так как через линию с вольтметром ток не идет, то источники эдс, включение в противоположные направления, создадут на резисторов разность потенциалов, равную произведению разности токов на сопротивление.
Запишем закон Киркгофа для данной цепи :
При измерении напряжения на выходе источника постоянного тока без нагрузки показания вольтметра 14 В, при подключении к источнику резистора электрическим сопротивлением 600 Ом сила тока вцепи равна 10?
При измерении напряжения на выходе источника постоянного тока без нагрузки показания вольтметра 14 В, при подключении к источнику резистора электрическим сопротивлением 600 Ом сила тока вцепи равна 10 мА.
Каково внутреннее сопротивление источника тока?
11. При измерении напряжения на выходе источника постоянного тока без нагрузки показания вольтметра 9 В, при подключении к источнику резистора электрическим сопротивлением 60 Ом сила тока вцепи равна 100 мА.
Каково внутреннее сопротивление источника тока?
12. Как изменятся показания вольтметра, если к резистору с сопротивлением 1 кОм параллельно включить дополнительное сопротивление 10 кОм?
Эдс источника электрического тока 12 В?
Эдс источника электрического тока 12 В.
Определите напряжение на зажимах источника тока , если сопротивление внешней цепи равно внутреннему сопротивлению источника тока!
Вольтметр, подсоединенный к источнику тока с ЭДС Е = 52В и внутренним сопротивлением r = 20 Ом, показывает U = 50В?
Вольтметр, подсоединенный к источнику тока с ЭДС Е = 52В и внутренним сопротивлением r = 20 Ом, показывает U = 50В.
Сопротивление вольтметра равно :
Вольтметр, подключенный к источнику тока с ЭДС 120 В и внутренним сопротивлением 50 Ом , показывает напряжение 118 В?
Вольтметр, подключенный к источнику тока с ЭДС 120 В и внутренним сопротивлением 50 Ом , показывает напряжение 118 В.
Найти сопротивление вольтметра.
Вольтметр и амперметр, включенные в электрическую цепь показывают соответственно 9В и 3А?
Вольтметр и амперметр, включенные в электрическую цепь показывают соответственно 9В и 3А.
Сопротивление нагрузки в 5 раз больше внутреннего сопротивления источника тока.
Чему равно сопротивление внешней цепи?
Вольтметр и амперметр считайте идеальными.
Вольтметр и амперметр, включенные в электрическую цепь показывают соответственно 9В и 3А?
Вольтметр и амперметр, включенные в электрическую цепь показывают соответственно 9В и 3А.
Сопротивление нагрузки в 5 раз больше внутреннего сопротивления источника тока.
Чему равно сопротивление внешней цепи?
Вольтметр и амперметр считайте идеальными.
Вольтметр с внутренним сопротивлением 2500 Ом включенный в сеть, показал напряжение 125 В?
Вольтметр с внутренним сопротивлением 2500 Ом включенный в сеть, показал напряжение 125 В.
Дополнительное сопротивление, при подключении которого вольтметр покажет 100 В, равно : (Полностью, с решением).
В замкнутой цепи с источником тока с ЭДС 12 В проходит ток 2 А?
В замкнутой цепи с источником тока с ЭДС 12 В проходит ток 2 А.
Напряжение на зажимах источника 10 В.
Найти внутреннее сопротивление источника и сопотивление нагрузки.
К источнику тока присоединили лампу, сопротивление которой 14 Ом?
К источнику тока присоединили лампу, сопротивление которой 14 Ом.
ЭДС источника тока равна 8В.
Найдите напряжение на лампе, если внутреннее сопротивление источника тока равно 0, 5 Ом.
Напряжение на клеммах источника тока равно 4 В, а сопротивление внешней цепи в три раза больше, чем внутреннее сопротивление источника тока?
Напряжение на клеммах источника тока равно 4 В, а сопротивление внешней цепи в три раза больше, чем внутреннее сопротивление источника тока.
Вы находитесь на странице вопроса Найти напряжение, которое покажет вольтметр, включенный в схему так, как показано на рисунке? из категории Физика. Уровень сложности вопроса рассчитан на учащихся 10 — 11 классов. На странице можно узнать правильный ответ, сверить его со своим вариантом и обсудить возможные версии с другими пользователями сайта посредством обратной связи. Если ответ вызывает сомнения или покажется вам неполным, для проверки найдите ответы на аналогичные вопросы по теме в этой же категории, или создайте новый вопрос, используя ключевые слова: введите вопрос в поисковую строку, нажав кнопку в верхней части страницы.
Источник
Что показывает вольтметр, или математика розетки
О чем эта статья
Сегодня я ненадолго отступлю от своей обычной темы о визуальном программировании контроллеров и обращусь к теме измерений напряжения прямо в ней, в розетке!
Родилась эта статья из дискуссий за чаем, когда разразился спор среди «всезнающих и всеведающих» программистов о том, чего многие из них не понимают, а именно: как измеряется напряжение в розетке, что показывает вольтметр переменного напряжения, чем отличается пиковое и действующие значения напряжений.
Скорее всего, это статья будет интересна тем, кто начинает творить свои устройства. Но, возможно, поможет и кому-то опытному освежить память.
В статье рассказано о том, какие напряжения есть в сети переменного тока, как их измеряют и о том, что следует помнить при проектировании электронных схем.
Всему дано краткое и упрощённое математическое обоснование, чтобы было ясно не только «как», но и «почему».
Кому не интересно читать про интегралы, ГОСТы и фазы — могут сразу переходить к заключению.
Вступление
Когда люди начинают говорить о напряжении в розетке, очень часто стереотип «в розетке 220В» скрывает от их взора реальное положение дел.
Начнем с того, что согласно ГОСТ 29322-2014, сетевое напряжение должно составлять 230В±10% при частоте 50±0,2Гц (межфазное напряжение 400В, напряжение фаза-нейтраль 230В). Но в том же ГОСТ имеется примечание: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».
Согласитесь, что это уже совсем не то однозначное «в розетке 220В», к которому мы привыкли. А когда речь начинает идти о «фазном», «линейном», «действующем» и «пиковом» напряжениях — вообще каша получается знатная. Так сколько же вольт в розетке?
Чтобы ответить на этот вопрос начнем с того, как измеряется напряжение в сети переменного тока.
Как измерять переменное напряжение?
Прежде, чем углубиться в дебри цепей переменного тока и напряжения, вспомним школьную физику цепей тока постоянного.
Цепи постоянного тока — вещь простая. Если мы возьмем некоторую активную нагрузку (пусть это будет обычная лампа накаливания, как на рисунке) и воткнем ее в цепь постоянного тока, то все, что происходит в нашей цепи будет характеризоваться всего двумя величинами: напряжением на нагрузке U и током, протекающим через нагрузку I. Мощность, которая потребляется нагрузкой однозначно вычисляется по формуле, известной со школы: .
Или, если учесть, что по закону Ома , то мощность P, потребляемую нагрузкой-лампочкой, можно вычислить по формуле .
С переменным напряжением все куда сложнее: в каждый момент времени — оно может иметь разное мгновенное значение. Следовательно, в разные моменты времени, на нагрузке, подключенной к источнику переменного напряжения (например, на лампе накаливания, воткнутой в розетку) будет выделяться разная мощность. Это очень неудобно с точки зрения описания электрической цепи.
Но нам повезло: форма напряжения в розетке синусоидальная. А синусоида, как известно, полностью описывается тремя параметрами: амплитудой, периодом и фазой. В однофазных сетях (а обычная розетка с двумя дырочками именно и есть однофазная сеть) про фазу можно забыть. На рисунке подробно показаны два периода сетевого однофазного напряжения. Того самого, что в розетке.
Рассмотрим, что означают все эти буковки на рисунке.
Период T — это время между двумя соседними минимумами или соседними максимумами синусоиды. Для осветительной сети РФ этот период составляет 20 миллисекунд, что соответствует частоте 50Гц. Частота колебаний напряжения электрической сети выдерживается очень точно, до долей процента.
Очевидно, что в любых двух точках синусоиды, отстоящих друг от друга на целое число периодов, напряжения всегда равны между собой.
Амплитуда Um — это максимальное напряжение, пик синусоиды. Про действующее напряжение Uд поговорим чуть ниже.
Напряжение в розетке (или однофазной сети) описывается формулой
где t — текущий момент времени, Um — амплитуда (или пиковое значение) напряжения, T — период сетевого напряжения.
Если с однофазным переменным напряжением более или менее все ясно, то попробуем посчитать мощность, которая выделяется на нашей любимой лампе накаливания, при втыкании ее прямо в розетку.
Так как лампа накаливания является активной нагрузкой (а это значит, что ее сопротивление не зависит от частоты напряжения и тока), то мгновенная мощность, выделяемая на лампе накаливания, воткнутой в розетку, будет вычисляться по формуле
где t — текущий момент времени, а R — сопротивление лампы накаливания при нагретой спирали. Зная амплитуду переменного напряжения Um, можно записать:
Понятно, что мгновенная мощность — неудобный параметр, да и на практике не особо нужный. Поэтому практически обычно применяется мощность, усредненная за период.
Именно усредненная мощность указана на лампочках, нагревателях и прочих бытовых утюгах.
Рассчитывается усредненная мощность в общем случае по формуле:
А для нашей синусоиды — по гораздо более простой формуле:
Можете сами подставить вместо функцию и взять интеграл, если не верите.
Не думайте, что про мощность я вспомнил просто так, из вредности. Сейчас поймете, зачем она нам была нужна. Переходим к следующему вопросу.
Что же показывает вольтметр?
Для цепей постоянного тока, тут все однозначно — вольтметр показывает единственное напряжение между двумя контактами.
С цепями переменного тока все опять сложнее. Некоторые (и этих некоторых не так мало, как я убедился) считают, что вольтметр показывает пиковое значение напряжения Um, но это не так!
На самом деле, вольтметры обычно показывают действующее или эффективное, оно же среднеквадратичное, напряжение в сети Uд.
Разумеется, речь идет о вольтметрах переменного напряжения! Поэтому, если будете измерять вольтметром напряжение сети, обязательно убедитесь, что он находится в режиме измерения переменного напряжения.
Оговорюсь, что «пиковые вольтметры», показывающие амплитудные значения напряжения, тоже существуют, но на практике при измерении напряжения питающей сети в быту обычно не применяются.
Разберемся, почему такие сложности. Почему бы не измерять просто амплитуду? Зачем выдумали какое-то «действующее значение» напряжения?
А все дело в потребляемой мощности. Я ведь не просто так писал о ней. Дело в том, что действующее (эффективное) значение переменного напряжения равно величине такого постоянного напряжения, которое за время, равное одному периоду этого переменного напряжения, произведет такую же работу, что и рассматриваемое переменное напряжение.
Или, по-простому, лампочка накаливания будет светить одинаково ярко, воткнем ли мы ее в сеть постоянного напряжения 220В или в цепь переменного тока с действующим значением напряжения 220В.
Для тех, кто уже знаком с интегралами или еще не забыл математику, приведу общую формулу расчета действующего напряжения произвольной формы:
Из этой формулы также становится ясно, почему действующее (эффективное) значение переменного напряжения также называют «среднеквадратичным».
Заметим, что подкоренное выражение и есть та самая «усредненная за период мощность», стоит только поделить это выражение на сопротивление нагрузки R.
Применительно к синусоидальной форме напряжения, страшный интеграл после несложных преобразований превратится в простую формулу:
где Uд — действующее или среднеквадратичное значение напряжение (то самое, которое обычно показывает вольтметр), а Um — амплитудное значение.
Действующее напряжение хорошо тем, что для активной нагрузки, расчет усредненной мощности полностью совпадает с расчетом мощности на постоянном токе:
Это и не удивительно, если вспомнить определение действующего значения напряжения, которое было дано чуть выше.
Ну и, наконец, посчитаем, чему же равна амплитуда напряжения в розетке «на 220В«:
В худшем случае, если у вас сеть на 240В, да еще и с допуском +10%, амплитуда будет аж !
Поэтому, если хотите, чтобы ваши устройства, питающиеся от сети, работали стабильно и не сгорали, выбирайте элементы, которые выдерживают пиковые напряжения не менее 400В. Разумеется, речь идет об элементах, на которые непосредственно подаётся сетевое напряжение.
Отмечу, что для не-синусоидальной формы сигнала действующее значение напряжения рассчитывается по иным формулам. Кому интересно — могут сами взять интегралы или обратиться к справочникам. Нас же интересует питающая сеть, а там всегда должна быть синусоида.
Фазы, фазы, фазы…
Помимо обычной однофазной осветительной сети
220В все слышали и о трехфазной сети
380В. Что такое 380В? А это межфазное эффективное напряжение.
Помните, я сказал, что в однофазной сети про фазу синусоиды можно забыть? Так вот, в трехфазной сети этого делать нельзя!
Если говорить по простому, то фаза — это сдвиг во времени одной синусоиды относительно другой. В однофазной сети мы всегда могли принять за начало отсчета любой момент времени — на расчеты это не влияло. В трехфазной сети необходимо учитывать насколько одна синусоида отстоит от другой. В трехфазных сетях переменного тока каждая из фаз отстоит от другой на треть периода или на 120 градусов. Напомню, что период измеряется также в градусах и полный период равен 360 градусов.
Если мы возьмем осциллограф с тремя лучами и прицепимся к трем фазам и одному нулю, то увидим такую картину.
«Синяя» фаза — начинается от нуля отсчета. «Красная» фаза — на треть периода (120 градусов) позже. И, наконец «зеленая» фаза начинается на две трети периода (240 градусов) позже «синей». Все фазы абсолютно симметричны друг относительно друга.
Какую именно фазу брать за точку отсчета — не важно. Картина будет одинаковой.
Математически можно записать уравнения всех трех фаз:
«Синяя» фаза:
«Красная» фаза:
«Зеленая» фаза:
Если измерить напряжение между любой из фаз и нулем в трехфазной сети — то получим обычные 220В (или 230В или 240В — как повезет, см. ГОСТ).
А если измерить напряжение между двумя фазами — то получим 380В (или 400В или 415В — не забываем об этом).
То есть трехфазная сеть — многолика. Ее можно использовать как три однофазные сети с напряжением 220В или как одну трехфазную сеть с напряжением 380В.
Откуда взялось 380В? А вот откуда.
Если мы подставим в формулу расчета действующего напряжения наши данные о двух любых фазах, то получим:
Uдф — действующее межфазное, оно же линейное напряжение.
Учитывая, что амплитуда каждой фазы получим, чтодля межфазного напряжения. На рисунке наглядно показано, как образуется межфазное напряжение, которое обозначено F1-F2 из двух фазных напряжений фаз F1 и F2. Напряжение фаз F1 и F2 измеряется относительно нулевого провода. Линейное напряжение F1-F2 измеряется между двумя разными фазными проводами.
Как видим, что действующее межфазное напряжение больше амплитуды синусоидального напряжения одной фазы.
Амплитуда межфазного напряжения составляет:
Для наихудшего случая (сеть 240В и межфазное напряжение 415В, да еще 10% сверху) амплитуда межфазного напряжения составит:
Учтите это при работе в трехфазных сетях и выбирайте элементы, рассчитанные не менее, чем на 650В, если им предстоит работать между двумя фазами!
Надеюсь, теперь понятно что показывает вольтметр переменного тока?
Заключение
Итак, очень кратко, почти на пальцах, мы ознакомились с тем какие напряжения действуют в бытовых сетях переменного тока. Подведем краткие итоги всего, изложенного выше.
- Фазное напряжение — это напряжение между фазой и нулевым проводом.
- Линейное или межфазное напряжение — это напряжение между двумя разными фазными проводами одной трехфазной сети.
- В сетях переменного тока РФ действуют три, хоть и близких, но разных стандарта (фазное/линейное): 220В/380В, 230В/400В и 240В/415В переменного тока с частотой 50Гц.
- Вольтметр переменного тока обычно показывает действующее (оно же среднеквадратичное, оно же эффективное) напряжение, которое в раза меньше, чем пиковое (амплитудное) напряжение в сети.
- В наихудшем с точки зрения стандартов случае пиковое фазное напряжение составляет примерно 373В, а пиковое линейное напряжение — 645B. Это следует учитывать при разработке электронных схем.
Надеюсь эта статья помогла кому-то разобраться в теме и ответить для себя на некоторые вопросы.
Источник
Для школьников.
Вольтметр – это гальванометр, шкала которого проградуирована в вольтах (см. Занятие 56).
Возникает вопрос: почему один и тот же прибор (гальванометр) может измерять и ток, и напряжение? Потому что эти величины пропорциональны друг другу. Так как ток проходит через нить гальванометра, а она имеет сопротивление, то каждому значению тока соответствует определённое значение напряжения между зажимами гальванометра. Поэтому против каждого положения стрелки гальванометра можно написать или силу тока, или напряжение, то есть проградуировать гальванометр как амперметр или как вольтметр.
Так как вольтметр подключается к сопротивлению параллельно, то часть тока, текущего по цепи, ответвляется на вольтметр и искажает показания вольтметра.
Каким должно быть сопротивление вольтметра, чтобы это искажение было небольшим?
Присоединим, например, вольтметр параллельно лампочке, чтобы измерить напряжение на ней:
Здесь
напряжение, даваемое источником тока, а
зажимы вольтметра, к которым подсоединены вводы лампочки.
Так как соединение вольтметра и лампочки параллельное, то их общее сопротивление равно
Видим, чем больше сопротивление вольтметра по сравнению с сопротивлением лампочки
тем меньше отличается их общее сопротивление от сопротивления лампочки, и тем меньше искажение измерения внесённое вольтметром.
Вывод: вольтметр должен иметь большое сопротивление.
Подумайте над решением следующих задач:
Вольтметр с внутренним сопротивлением 400 Ом подключенный к участку цепи с сопротивлением 20 Ом, показывает напряжение 100 В. Найти погрешность в измерениях вольтметра, если считать что сила тока до разветвления осталась прежней.
Ответ: погрешность составила 5 В.
Найдите сопротивление участка АВ цепи, составленного четырьмя одинаковыми сопротивлениями:
Задачи
1. Вольтметр с внутренним сопротивлением 400 Ом подключен к участку цепи с сопротивлением 20 Ом и показывает напряжение 100 В. Как велика погрешность в показаниях вольтметра, если сила тока в сети до разветвления сохраняется постоянной?
Решение
Вольтметр показывает напряжение, равное произведению тока до разветвления (то есть показание амперметра) на общее сопротивление параллельно соединённых вольтметра и участка цепи.
Их общее сопротивление равно
Напряжение, которое показывает вольтметр, равно произведению тока на общее сопротивление:
До подключения вольтметра напряжение на сопротивлении было равно:
Совместная запись уравнений и их решение показывает, что в отсутствие вольтметра напряжение на сопротивлении равно 105 В. Вольтметр же показал напряжение в 100 В.
Таким образом, погрешность в показаниях вольтметра составила 5 В.
2. Четыре одинаковых резистора сопротивлением
соединены так, как показано на рисунке
Найти полное сопротивление участка АВ. Сопротивлением соединительных проводов пренебречь.
Решение
Обратим внимание, что точки С и Д соединены проводом, сопротивление которого не учитывается.
Значит, потенциал этих точек одинаков, и мы можем собрать их в одну точку.
Рисуем эквивалентную схему, из которой видим, что соединение сопротивлений свелось к их последовательному и параллельному соединениям.
В ответе получим, что сопротивление участка АВ равно
К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Спасибо.
Предыдущая запись: Измерение напряжения. Каким должно быть сопротивление вольтметра?
Следующая запись: Источники постоянного тока. Гальванический элемент. ЭДС источника.
Ссылки на занятия до электростатики даны в Занятии 1.
Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45.
Вольтметр V, подключённый к точкам А и С электрической цепи (рис. 157),
показывает напряжение 6 В. Каково будет показание вольтметра, если его подключить так, как показано на рисунке? Сопротивления проводников
R
1
=
1
Ом,
R
2
=
0
,
5
Ом.
рис. 157
reshalka.com
ГДЗ Физика 7-9 классы сборник вопросов и задач к учебнику Перышкина автор Марон. Последовательное соединение проводников. Номер №1089
Решение
Дано:
U
А
С
=
6
В;
R
1
=
1
Ом;
R
2
=
0
,
5
Ом.
Найти:
U
А
В
− ?
Решение:
Сопротивление цепи при последовательном соединении проводников:
R
=
R
1
+
R
2
;
R = 1 + 0,5 = 1,5 Ом.
Сила тока при последовательном соединении проводников одинаковая:
I
1
=
I
2
=
I
3
=
I
;
I
=
U
R
;
I
=
6
1
,
5
=
4
А;
Найдем напряжение на участке АВ по закону Ома:
U
А
В
=
I
R
1
;
U
А
В
=
4
∗
1
=
4
В.
Ответ: 4 В.
Найти напряжение, которое покажет вольтметр, включенный в схему так, как показано на рисунке. ЭДС источников тока и их внутренние сопротивление равны соответственно ε1 , r1 и ε2, r2. Сопротивление нагрузки равно R.
Остались вопросы?
Новые вопросы по предмету Физика
Правило Кирхгофа
1 Найти разность потенциалов между точками а и b в схеме, изображенной на рис. 118. Э. д. с. источников тока ε1= 1 В и ε1 =1,3 В, сопротивления резисторов R1 = 10 Ом и R2 = 5 Ом.
Решение:
Поскольку ε2>ε1 то ток I будет идти в направлении, указанном на рис. 118, при этом разность потенциалов между точками а и b
2 Два элемента с э. д. с. ε1 = 1,5 B и ε2 = 2 В и внутренними сопротивлениями r1=0,6 Ом и r2 = 0,4 Ом соединены по схеме, изображенной на рис. 119. Какую разность потенциалов между точками а и b покажет вольтметр, если сопротивление вольтметра велико по сравнению с внутренними сопротивлениями элементов?
Решение:
Поскольку ε2>ε1, то ток I будет идти в направлении, указанном на рис. 119. Током через вольтметр пренебрегаем ввиду
того, что его сопротивление велико по сравнению с внутренними сопротивлениями элементов. Падение напряжения на внутренних сопротивлениях элементов должно равняться разности э. д. с. элементов, так как они включены навстречу друг другу:
отсюда
Разность потенциалов между точками а и b (показание вольтметра)
3 Два элемента с э. д. с. ε1=1.4B и ε2 = 1,1 В и внутренними сопротивлениями r =0,3 Ом и r2 = 0,2 Ом замкнуты разноименными полюсами (рис. 120). Найти напряжение на зажимах элементов. При каких условиях разность потенциалов между точками а и b равна нулю?
Решение:
4 Два источника тока с одинаковыми э. д. с. ε = 2 В и внутренними сопротивлениями r1 =0,4 Ом и r2 = 0,2 Ом соединены последовательно. При каком внешнем сопротивлении цепи R напряжение на зажимах одного из источников будет равным нулю?
Решение:
Ток в цепи
(рис.361). Напряжения на зажимах источников тока
Решая первые два уравнения при условии V1=0, получим
Условие V2=0 неосуществимо, так как совместное решение первого и третьего уравнений приводит к значению R<0.
5 Найти внутреннее сопротивление r1 первого элемента в схеме, изображенной на рис. 121, если напряжение на его зажимах равно нулю. Сопротивления резисторов R1 = 3 Ом, R2 = 6 0м, внутреннее сопротивление второго элемента r2 = 0,4 Ом, э. д. с. элементов одинаковы.
Решение:
Ток в общей цепи
где внешнее сопротивление цепи
По условию задачи напряжение на зажимах первого элемента
отсюда
6 При каком соотношении между сопротивлениями резисторов R1, R2, R3 и внутренними сопротивлениями элементов r1, r2 (рис. 122) напряжение на зажимах одного из элементов будет равно нулю? Э. д. с. элементов одинаковы.
Решение:
7 Два генератора с одинаковыми э. д. с. ε = 6 В и внутренними сопротивлениями r1 =0,5 Ом и r2 = 0,38 Ом включены по схеме, изображенной на рис. 123. Сопротивления резисторов R1 = 2 Ом, R2 = 4 Ом, R3 = 7 Ом. Найти напряжения V1 и V2 на зажимах генераторов.
Решение:
Ток в общей цепи
где внешнее сопротивление цепи
Напряжения на зажимах первого и второго генератора
напряжение на зажимах второго генератора
8 Три элемента с э. д. с. ε1 = 2,2 В, ε2 = 1,1 В и ε3 = 0,9 В и внутренними сопротивлениями r1 = 0,2 Ом, r2 = 0,4 Ом и r3 = 0,5 Ом включены в цепь последовательно. Внешнее сопротивление цепи R=1 Ом. Найти напряжение на зажимах каждого элемента.
Решение:
По закону Ома для полной цепи ток
Напряжение на зажимах каждого элемента равно разности э. д. с. и падения напряжения на внутреннем сопротивлении элемента:
Напряжение на зажимах батареи элементов равно падению напряжения на внешнем сопротивлении цепи:
Напряжение на зажимах третьего элемента оказалось отрицательным, так как ток определяется всеми сопротивлениями цепи и суммарной э.д.с, а падение напряжения на внутреннем сопротивлении r3 больше, чем э.д.с. ε3.
9 Батарея из четырех последовательно включенных в цепь элементов с э. д. с. ε = 1,25 В и внутренним сопротивлением r = 0,1 Ом питает два параллельно соединенных проводника с сопротивлениями R1 = 50 Ом и R2 = 200 Ом. Найти напряжение на зажимах батареи.
Решение:
10 Сколько одинаковых аккумуляторов с э. д. с. ε = 1,25B и внутренним сопротивлением r = 0,004 Ом нужно взять, чтобы составить батарею, которая давала бы на зажимах напряжение V=115 В при токе I=25 А?
Решение:
Напряжение на зажимах батареи
Следовательно,
11 Батарея из n= 40 последовательно включенных в цепь аккумуляторов с э. д. с. ε = 2,5 В и внутренним сопротивлением r = 0,2 Ом заряжается от сети с напряжением V=121 В. Найти зарядный ток, если последовательно в цепь введен проводник с сопротивлением R = 2 Ом.
Решение:
12 Два элемента с э. д. с. ε1 = 1,25 В и ε2 = 1,5 В и одинаковыми внутренними сопротивлениями r = 0,4 Ом соединены параллельно (рис. 124). Сопротивление резистора R= 10 Ом. Найти токи, текущие через резистор и каждый элемент.
Решение:
Падение напряжения на резисторе, если токи текут в направлениях, указанных на рис. 124,
Учитывая, что I=I1+I2, находим
Заметим, что I1<0. Это значит, что направление тока противоположно указанному на рис. 124.
13 Два элемента с э. д. с. ε1 =6 В и ε2 = 5 В и внутренними сопротивлениями r1 = 1 Ом и r2 = 20м соединены по схеме, изображенной на рис. 125. Найти ток, текущий через резистор с сопротивлением R= 10 Ом.
Решение:
Выбрав направления токов, указанные на рис. 362, составим уравнения Кирхгофа. Для узла b имеем I1+I2-I=0; для контура abef (обход по часовой стрелке)
и для контура bcde (обход против часовой стрелки)
Из этих уравнений найдем
14 Три одинаковых элемента с э. д. с. ε = 1,6 В и внутренним сопротивлением r=0,8 Ом включены в цепь по схеме, изображенной на рис. 126. Миллиамперметр показывает ток I=100 мА. Сопротивления резисторов R1 = 10Ом и R2 = 15 0м, сопротивление резистора R неизвестно. Какое напряжение V показывает вольтметр? Сопротивление вольтметра очень велико, сопротивление миллиамперметра пренебрежимо мало.
Решение:
Внутреннее сопротивление элементов
Сопротивление параллельно включенных резисторов
Общая э. д. с. элементов e0=2e Согласно закону Ома для полной цепи
15 Сопротивления резисторов R1 и R2 и э. д. с. ε1 и ε2 источников тока в схеме, изображенной на рис. 127, известны. При какой э.д.с. ε3 третьего источника ток через резистор R3 не течет?
Решение:
Выберем направления токов I1, I2 и I3 через резисторы R1, R2 и R3, указанные на рис. 363. Тогда I3=I1+I2. Разность потенциалов между точками а и b будет равна
Если
Исключая I1 находим
16 Цепь из трех одинаковых последовательно соединенных элементов с э.д.с. ε и внутренним сопротивлением r замкнута накоротко (рис. 128). Какое напряжение покажет вольтметр, подключенный к зажимам одного из элементов?
Решение:
Рассмотрим ту же схему без вольтметра (рис. 364). Из закона Ома для полной цепи находим
Из закона Ома для участка цепи между точками а и b получим
Подключение вольтметра к точкам, разность потенциалов между которыми равна нулю, ничего не может изменить в цепи. Поэтому вольтметр будет показывать напряжение, равное нулю.
17 Источник тока с э.д.с. ε0 включен в схему, параметры которой даны на рис. 129. Найти э.д.с. ε источника тока и направление его подключения к выводам а и b, при которых ток через резистор с сопротивлением R2 не идет.
Решение:
Подключим источник тока к выводам а и b и выберем направления токов, указанные на рис. 365. Для узла е имеем I=I0+I2. При обходе контуров aefb и ecdf по часовой стрелке получим
Используя условие I2 = 0, находим
Знак минус показывает, что полюсы источника тока на рис. 365 нужно поменять местами.
18 Два элемента с одинаковыми э.д.с. ε включены в цепь последовательно. Внешнее сопротивление цепи R = 5 Ом. Отношение напряжения на зажимах первого элемента к напряжению на зажимах второго элемента равно 2/3. Найти внутренние сопротивления элементов r1 и r2, если r1=2r2.
Решение:
19 Два одинаковых элемента с э.д.с. ε=1,5 В и внутренним сопротивлением r = 0,2 Ом замкнуты на резистор, сопротивление которого составляет в одном случае R1=0,2 Oм, В другом — R2 = 20 Ом. Как нужно соединить элементы (последовательно или параллельно) в первом и во втором случаях, чтобы получить наибольший ток в цепи?
Решение:
При параллельном соединении двух элементов внутреннее сопротивление и э.д.с. равны r/2 и ε при последовательном соединении они равны 2r и 2ε. Через резистор R при этом текут токи
Отсюда видно, что I2>I1, если R/2+r<R+r/2, т. е. если r1=r; следовательно, токи при параллельном и последовательном соединениях одинаковы. Во втором случае R2>r.Поэтому ток больше при последовательном соединении.
20 Два элемента с э.д.с. ε1=4В и ε2 = 2В и внутренними сопротивлениями r1 = 0,25 Ом и r2 = 0,75 Ом включены в схему, изображенную на рис. 130. Сопротивления резисторов R1 = 1 Ом и R2 = 3 Ом, емкость конденсатора С=2 мкФ. Найти заряд на конденсаторе.
Решение:
21 К батарее из двух параллельно включенных элементов с э.д.с. ε1 и ε2 и внутренними сопротивлениями r1 и r2 подключен резистор с сопротивлением R. Найти ток I, текущий через резистор R, и токи I1 и I2 в первом и втором элементах. При каких условиях токи в отдельных цепях могут быть равными нулю или изменять свое направление на обратное?
Решение:
Выберем направления токов, указанные на рис. 366. Для узла b имеем I-I1-I2=0. При обходе контуров abef и bcde по часовой стрелке получим
Из этих уравнений находим
Ток I=0 тогда, когда изменена полярность включения одного из элементов и, кроме того, выполнено условие
Ток I1=0 при
а ток I2 = 0 при
Токи I1 и I2 имеют направления, указанные на рис.366, если
Они меняют свое направление при
22 Батарея из n одинаковых аккумуляторов, соединенных в одном случае последовательно, в другом— параллельно, замыкается на резистор с сопротивлением R. При каких условиях ток, текущий через резистор, в обоих случаях будет один и тот же?
Решение:
При n(R-r) = R-r. Если R=r, то число элементов произвольно; если R№r, задача не имеет решения (n=1).
23 Батарея из n = 4 одинаковых элементов с внутренним сопротивлением r=2 Ом, соединенных в одном случае последовательно, в другом — параллельно, замыкается на резистор с сопротивлением R=10Ом. Во сколько раз показание вольтметра н одном случае отличается от показания вольтметра в другом случае? Сопротивление вольтметра велико по сравнению с R и r.
Решение:
где V1 — показание вольтметра при последовательном соединении элементов, V2-при параллельном.
24 Как изменится ток, текущий через резистор с сопротивлением R = 2 Ом, если n =10 одинаковых элементов, соединенных последовательно с этим резистором, включить параллельно ему? Э.д.с. элемента ε = 2 В, его внутреннее сопротивление r = 0,2 Ом.
Решение:
25 Батарея составлена из N=600 одинаковых элементов так, что n групп соединены последовательно и в каждой из них содержится т элементов, соединенных параллельно. Э.д.с. каждого элемента ε = 2 В, его внутреннее сопротивление r = 0,4 Ом. При каких значениях n и m батарея, будучи замкнута на внешнее сопротивление R = 0,6 Ом, отдаст во внешнюю цепь максимальную мощность? Найти при этом ток, текущий через сопротивление R.
Решение:
Общее число элементов N=nm (рис. 367). Ток во внешней цепи
где r/m— внутреннее сопротивление группы из т параллельно соединенных элементов, а nr/m — внутреннее сопротивление n групп, соединенных последовательно. Максимальная мощность отдается во внешнюю цепь при равенстве сопротивления R внутреннему сопротивлению батареи элементов nr/m, т. е.
При этом через сопротивление R течет точек I=46 А.
26 Емкость аккумулятора Qo=80А⋅ч. Найти емкость батареи из n = 3 таких аккумуляторов, включенных последовательно и параллельно.
Решение:
При последовательном соединении через все аккумуляторы батареи течет один и тот же ток, поэтому все они разрядятся в течение одного и того же времени. Следовательно, емкость батареи будет равна емкости каждого аккумулятора:
При параллельном соединении n аккумуляторов через каждый из них течет 1/n часть общего тока; поэтому при том же разрядном токе в общей цепи батареи будет разряжаться в n раз дольше, чем один аккумулятор, т. е. емкость батареи в п раз больше емкости отдельного аккумулятора:
Заметим, однако, что энергия
отдаваемая батареей в цепь, и при последовательном и при параллельном соединении n аккумуляторов в n раз больше энергии, отдаваемой одним аккумулятором. Это происходит потому, что при последовательном соединении э. д. с. батареи в n раз больше э. д. с. одного аккумулятора, а при параллельном соединении э.д.с. батареи остается той же, что и для каждого аккумулятора, но Q увеличивается в n раз.
27 Найти емкость батареи аккумуляторов, включенных по схеме, изображенной на рис.131. Емкость каждого аккумулятора Q0=64 А⋅ч.
Решение:
Каждая группа из пяти аккумуляторов, включенных последовательно, имеет емкость
Три параллельно включенные группы дают общую емкость батареи
28 Мост для измерения сопротивлений сбалансирован так, что ток через гальванометр не идет (рис. 132). Ток в правой ветви I=0,2 А. Найти напряжение V на зажимах источника тока. Сопротивления резисторов R1 = 2 Ом, R2 = 4 Ом, R3 = 1 Ом.
Решение:
29 Найти токи, протекающие в каждой ветви цепи, изображенной на рис. 133. Э.д.с. источников тока ε1 = 6,5 В и ε2 = 3,9 В. Сопротивления резисторов R1=R2=R3=R4=R5=R6=R=10 Ом.
Решение:
Составляем уравнения Кирхгофа в соответствии с направлениями токов, указанными на рис. 133: I1 + I2 — I3 = 0 для узла b;
I3 — I4 — I5 =0 для узла h; I5 — I1 — I6 = 0 для узла f: при этом
Для контура abfg (обход по часовой стрелке),
Для контура bcdh (обход против часовой стрелки) и
для контура hdef (обход по часовой стрелке). Решая эту систему уравнений с учетом, что все сопротивления одинаковы и равны R=10 Ом, получим
Отрицательные значения токов I2, I4 и I6 показывают, что при данных э.д.с. источников и сопротивлениях резисторов эти токи текут в стороны, противоположные указанным на рис. 133.