Как найти напряжение между фазами

Линейное и фазное напряжения — определение, измерение, схемы и описание типов

Без электричества сегодня представить жизнь современного человека крайне сложно. Вот только в тонкостях, которые касаются непосредственно процесса снабжения городов, предприятий и домов, разбираются лишь единицы.

И это большое упущение. Поскольку в жизни может возникнет ситуация, когда подобные знания действительно пригодятся. Поэтому попробуем разобраться в данном вопросе.

Содержание

Особенности напряжения в трехфазных сетях

Для того чтобы снабдить объекты электричеством, используются сети из 3-х фаз. Конечно, существуют и другие генераторы. Например, шестифазные. Но их применяют крайне редко.

Объясняется подобное необходимостью минимизировать затраты, которые возникают в процессе создания вращающегося магнитного поля. Эти затраты в любом случае возникают во время генерации электричества.

Хотя избежать их невозможно, но свести к минимуму вполне реально. И поэтому предпочтение отдается именно сетям с 3-х фазных напряжением.

В трехфазной сети выделяют три основных элемента:

  • генератор;
  • линии электропередач;
  • нагрузка.

Под термином «нагрузка» принято подразумевать непосредственно потребителя. Фаза же представляет собой одну электрическую цепь в многофазной системе электрических цепей.

Важно! Данный вид подключения предоставляет возможность использовать сразу два вида напряжения.

Теперь поговорим о том, что представляют собой фазное и линейное напряжение. Ведь именно эти два термина в данном случае играют ключевую роль.

Итак, фазное напряжение должно определяться непосредственно между началом и концом фазы. Линейное напряжение измеряют между 2-мя фазами. То есть, между выводами разных фаз.

В этом заключается основное отличие этих двух понятий. И о нем ни в коем случае нельзя забывать. Особенно тем, кто в будущем все-таки планирует устроиться на работу по специальности электрик.

Поскольку фазное и линейное напряжения отличаются на 60%, то появляется возможность при линейном напряжении в 380 вольт, получить 220 вольт фазного напряжения. Именно по этой причине делать разводку сетей достаточно просто.

Необходимость сделать это часто возникает в случае, когда на первых этажах многоквартирных домов компания начинает оборудовать собственные офисы. Ведь тогда напряжения, доступного для рядовых потребителей, оказывается недостаточно.

Соотношение линейного и фазного напряжения

Универсальным и приемлемым соотношением этих двух видов напряжения является такая цепь – 380/220 вольт нулевым проводом.

Если приборам для нормального функционирования требуется напряжение 220 вольт, то их необходимо подсоединить к двум проводам фазного напряжения, которые будут питаться от линейного напряжения.

Следует отметить тот факт, что приборы, которые запитываются от 3-х фазной сети, могут функционировать исключительно в том случае, если они были подсоединены к трем выводам разных фаз.

Важно! Использовать заземление в таком случае вовсе необязательно. Однако, если изоляционный материал, покрывающий провод, будет поврежден, то вероятность удара током возрастет.

Как определить линейное и фазное напряжение

Чтобы правильно определить эти два вида напряжения, нужно вспомнить о некоторых тонкостях.

Ведь зачастую эти два понятия многие попросту путают. И поэтому правильно определить их величину становятся сложно.

Во-первых, линейное напряжение следует определять исключительно между двумя фазами.

Во-вторых, фазное напряжение по определению нужно вычислять непосредственно между фазой и нулем. Поэтому нельзя пытаться определить фазное напряжение между двумя фазами.

Типы соединения

Чтобы запустить генератор, часто используют именно линейное и фазное напряжение. Если говорить о запуске именно трехфазного генератора, то следует отметить один важный факт.

Состоит такой прибор не только из первичных, но и вторичных обмоток. Эти обмотки нужно правильно соединить и для этого существует два самых распространенных способа.

Только благодаря тому, что все обмотки будут правильно соединены, можно добиться определенных улучшений:

  • Увеличение мощности передачи – это важнейшая задача, которую нужно решить, но сделать это следует без увеличения напряжения. И сделать это можно благодаря использованию определенных типов соединений.
  • Снижение пульсаций напряжения – если в блоках питания наблюдаются постоянные колебания напряжения, это может стать причиной выхода из строя, подключенных к ней приборов. Поэтому устранение данного недочета с помощью разных соединений является первостепенной задачей.
  • Уменьшение количества проводов – при подключении к сети нужно минимизировать количество соединений, чтобы улучшить качество работы приборов. Именно по этой причине использование двух упрощенных схем для подключения настолько важно.

Звезда

Сначала рассмотрим данный тип подключения. Чтобы его выполнить, нужно соединить начало всех мотков в одной точке.

Эту точку принято называть нулевой. В некоторых печатных руководствах упоминается другое обозначение – нейтральная точка.

Иногда встречается соединение нулевой точки и нулевым источником питания. И поэтому ошибочно юные и начинающие электрики считают его обязательным. Но это не так, такое соединение могут использовать в некоторых случаях, и оно не является обязательным.

Важно! Если такое соединение присутствует, то систему правильно называть 4-проводной. В том случае, если оно отсутствует, то соединение считается трехпроводным.

Треугольник

Для выполнения соединения используют схему, отличную от той, которая была описана выше. Ведь нужно соединить одну обмотку с другой.

Свое название соединение получило из-за внешнего сходства с треугольником.

Его особенностью является то, что все обмотки соединяются в строгой последовательности. А поскольку общая точка соприкосновения отсутствует, такая система может быть только одного вида, а именно – трехпроводная.

Нюансы выбора типа соединения

В настоящее время оба типа соединения, звезда и треугольник, активно используются. Однако, подобное вовсе не означает, что можно по собственному усмотрению выбрать тот способ, который больше понравится.

Существуют определенные требования и общие рекомендации, следуя которым можно избежать ошибок.

Нужно запомнить, что при линейном напряжении в 220 вольт подключение двигателя по схеме звезда невозможно.

Для такого напряжения идеально подходит схема треугольник.

С другой стороны, если в сети напряжение выше 220 вольт, к примеру 380, то оптимальным вариантом станет использование именно звезды.

Если запомнить это простое правило, удастся в будущем избежать ошибок при подключении генераторов и других приборов.

Фото схем и формул измерения линейного и фазного напряжения

Об авторе: эксперт в области электроники и деревообработки

Задать вопрос

Трёхфазная система переменного тока оказалась наиболее выгодной и удобной для передачи и использования электроэнергии, потому что:

  1. Позволяет получать вращающееся магнитное поле для работы электродвигателей.
  2. Экономически выгодная. Для получения того же вращающегося магнитного поля в многофазных системах, где больше трёх фаз – нужно прокладывать больше проводников для передачи энергии, а двухфазные системы не дают вращающегося магнитного поля. То есть 3 фазы – это золотая середина.
  3. Кроме того, трёхфазная система позволяет получать два разных по величине напряжения без использования преобразователей и трансформаторов. Об этом в сегодняшней статье и пойдёт речь.

Какие напряжения в трёхфазной сети

Независимо от того однофазный ввод или трёхфазный – все дома и квартиры получают питание из одной и той же трёхфазной электросети с напряжением 220/380В, вернее, 230/400В, но сути дела это не меняет.

Подключение квартир в многоквартирном доме
Подключение квартир в многоквартирном доме

При однофазном вводе в квартиру или дом от питающей линии заводят фазу и ноль, а при трёхфазном – три фазы и ноль. Ниже вы видите пример схемы подключения однофазных потребителей к трёхфазной сети.

Схема подключения однофазных потребителей в трёхфазной сети
Схема подключения однофазных потребителей в трёхфазной сети

Если подключается трёхфазный потребитель с номинальным напряжением 380В, например, электродвигатель или трансформатор, у которого обмотки соединены звездой, то подключают 3 фазных провода без нулевого. В этом случае нулевой провод можно не подключать, потому что через него не будет протекать ток, но это допустимо только для симметричной нагрузки. При подключении несимметричных трёхфазных потребителей – дома и квартиры, или отдельные приборы в них, как котлы или электроплиты – подключение нулевого провода обязательно!

Но как же так получается, что в одной электросети и 380В и 220В?

При соединении обмоток источника питания звездой , неважно генератора или трансформатора, между фазными проводниками напряжение будет 380В, а между фазным и нулевым 220В.Напряжение между фазными проводниками называется линейным (Uл), а напряжение между фазным и нулевым проводником – фазным (Uф).

Почему в трёхфазной сети 2 напряжения — 380 и 220 вольт

Почему при соединении звездой получается 2 напряжения

Давайте разберёмся почему между фазой и нулём 220, а между двумя фазами не 440 вольт (220+220), а 380. Для этого нужно обратиться к векторным диаграммам. Если изобразить три фазы в виде векторов, то мы получим три вектора исходящие из одной точки, отклонённые друг от друга на 120°, другими словами – трёхлучевую звезду.

Изобразим эти векторы в масштабе 1:10, то есть 1 миллиметр на диаграмме равен 10 вольтам. Каждая клетка на иллюстрации занимает 1х1 мм (на вашем экране, скорее всего, будет отображаться в другом размере, примите это как условность). На диаграмме А) изображены векторы трёх напряжений, фаз A , B и C жёлтым, зелёным и, длина каждого вектора 22 мм или 220В.

Чтобы найти напряжение между фазами, нужно соединить концы векторов каждой из фаз. Так добавим на диаграмме Б) векторы линейных напряжений Uaв, Uвс и Ucа соединив конец вектора Ua с концом вектора , затем с , затем с соответственно.

Почему в трёхфазной сети 2 напряжения — 380 и 220 вольт

Рассмотрим отдельно 2 напряжения, например, фаз А и С и линейное напряжение между ними (диаграмма В), и уберём ненужное (диаграмма Г).

Векторы напряжений фаз A (жёлтый) и В (зелёный) мы начертили по 22 мм, теперь измерим длину вектора линейного напряжения ( Uав), и получим 38,1 мм. Масштаб у нас был 1:10, значит, если перевести в вольты, то получим 220 и 381 вольт соответственно. Предлагаю самостоятельно начертить это и проверить сказанное.

Аналогичные значения мы получим, если вспомним школьную геометрию и вычислим длину стороны Uab, треугольника UаUвUab , через длины известных сторон и угол между ними. Формула для этого выглядит так:

Почему в трёхфазной сети 2 напряжения — 380 и 220 вольт

В электротехнике такие расчёты обычно не используются, да и треугольник у нас равнобедренный, поэтому можно найти неизвестную сторону проще:

Почему в трёхфазной сети 2 напряжения — 380 и 220 вольт

Косинус В – это косинус угла между вектором фазного напряжения Ua или U в и вектором линейного напряжения Uав, и равен этот угол 30° (180°-120°=2х30°).

Почему в трёхфазной сети 2 напряжения — 380 и 220 вольт
Почему в трёхфазной сети 2 напряжения — 380 и 220 вольт

То есть в схеме звезды линейное напряжение всегда больше фазного на корень из 3 раз или просто в 1.73 раза. Собственно эту формулу и используют в электротехнических расчётах. Если пересчитать по этому соотношению, то получим такой же результат как в прошлый раз:

Почему в трёхфазной сети 2 напряжения — 380 и 220 вольт

Можете попробовать пересчитать всё это самостоятельно, только если будете умножать 220В на 1.73, то получите 380,6 вольт, небольшая разница обусловлена округлением.

Но не всегда в трёхфазной системе есть два напряжения. Если источник питания соединён по схеме треугольника, то его линейные и фазные напряжения равны. Такое встречается в специфичных схемах питания либо на линиях электропередач напряжением 6-10 кВ.

Можно представить трёхфазное напряжение не в виде векторов, а как три синусоиды сдвинутых на 120 градусов друг относительно друга на графике. Так как действующее значение фазного напряжения 220 вольт, то амплитуда каждой из синусоид будет в 1.41 раза больше (корень из двух) и равна 310 вольтам.

График трёхфазного напряжения
График трёхфазного напряжения

Фазы A , B и C изображены жёлтой, зелёной и красной синусоидой соответственно. Напряжение отложено по вертикальной оси, а по горизонтальной – время.

График трёхфазного напряжения с измеренными амплитудными фазным и линейным напряжениям
График трёхфазного напряжения с измеренными амплитудными фазным и линейным напряжениям

Если измерять напряжение между фазами (на рисунке выше между зелёной и жёлтой синусоидой), то в точке, где будет наибольшее расстояние между ними, мы увидим число около 540 вольт – это амплитудное значение, вычислив действующее, получим: 540/1,41=383 вольта, что очень близко к нашим линейным 380.

Таким образом, мы рассмотрели два представления трёхфазного напряжения – в виде векторной диаграммы и в виде временной диаграммы (графика), и наглядно увидели как соотносятся фазы в трёхфазной сети и откуда в ней два напряжения.

Повторюсь, что при соединении обмоток источника питания треугольником у нас будет одно напряжение, там просто нет общей точки соединения обмоток и неоткуда брать нулевой проводник.

Что у нас на практике

Как получается два напряжения в трёхфазной сети мы разобрались, теперь давайте разберёмся, как это используется на практике.

В быту большая часть электроприборов питается однофазным напряжением. Напряжение в электросети стандартизировано — 230В с частотой 50 Гц, и вся бытовая техника рассчитана на питание именно этим напряжением. Если прибору необходимо пониженное напряжение, например, 5, 12, 19, 36 вольт или любая другая величина, то у него есть либо встроенный, либо выносной блок питания, который, собственно, и формирует нужное напряжение.

При необходимости подключения мощных приборов, например, электрических котлов и плит, сварочного оборудования, станков и прочего возникает проблема — большой ток. Например, обычная розетка рассчитана на ток до 16А, который длительно может проводить кабель с сечением токопроводящих жил 2.5 мм², через неё можно запитать приборы мощностью до 3.5 кВт.

Поэтому мощные приборы зачастую подключают отдельной линией напрямую к автоматическому выключателю или через силовые розетки на 32А. Но для такого тока нужно использовать кабель с сечением токопроводящих жил уже 6 мм² и более. При этом максимальная нагрузка в такой линии — 7 кВт.

При подключении нагрузки на линейное напряжение, то есть к двум проводам питающей сети между которыми 380В и потребляемом токе в те же 32А, мощность подключаемой нагрузки будет уже около 12 кВт. То есть кабель с таким же сечением жил сможет питать почти в 2 раза более мощную нагрузку. А у трёхфазного прибора при том же токе в 32А мощность будет уже 21 кВт.

И учтите, что для его подключения не понадобится прокладывать ЛЭП с более толстыми проводами, не придётся прокладывать от распределительного щита питающих кабелей с толстыми жилами и так далее… Тогда как в однофазной цепи прибор мощностью в 21 кВт будет потреблять ток около 95А, а для его питания нужно будет использовать кабель с жилами на 25 мм² против 6-8 мм² и 32А в трёхфазной цепи.

Для снижения питающего тока мощные электроприборы производят трёхфазными. Но не всегда прибор, рассчитанный на 380В, трёхфазный. Есть однофазные потребители с номинальным напряжением 380В, например, сварочные трансформаторы типа ТСМ-250 и другие подобные.

Из характеристик мы видим, что напряжение питающей сети 1х380. То есть его первичная обмотка подключается к двум фазам. Любопытно что многие называют подобные трансформаторы «двухфазными», но это в корне неверно. На первичную обмотку действует одна ЭДС, так же, как и в любом другом однофазном приборе.

Ничего выдающегося здесь нет, и такое напряжение первичной обмотки выбрано с той же целью – снизить ток питания, что позволит намотать обмотку проводом меньшего сечения и использовать кабели с меньшим сечением ТПЖ для подключения к сети.

Если бы он был рассчитан на питание от 220В, то в режиме максимальной нагрузки ток потребления составил бы 16 000/220 = 72А, а при питании от 380В ток будет не более: 16 000/380 = 42А.

Таким образом, наличие двух напряжений в трёхфазной сети позволяет подключать электрооборудование любой мощности и различной конфигурации. Что, безусловно, повышает гибкость и удобство использования этой системы питания.

Алексей Бартош специально для ЭТМ.

Что такое фаза?

Фаза является значением тригонометрической функции, например определяющей вид или описывающей волновое или колебательное движение. Величина тождественна углу или аргументу периодической функции. Зависимость целой фазы от координат и времени не всегда бывает линейной и гармонической. Конец проводника, по которому ток поступает в цепь, или зажим представляет собой начало фазы. Изменение вольтажа цепи через временной промежуток является проекцией лучевого вектора на координатную ось.

Что такое фазное и линейное напряжение?

Цепь представляет собой стандартные элементы — энергетический генератор, цепь передачи, приемник. Для понятия, что такое фазное, линейное напряжение, их взаимодействие требуется определение фазы. Положение фазы действует только для магистралей переменного тока. Понятие определятся в виде уравнения сектора векторного вращения с фиксацией одного конца в исходе координат.

Электрические линии отличаются числом фаз: одно-, двух-, трех- и многофазная.

В России популярна трехфазная сеть для питания потребителей, которые представлены бытовыми строениями или промышленными объектами. Подключение отличается преимуществами по сравнению с электроснабжающей однофазной цепью:

  • экономичность из-за выгодного применения материалов;
  • возможность транспортировки большого объема электричества;
  • включение в рабочую цепь электрогенераторов и двигателей высокой мощности;
  • создание разных показателей напряжения в зависимости от варианта включения потребляющей нагрузки в электрическую линию.

Работа в трехфазной цепи зависит от взаимного соотношения ее компонентов. Показатели напряжения зависят от фазы (угла наклона векторного луча к координатной плоскости оси). Вольтаж определяется по земельному потенциалу, который равен нулю. Из-за этого кабель с присутствующим вольтажом именуют фазным, а заземляющий провод — нулевым. Угол фазы единичного вектора не имеет особой значимости, т. к. в линии он делает полный оборот на 360° за 1/50 часть секунды. Во внимание берется междуфазный угол относительности 2 векторов.

В сети с применением реактивных деталей угол берется между векторными показателями электротока и вольтажа, он носит название сдвига фазы. Если значения подключенных нагрузок со временем не изменяются, то величина сдвига будет всегда постоянной. Неизменность показателя используется в расчете электрической линии и анализа работы.

Что такое фазное и линейное напряжение?

При намотке на катушке множества оборотов провода номинальное напряжение увеличивается пропорционально числу витков. Явление привело к разработке генераторов, обеспечивающих потребителей электричеством. Для эффекта от применения магнитного поля иногда устанавливают несколько бобин. Статорное магнитное поле за поворот ротора пересекают одновременно 3 катушки, что ведет к увеличению мощности генератора. Это позволяет запитать сразу 3 пользователей.

Что такое фазное напряжение?

В трехфазных магистралях большинства государств размер напряжения равен 220 вольт. Фазный вольтаж измеряется в промежутке между фазами в начале и конце провода. Практически это величина посередине нулевого проводника и напряженного кабеля. При подсоединении по типу звезды значения линейных токов и фазного электричества не отличаются.

Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220 В).

Симметричная система исключает присутствие нейтральной жилы, при несимметричном способе нулевой кабель поддерживает соразмерность с источником. Во втором варианте часто в цепь включаются приборы освещения, и требуется независимое функционирование 3 рабочих кабелей, тогда выводы приемника объединяются по типу треугольника.

Межфазное напряжение используется в многоквартирном секторе с магазинами или офисами на первых этажах. Так можно запитать торговые площадки силовыми кабелями в целях обеспечения 380 вольт. В высотках подключение обеспечивает лифты, эскалаторы, промышленные холодильники. Разводка выполняется относительно просто, учитывая, что в жилье идет ноль и жила под нагрузкой, а на общественные помещения ответвляются 3 рабочих кабеля и нейтральная жила.

Отличие трехфазного тока от однофазного состоит в том, что показатель сети — это линейная мощность, а параметры, имеющие отношение к нагрузке, представляют собой фазный вольтаж. От станции к потребителю проводится линия, включающая рабочие жилы и нулевой провод. Для снижения утечек при прохождении по цепи в начале и конце сети ставятся преобразователи, но картина от этого не изменяется. Нейтральный провод фиксирует и транспортирует пользователю заявленный потенциал, полученный на выходе. Мощность в проводе под нагрузкой создается, исходя из значения в нейтрали.

Величина напряжения фазы выявляется и возникает относительно центра подключения обмоток — нейтрального провода. В симметричной относительно нагрузок схеме трехфазной цепи через ноль передается ток с минимальными показателями. На выводе такой линии провода под нагрузкой окрашиваются в общепринятые стандартные цвета:

  • жила L1 — коричневый;
  • провод L2 — черный;
  • кабель L3 — серый;
  • нулевая оплетка N — синий;
  • желтый или зеленый — предусмотрен для заземления.

Такие мощные линии проводятся к крупным потребителям — целым микрорайонам, заводам. Для небольших приемников монтируется однофазная линия, включающая нагруженный провод и дополнительный ноль. При равномерном распределении мощности в однофазных ответвлениях появляется равновесие в трехфазной конструкции. Для прокладки составляющих ветвей принимается напряжение фазы одной жилы относительно нейтрали.

Что такое линейное напряжение?

В трехфазной магистрали можно выделить дополнительное напряжение, при подсоединении перемычку между 2 нагруженными кабелями. Значение его выше, т. к. является проекцией на плоскость координат 2 векторов, составляющих угол 120° между собой. Довесок к значению фазового напряжения составляет 73% или рассчитывается как √3-1. Общепринятое линейное напряжение в электролинии всегда составляет 380 вольт.

Линейное напряжение — это напряжение между двумя фазными проводами (380 В).

Напряжение вычисляется в промежутке фаз или между их выводами. При монтаже схемы появляются трудности, заключающиеся в неточности при расчете проводника, что иногда вызывает аварию. Схемы подключения различаются вариантами объединения нагруженных жил и источника электричества. Преимущества однофазной сети:

  • безопасность эксплуатации оборудования, т. к. опасность в плане поражения исходит от 1 кабеля;
  • схема применяется для осуществления эффективной разводки, выбора принципа эксплуатации, расчета параметров и выполнения измерений.

Расчеты в системе простые, выполняются с учетом стандартных физических формул. Для замеров показателей цепи используется мультиметр. Характеристики подключения к фазе определяются с помощью специальных вольтметров, токовых датчиков.

Линейное напряжение возникает при прохождении электрического тока в подводнике при объединении источника энергии и приемника. При понижении мощности на участке между выходом генератора и потребителем параметры фазного вольтажа также изменяются. Зная линейные показатели, нетрудно высчитать значение фазного напряжения.

Особенности сети:

  • при разводке проводов профессиональных устройств не требуется, достаточно отвертки с встроенным индикатором;
  • при соединении проводов не используется ноль — из-за нейтральной жилы нет опасности поражения током;
  • схема применима для постоянных сетей и линий с переменным током;
  • однофазное соединение выполняется в трехфазной линии, но не наоборот.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.


ФН и ЛН, отличие и соотношение

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит.

Вычисление соотношения между фазным и линейным напряжением

Для расчёта соотношения следует знать линейные параметры. Все вычисления производятся по формуле: 12UAB=UA cos 30˚, либо UAB=2√3/2×UA=√3×UA. Таким образом, делаем вывод, что окончательная формула выглядит следующим образом – Uл=√3×UФ.

На первый взгляд может показаться, что формулы слишком сложны, однако это не так. С другой стороны, домашнему мастеру практически нет смысла заниматься подобными расчётами. Достаточно обычной проверки напряжения на каждой из фаз обычным мультиметром.

Типы соединения

Чтобы запустить генератор, часто используют именно линейное и фазное напряжение. Если говорить о запуске именно трехфазного генератора, то следует отметить один важный факт.

Состоит такой прибор не только из первичных, но и вторичных обмоток. Эти обмотки нужно правильно соединить и для этого существует два самых распространенных способа.

Только благодаря тому, что все обмотки будут правильно соединены, можно добиться определенных улучшений:

  • Увеличение мощности передачи – это важнейшая задача, которую нужно решить, но сделать это следует без увеличения напряжения. И сделать это можно благодаря использованию определенных типов соединений.
  • Снижение пульсаций напряжения – если в блоках питания наблюдаются постоянные колебания напряжения, это может стать причиной выхода из строя, подключенных к ней приборов. Поэтому устранение данного недочета с помощью разных соединений является первостепенной задачей.
  • Уменьшение количества проводов – при подключении к сети нужно минимизировать количество соединений, чтобы улучшить качество работы приборов. Именно по этой причине использование двух упрощенных схем для подключения настолько важно.

Треугольник

Для выполнения соединения используют схему, отличную от той, которая была описана выше. Ведь нужно соединить одну обмотку с другой.

Свое название соединение получило из-за внешнего сходства с треугольником.

Его особенностью является то, что все обмотки соединяются в строгой последовательности. А поскольку общая точка соприкосновения отсутствует, такая система может быть только одного вида, а именно – трехпроводная.

Звезда

Сначала рассмотрим данный тип подключения. Чтобы его выполнить, нужно соединить начало всех мотков в одной точке.

Эту точку принято называть нулевой. В некоторых печатных руководствах упоминается другое обозначение – нейтральная точка.

Иногда встречается соединение нулевой точки и нулевым источником питания. И поэтому ошибочно юные и начинающие электрики считают его обязательным. Но это не так, такое соединение могут использовать в некоторых случаях, и оно не является обязательным.

Важно! Если такое соединение присутствует, то систему правильно называть 4-проводной. В том случае, если оно отсутствует, то соединение считается трехпроводным.

Комбинированный вариант соединения

В некоторых случаях используется комбинированный вариант «звезда-треугольник». Электродвигатель мягко запускается на соединении «звезда», а после того, как набирает необходимые обороты, реле переключает его на «треугольник». Однако не все двигатели можно подключить подобным образом. К примеру, существуют электромоторы, имеющие всего 3 вывода в контактной группе. Они изначально изготовлены под соединение «звезда» и подключить их «треугольником» невозможно.

Комбинированное соединение подойдёт не для всех типов двигателей

Если объединить распространённые типы включения в трёхфазную сеть, можно увидеть следующую картину.

Наиболее распространённые типы включения в трёхфазную сеть

Отличие линейного от фазного напряжения

Если представить трехфазную цепь, то четко понятно, что в ней есть определенное напряжение между фазными контактами и фазным и нулевым проводом. Это происходит из-за того, что в этой схеме используется четырёхпроводная трехфазная цепь. Главные её характеристики – напряжение и частота. Напряжение, возникающее в цепи между двумя фазными проводами – это линейное, а то, что появляется между фазным и нулевым – фазным.

4-проводная сеть
4-проводная сеть

Примечательной особенностью линейного напряжения является то, что именно по нему рассчитываются токи и другие параметры трехфазной цепи. Кроме того, к такой схеме можно подключать не только стандартные трехфазные контакты, но и однофазные (это различные бытовые приборы, приемники). Номинальное равняется 380 вольт, при этом оно может изменяться в зависимости от скачков или других перемен в локальной сети.

Существует несколько вариантов такого соединения, скажем, система с нейтралью под заземлением является самой популярной. Она характеризуется тем, что подключение к ней производится по особой схеме:

  1. Однофазные отводы подключаются к фазным проводам;
  2. Трехфазные – к трехфазным, соответственно.

Линейное напряжение имеет очень широкое использование благодаря своей безопасности и удобства разветвления сети. Электрические приборы подключаются только к одному- фазному проводу, опасность представляет он один. Расчет системы очень прост, в нем руководствуются стандартными формулами из физики. При этом, чтобы измерить этот параметр сети, достаточно воспользоваться простым мультиметром, для того, чтобы замерить характеристики фазового подключения потребуется несколько специальных устройств (датчики тока, вольтметры и прочие).

Некоторые особенности сети:

  1. При разводке такой проводки не требуется использовать профессиональные приборы- все измерения проводятся отвертками с индикаторами;
  2. При соединении проводников нет необходимости подключать нулевой провод, т. к. благодаря свободной нейтрали, риск поражения током крайне мал;
  3. Электротехника использует такую схему подключения для различных электродвигателей и других устройств, требующих высокую мощность для работы. Дело в том, что используя этот тип напряжения есть возможность повысить КПД на треть, что является весьма полезным свойством, в особенности, для асинхронного двигателя;
  4. Схема используется как для переменного тока, так и для постоянного;
  5. Нужно помнить, что однофазное соединение можно подключить к трехфазной сети, но не наоборот;
  6. Но, у такой цепи есть и определенные недостатки. В линейном соединении проводников очень сложно обнаружить повреждения. Это способствует повышенной пожарной опасности.

Соответственно, основная разница между фазовым и линейным напряжением заключается в разности подсоединяемых проводов обмоток.

Для контроля и выравнивания этого параметра часто используется специальный прибор – линейный стабилизатор напряжения. Он позволяет поддерживать показатель на определённом уровне, при этом нормализуя повышенное. Еще одно его определение – импульсный стабилизатор. Устройство может подключаться к розетке, контактам электрических приборов и т. д.

Измерение

Напряжение, возникающее между фазными проводниками, называется линейным. При этом между фазным и нулевым появляется фазное напряжение. Линейную разновидность применяют для определения токов и прочих показателей трехфазной цепи. При этом в такие схемы допустимо включать не только трехфазные контакты. Также разрешается использовать и однофазные – в частности, разные бытовые приборы.

Номинальный показатель линейного напряжения составляет 380 Вольт. Под влиянием ряда факторов, которые возникают в локальной сети, оно может меняться. Потому ключевые отличия между рассматриваемыми видами напряжений кроются в методах соединения обмоток.

Более распространенной считается линейная разновидность. Это обусловлено безопасным применением и удобством распределения сетей. Чтобы измерить этот параметр, стоит применять мультиметр. При этом для оценки показателей фазного напряжения потребуются датчики тока, вольтметры и прочие специальные устройства.

Контроль и выравнивание этого показателя производится линейным стабилизатором напряжения. Это устройство поддерживает параметр в норме. К тому же он помогает нормализовать высокое напряжение.

Величины измерения

Необходимо четко понимать, что даже установленные числа для фазного и линейного напряжения в 220 и 380 Вольт соответственно – это не конечные цифры. Важно понимать, что для каждого параметра установлена «диапазонная вилка», то есть тот интервал внутри которого изменения параметра считаются нормальными.

Поэтому, для фазного напряжения считается нормой колебания от 198 В до 242 В. Это говорит о том, что номинальному значению в 220 Вольт прибавляется и отнимается 10%, которые являются своеобразным стандартным отклонением.

Этот параметр установлен в соответствии с нормативным документом ГОСТ 13109.

Для расчета трехфазных цепей, чаще всего специалисты снимают параметр только линейного тока в сети, а также значение линейного напряжения.

Величину фазового напряжения определяют в момент падения линейного, то есть при образовании так называемого проседания.

Для определения величины ЛН используют формулы:

  1. Uл = Uф,

где

  • Uл – напряжение линейное;
  • Uф – напряжение фазовое.

В ситуации, когда необходимо установить значение реактивной мощности в трехфазной сети, использую формулу:

Q=Qa+Qb+Qc

Чаще всего подобную формулу использовать в том случае, когда необходимо подсчитать электрическую сеть, в которую будут включены различные промышленные приборы. А это значит, что она требует большей точности с точки зрения соответствия и недопущения различных перебоев в работе.

Если говорить о распространенности сетей, то стоит отметить, что наиболее часто встречается линейный вариант. Это обусловлено тем, что здесь безопасность находится на более высоком уровне. А разведение электропроводки достаточно просто осуществляется.

Все электрооборудование, которое необходимо включить в сеть, подсоединяться только к одному фазному проводу. Именно он запитывается электрическим током и представляет собой опасность с точки зрения поражения человека. Второй провод является заземлением.

Как измерить

Измерить подобную систему можно мультиметром или применив физические формулы.


Измерение подключения к сети

ЛН рассчитывается по формуле Кирхгофа: ∑ Ik = 0. Здесь сила тока равняется нулю во всех частях электроцепи, то есть к=1. Используется также закон Ома: I=U/R. Применив обе формулы можно высчитать параметры клейма или электросети.

В системе из несколько линий, потребуется найти напряжение между 0 и фазой IL = IF. Значения IL и IF непостоянные и меняются при разных вариациях подключения. Потому линейные параметры точно такие же, как и фазные.

Схемы подключения

Существует 2 схемы, по которым источники напряжения подключаются к сети:

  • звездой;
  • треугольником.

Каждый из вариантов отличается своими особенностями. При подключении звездой начала обмоток генератора соединяются в конкретной точке. Это препятствует повышению мощности. При использовании треугольника обмотки соединяются последовательно. При этом начало одной обмотки соединяется с концом другой. Это помогает втрое повысить напряжение.

Чтобы понимать схемы подключения, стоит ознакомиться с такими понятиями:

  • линейным называют ток, который попадает в подводник между приемником и источником электроэнергии;
  • фазным считается ток, текущий в каждой обмотке источника электроэнергии.

Эти виды токов важны при наличии несимметричной нагрузки на генератор. Это наблюдается довольно часто при подключении объектов к электросети. Все параметры, которые относятся к линии, представляют собой линейные токи и напряжения. Показатели, которые относятся фазе, считаются значениями фазных величин.

Соединение в виде звезды показывает, что все линейные токи отличаются теми же значениями, что и фазные. При симметричности системы потребность в нейтральном проводе пропадает. На практике он способствует поддержанию симметрии при асимметричности нагрузки.

В случае несимметричности используемой нагрузки важно, чтобы три фазы цепи функционировали независимо. Это удастся сделать и в трехпроводной линии, когда элементы приемника соединены в треугольник.

По мнению специалистов, снижение линейного напряжения приводит к изменению параметров фазного напряжения. Если знать показатель междуфазного напряжения, удастся без труда определить размер фазного.

Расчет

Сети с линейным током применяются довольно часто. Это обусловлено минимальными рисками и простотой разведения такой проводки. Все электроприборы в таком случае соединяются лишь с одним фазным проводом, по которому течет ток. При этом источником опасности считается только он.

Для расчета такой схемы будет достаточно обычных формул из курса физики. К тому же для измерения данного показателя сети хватит обыкновенного мультиметра. При этом для получения показаний фазного подключения потребуется целая система оборудования.

Чтобы подсчитать напряжение линейного тока, рекомендуется использовать формулу Кирхгофа и закон Ома. Благодаря применению этих понятий удастся быстро рассчитать характеристики определенного клейма или электрической сети.

Использование линейного и фазного напряжения

Электрические цепи бывают постоянного и переменного тока. Чаще для соединения источника электричества с потребителем используются трехфазные цепи переменного тока. Такой тип тока имеет ряд преимуществ:

  • ниже затраты на передачу энергии;
  • возможность создания электродвижущей силы для функционирования асинхронного оборудования (лифтов, подъемников);
  • можно одновременно использовать линейное и фазное напряжение.

Для подключения генераторов в магистраль используют принцип треугольника или звезды. В первом варианте обмотки подсоединяются последовательно, начало фазы и конец другой фазы соединены. Схема позволяет повысить напряжение в несколько раз. Во втором случае начальные участки обмоток объединяются в общую точку, повышение мощности не происходит.

Классификация электросети по составу рабочих элементов:

  • активная;
  • пассивная;
  • линейная;
  • нелинейная.

Используя 4 кабеля в магистрали, можно, варьируя подключения, использовать одновременно линейные и фазные токи, что расширяет область применения. Трехфазные магистрали считаются универсальными, т. к. подключается большая нагрузка, например, к сети в 10 вольт. Если подсоединить к линии соответствующий приемник, например, трехфазный электрический двигатель, то его механическая мощность достигнет величин, в 3 раза превышающих показатели однофазного агрегата.

Что такое фазное и линейное напряжение?

В многоквартирном секторе основными приемниками являются бытовые устройства и приборы, питающиеся от сети 220 В. Требуется равномерное разделение между проводами с нагрузкой, поэтому квартиры подключаются по шахматной схеме. В частном домостроении принята концепция рассредоточения нагрузки на каждый кабель от всех домашних приборов и оборудования. Учитываются проводниковые токи, передающиеся во время включения максимального числа устройств.

Включая в сеть с 1 или 3 фазами одинаковые электрические двигатели, можно получить разницу в мощности его работы. Если дополнительно выбрать эффективный способ подключения, то показатели на выходе повысятся втрое. Учитывая соотношение между фазными и линейными токами, следует рассчитывать обмотки на повышенные значения. Относительный показатель разницы зарядов между нагруженными проводами всегда больше аналогичного значения между фазой и нулем. Основное отличие линейных характеристик напряжения и мощности фазы состоит в параметрах получаемого вольтажа.

Классическим примером применения обоих видов напряжения является соединение при установке трехфазного генератора. Используются вторичные обмотки и первичные обвивки, соединяемые по одной из схем. Связь линейного напряжения и значения фазы при соединении по типу треугольника помогает выравнивать ток, и обе мощности становятся почти одинаковыми. Аналогично подсоединяются двигатели, преобразователи и трансформаторы.

Вариант звезды предполагает подсоединение контактов всех обмоток к одной цепи с применением перемычек. В проводниках проходит ток с показателями этой сети, а напряжение передается на активные выводы и контакты.

Плюсы и минусы

Для каждой из систем питания характерны определенные преимущества и недостатки. Однофазная сеть 220 Вольт отличается следующими плюсами:

  • простота;
  • доступная стоимость;
  • опасное напряжение.

К недостаткам относятся:

  • ограниченная мощность;
  • невозможность функционирования асинхронных двигателей.

Для трехфазной сети 380 Вольт характерны такие преимущества:

  • ограничение мощности лишь сечением проводов;
  • экономия;
  • возможность питания промышленного оборудования;
  • возможность переключения однофазной нагрузки на другую фазу при снижении качества или отсутствии питания.

К недостаткам стоит отнести следующее:

  • потребность в дорогостоящем оборудовании;
  • высокое напряжение;
  • ограничение мощности однофазных нагрузок.

Нюансы выбора типа соединения

В настоящее время оба типа соединения, звезда и треугольник, активно используются. Однако, подобное вовсе не означает, что можно по собственному усмотрению выбрать тот способ, который больше понравится.

Существуют определенные требования и общие рекомендации, следуя которым можно избежать ошибок.

Нужно запомнить, что при линейном напряжении в 220 вольт подключение двигателя по схеме звезда невозможно.

Для такого напряжения идеально подходит схема треугольник.

С другой стороны, если в сети напряжение выше 220 вольт, к примеру 380, то оптимальным вариантом станет использование именно звезды.

Если запомнить это простое правило, удастся в будущем избежать ошибок при подключении генераторов и других приборов.

Для чего требуется проверка напряжения фаз перед включением

При подключении оборудования, требующего напряжения 380 в (к примеру, асинхронного электродвигателя) следует проверить напряжение на каждой из трёх фаз и сравнить показатели. Особенно это касается частных секторов, где напряжение нестабильно или электромонтёры имеют недостаточную квалификацию. Дело в том, что в деревнях часто не обращают внимания на распределение нагрузки.

В результате подобных действий одна из фаз может быть перегружена при минимальной нагрузке на остальные. Вкупе с устаревшими трансформаторами это приводит к перекосу фаз. Получается, что на одной из фаз напряжение значительно снижается. Это приводит к перегреву трёхфазных двигателей или иного оборудования и выходу его из строя. Такой перекос явно не пойдёт на пользу оборудованию, работающему от трёх фаз

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

На крупных предприятиях с потреблением мощности более 100 кВт обычно существуют собственные подстанции 10/0,4 кВ.

С генератора G напряжение (везде речь идёт про трехфазное) 110 кВ (может быть 220 кВ, 330 кВ или другое) поступает на первую трансформаторную подстанцию ТП1, которая понижает напряжение в первый раз до 10 кВ. Одна такая ТП устанавливается для питания города или района и может иметь мощность порядка от единиц до сотен мегаватт (МВт).

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Такие ступени преобразования уровня напряжения необходимы для того, чтобы уменьшить потери при транспортировке электроэнергии. Подробнее о потерях в кабельных линиях – в другой моей статье.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Что у нас на практике

Как получается два напряжения в трёхфазной сети мы разобрались, теперь давайте разберёмся, как это используется на практике.

В быту большая часть электроприборов питается однофазным напряжением. Напряжение в электросети стандартизировано — 230В с частотой 50 Гц, и вся бытовая техника рассчитана на питание именно этим напряжением. Если прибору необходимо пониженное напряжение, например, 5, 12, 19, 36 вольт или любая другая величина, то у него есть либо встроенный, либо выносной блок питания, который, собственно, и формирует нужное напряжение.

При необходимости подключения мощных приборов, например, электрических котлов и плит, сварочного оборудования, станков и прочего возникает проблема — большой ток. Например, обычная розетка рассчитана на ток до 16А, который длительно может проводить кабель с сечением токопроводящих жил 2.5 мм², через неё можно запитать приборы мощностью до 3.5 кВт.

Поэтому мощные приборы зачастую подключают отдельной линией напрямую к автоматическому выключателю или через силовые розетки на 32А. Но для такого тока нужно использовать кабель с сечением токопроводящих жил уже 6 мм² и более. При этом максимальная нагрузка в такой линии — 7 кВт.

При подключении нагрузки на линейное напряжение, то есть к двум проводам питающей сети между которыми 380В и потребляемом токе в те же 32А, мощность подключаемой нагрузки будет уже около 12 кВт. То есть кабель с таким же сечением жил сможет питать почти в 2 раза более мощную нагрузку. А у трёхфазного прибора при том же токе в 32А мощность будет уже 21 кВт.

И учтите, что для его подключения не понадобится прокладывать ЛЭП с более толстыми проводами, не придётся прокладывать от распределительного щита питающих кабелей с толстыми жилами и так далее… Тогда как в однофазной цепи прибор мощностью в 21 кВт будет потреблять ток около 95А, а для его питания нужно будет использовать кабель с жилами на 25 мм² против 6-8 мм² и 32А в трёхфазной цепи.

Для снижения питающего тока мощные электроприборы производят трёхфазными. Но не всегда прибор, рассчитанный на 380В, трёхфазный. Есть однофазные потребители с номинальным напряжением 380В, например, сварочные трансформаторы типа ТСМ-250 и другие подобные.

Из характеристик мы видим, что напряжение питающей сети 1х380. То есть его первичная обмотка подключается к двум фазам. Любопытно что многие называют подобные трансформаторы «двухфазными», но это в корне неверно. На первичную обмотку действует одна ЭДС, так же, как и в любом другом однофазном приборе.

Ничего выдающегося здесь нет, и такое напряжение первичной обмотки выбрано с той же целью – снизить ток питания, что позволит намотать обмотку проводом меньшего сечения и использовать кабели с меньшим сечением ТПЖ для подключения к сети.

Если бы он был рассчитан на питание от 220В, то в режиме максимальной нагрузки ток потребления составил бы 16 000/220 = 72А, а при питании от 380В ток будет не более: 16 000/380 = 42А.

Таким образом, наличие двух напряжений в трёхфазной сети позволяет подключать электрооборудование любой мощности и различной конфигурации. Что, безусловно, повышает гибкость и удобство использования этой системы питания.

Подведём итог

Из всего изложенного можно сделать вывод, что фазное напряжение в сети 0.4 кВ всегда равно 220 В, в то время как линейное 380 В. Однако не стоит считать, что если значения фазного напряжения ниже, оно становится менее опасным. Редакция Homius со всей ответственностью заявляет, что поражение электрическим током может привести к летальному исходу независимо от того, линейное напряжение в цепи или фазное. Ведь поражение тканям и органам наносит не само напряжение, а сила тока. К примеру, 220 В трансформированные в 36 В становятся даже опаснее. Ведь человек практически не чувствует столь низкого напряжения, а в это время ток поражает органы. Поэтому при электромонтажных работах не следует забывать о технике безопасности.

Памятка начинающему электрику

Надеемся, что изложенная информация будет полезна начинающим электромонтажникам и домашним мастерам. При возникновении вопросов можете смело излагать их в обсуждениях ниже. Редакция Homius с удовольствием ответит на них как можно более развёрнуто и быстро. Там же Вы можете изложить своё мнение о статье, оставить комментарий или поделиться личным опытом в подключении трёхфазного оборудования. Если понравилась статья, не забываем её оценивать. А мы напоследок предлагаем Вашему вниманию короткий видеоролик, который позволит более полно раскрыть сегодняшнюю тему.

Источники

  • https://odinelectric.ru/elektrosnabzhenie/chto-takoe-faznoe-i-linejnoe-napryazhenie
  • https://volt-race.ru/nachinayushchim/napryazhenie-mezhdu-fazami.html
  • https://electric-220.ru/chem-otlichaetsya-faznoe-napryazhenie-ot-linejnogo
  • https://kelmochka.ru/linejnoe-i-faznoe-napryazheniya
  • https://homius.ru/faznoe-i-linejnoe-naprjazhenie.html
  • https://www.asutpp.ru/linejnoe-napryazhenie.html
  • https://otlichi.ru/nauka/estestvennye/linejnoe-i-faznoe-napryazhenie-razlichie
  • https://kladochka.ru/linejnoe-napryazhenie
  • https://SamElectric.ru/powersupply/chem-trehfaznoe-napryazhenie-otlichaetsya-ot-odnofaznogo.html
  • https://ElectroInfo.net/raznoe/chto-takoe-faznoe-i-linejnoe-naprjazhenie-linejnoe-i-faznoe-naprjazhenija-razlichija-sootnoshenie-i-pojasnenija.html

[свернуть]

Расчет фазных и линейных величин трехфазного тока

Трехфазный генератор имеет на статоре три однофазные самостоятельные обмотки, начала и концы которых сдвинуты соответственно на 120 эл. град, или на 2/3 полюсного деления, т. е на 2/3 расстояния между серединами разноименных полюсов (рис. 1). В каждой из трех обмоток возникает однофазный переменный ток. Однофазные токи обмоток взаимно сдвинуты на 120 эл. град, т. е. на 2/3 периода. Таким образом, трехфазный ток представляет собой три однофазных тока, сдвинутых во времени на 2/3 периода (120°).

В любой момент времени алгебраическая сумма всех трех мгновенных: значений а. д. с. отдельных фаз равна нулю. Поэтому у генератора вместо шести выводов (для трех самостоятельных однофазных обмоток) делают только три вывода или четыре, когда выводится нулевая точка. В зависимости от того, как соединить отдельные фазы и как их подключить к сети, можно получить соединение в звезду или треугольник.

Начала обмоток обозначаются в дальнейшем буквами A, B, C, а концы их – буквами X, Y, Z.

Рис. 1. Трехфазный генератор

При соединении в звезду концы фаз X, Y, Z (рис. 2) соединяют и узел соединения называют нулевой точкой. Узел может иметь вывод – так называемый нулевой провод (рис. 272), показанный пунктиром, или быть без вывода.

При соединении в звезду с нулевым проводом можно получить два напряжения: линейное напряжение Uл между проводами отдельных фаз и фазное напряжение Uф между фазой и нулевым проводом (рис. 2). Соотношение между линейным и фазным напряжениями выражается следующим образом: Uл=Uф∙√3.

Рис. 2. Соединение в звезду

Ток, который проходит в проводе (сети), проходит и по обмотке фазы (рис. 2), т. е. Iл=Iф.

б) Соединение в треугольник.

Соединение фаз в треугольник получается при соединении концов и начал фаз согласно рис. 3, т. е. AY, BZ, CX. При таком соединении нет нулевого провода и напряжение на фазе равно линейному напряжению между двумя проводами линии Uл=Uф. Однако ток в линии Iл (сети) больше, чем ток в фазе Iф, а именно: Iл=Iф∙√3.

Рис. 3. Соединение в треугольник

При трехфазной системе в каждое мгновение, если ток в одной обмотке идет от конца к началу, то в двух других он направлен от начала к концу. Например, на рис. 2 в средней обмотке AX проходит от A к X, а в крайних – от Y к B и от Z к C.

На схеме (рис. 4) показано, как три одинаковые обмотки соединяются с зажимами двигателя в звезду или треугольник.

Рис. 4. Соединение обмоток в звезду и треугольник

1. Генератор с обмоткой статора, соединенной по представленной на рис. 5 схеме, при линейном напряжении 220 В питает током три одинаковые лампы сопротивлением по 153 Ом. Какие напряжение и ток имеет каждая лампа (рис. 5)?

Согласно включению лампы имеют фазное напряжение Uф=U/√3=220/1,732=127 В.

Ток лампы Iф=Uф/r=127/153=0,8 А.

2. Определить схему включения трех ламп на рис. 6, напряжение и ток каждой лампы сопротивлением по 500 Ом, подключенных к питающей сети с линейным напряжением 220 В.

Ток в лампе I=Uл/500=220/500=0,45 А.

3. Сколько вольт должен показывать вольтметр 1, если вольтметр 2 показывает напряжение 220 В (рис. 7)?

Фазное напряжение Uф=Uл/√3=220/1,73=127 В.

4. Какой ток показывает амперметр 1, если амперметр 2 показывает ток 20 А при соединении в треугольник (рис. 8)?

При соединении в треугольник ток в фазе потребителя меньше, чем в линии.

5. Какие напряжение и ток будут показывать измерительные приборы 2 и 3, включенные в фазу, если вольтметр 1 показывает 380 В, а сопротивление фазы потребителя 22 Ом (рис. 9)?

Вольтметр 2 показывает фазное напряжение Uф=Uл/√3=380/1,73=220 В. а амперметр 3 – фазный ток Iф=Uф/r=220/22=10 А.

6. Сколько ампер показывает амперметр 1, если сопротивление одной фазы потребителя 19 Ом с падением напряжения на нем 380 В, которое показывает вольтметр 2, включенный согласно рис. 10.

Ток в фазе Iф=Uф/r=Uл/r=380/19=20 А.

Ток потребителя по показанию амперметра 1 Iл=Iф∙√3=20∙1,73=34,6 А. (Фаза, т. е. сторона треугольника, может представлять собой обмотку машины, трансформатора или другое сопротивление.)

7. Асинхронный двигатель на рис. 2 имеет обмотку, соединенную в звезду, и включается в трехфазную сеть с линейным напряжением Uл=380 В. Каким будет фазное напряжение?

Фазное напряжение будет между нулевой точкой (зажимы X, Y, Z) и любыми из зажимов A, B, C:

8. Обмотку асинхронного двигателя из предыдущего примера замкнем в треугольник, соединив зажимы на щитке двигателя согласно рис. 3 или 4. Амперметр, включенный в линейный провод, показал ток Iл=20 А. Какой ток проходит по обмотке (фазе) статора?

Линейный ток Iл=Iф∙√3; Iф=Iл/√3=20/1,73=11,56 А.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

В чем главные отличия линейного и фазного напряжения?

Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.

Электрическое напряжение трехфазных сетей

Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, определение фазы имеет двойное толкование.

Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.

Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.

Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.

Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.

Виды напряжения

Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:

  1. Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
  2. Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.

Отличия

В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт, поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – заземление.

К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.

Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т.д.

Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.

Соединяя проводники не нужно монтировать нулевой контакт, ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.

Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.

Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.

Соотношение

Значение напряжения фазы равняется около 58% от мощности линейного аналога. То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.

Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.

В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.

Самой доступной и универсальной стала система трехфазного типа 380/220 В, имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В., могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.

В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.

Схема

Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.

Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.

Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.

Расчет линейного и фазного напряжения

Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.

Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.

Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:

Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.

И закон Ома:

Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.

В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:

Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.

Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.

Для этого, применяют формулу:

Uл – линейное, Uф – фазовое. Формула справедлива, только если – IL = IF.

При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.

При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:

Идентичная структура формулы активной мощности:

Примеры расчета:

Например, катушки трехфазного источника тока подключены по схеме «звезда», их электродвижущая сила 220В. Необходимо вычислить линейное напряжение в схеме.

Линейные напряжения в этом подключении будут одинаковы и определяются как:

Источник

Что показывает вольтметр, или математика розетки

Время на прочтение
7 мин

Количество просмотров 106K

О чем эта статья

Сегодня я ненадолго отступлю от своей обычной темы о визуальном программировании контроллеров и обращусь к теме измерений напряжения прямо в ней, в розетке!

Родилась эта статья из дискуссий за чаем, когда разразился спор среди «всезнающих и всеведающих» программистов о том, чего многие из них не понимают, а именно: как измеряется напряжение в розетке, что показывает вольтметр переменного напряжения, чем отличается пиковое и действующие значения напряжений.

Скорее всего, это статья будет интересна тем, кто начинает творить свои устройства. Но, возможно, поможет и кому-то опытному освежить память.

В статье рассказано о том, какие напряжения есть в сети переменного тока, как их измеряют и о том, что следует помнить при проектировании электронных схем.
Всему дано краткое и упрощённое математическое обоснование, чтобы было ясно не только «как», но и «почему».

Кому не интересно читать про интегралы, ГОСТы и фазы — могут сразу переходить к заключению.

Вступление

Когда люди начинают говорить о напряжении в розетке, очень часто стереотип «в розетке 220В» скрывает от их взора реальное положение дел.

Начнем с того, что согласно ГОСТ 29322-2014, сетевое напряжение должно составлять 230В±10% при частоте 50±0,2Гц (межфазное напряжение 400В, напряжение фаза-нейтраль 230В). Но в том же ГОСТ имеется примечание: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

Согласитесь, что это уже совсем не то однозначное «в розетке 220В», к которому мы привыкли. А когда речь начинает идти о «фазном», «линейном», «действующем» и «пиковом» напряжениях — вообще каша получается знатная. Так сколько же вольт в розетке?

Чтобы ответить на этот вопрос начнем с того, как измеряется напряжение в сети переменного тока.

Как измерять переменное напряжение?

Прежде, чем углубиться в дебри цепей переменного тока и напряжения, вспомним школьную физику цепей тока постоянного.

Цепи постоянного тока — вещь простая. Если мы возьмем некоторую активную нагрузку (пусть это будет обычная лампа накаливания, как на рисунке) и воткнем ее в цепь постоянного тока, то все, что происходит в нашей цепи будет характеризоваться всего двумя величинами: напряжением на нагрузке U и током, протекающим через нагрузку I. Мощность, которая потребляется нагрузкой однозначно вычисляется по формуле, известной со школы:

$P=U cdot I$.

Или, если учесть, что по закону Ома

$I={U over R}$, то мощность P, потребляемую нагрузкой-лампочкой, можно вычислить по формуле

$P={U^2 over R}$.

С переменным напряжением все куда сложнее: в каждый момент времени — оно может иметь разное мгновенное значение. Следовательно, в разные моменты времени, на нагрузке, подключенной к источнику переменного напряжения (например, на лампе накаливания, воткнутой в розетку) будет выделяться разная мощность. Это очень неудобно с точки зрения описания электрической цепи.

Но нам повезло: форма напряжения в розетке синусоидальная. А синусоида, как известно, полностью описывается тремя параметрами: амплитудой, периодом и фазой. В однофазных сетях (а обычная розетка с двумя дырочками именно и есть однофазная сеть) про фазу можно забыть. На рисунке подробно показаны два периода сетевого однофазного напряжения. Того самого, что в розетке.

Рассмотрим, что означают все эти буковки на рисунке.

Период T — это время между двумя соседними минимумами или соседними максимумами синусоиды. Для осветительной сети РФ этот период составляет 20 миллисекунд, что соответствует частоте 50Гц. Частота колебаний напряжения электрической сети выдерживается очень точно, до долей процента.

Очевидно, что в любых двух точках синусоиды, отстоящих друг от друга на целое число периодов, напряжения всегда равны между собой.

Амплитуда Um — это максимальное напряжение, пик синусоиды. Про действующее напряжение поговорим чуть ниже.

Напряжение в розетке (или однофазной сети) описывается формулой

$U(t)=U_m cdot sin( 2 cdot pi cdot {t over T} );$

где t — текущий момент времени, Um — амплитуда (или пиковое значение) напряжения, T — период сетевого напряжения.

Если с однофазным переменным напряжением более или менее все ясно, то попробуем посчитать мощность, которая выделяется на нашей любимой лампе накаливания, при втыкании ее прямо в розетку.

Так как лампа накаливания является активной нагрузкой (а это значит, что ее сопротивление не зависит от частоты напряжения и тока), то мгновенная мощность, выделяемая на лампе накаливания, воткнутой в розетку, будет вычисляться по формуле

$P(t)=U(t) cdot I(t) = {U^2(t) over R};$

где t — текущий момент времени, а R — сопротивление лампы накаливания при нагретой спирали. Зная амплитуду переменного напряжения Um, можно записать:

$P(t) = {{( U_m cdot sin( 2 cdot pi cdot {t over T} ) )^2} over R} $

Понятно, что мгновенная мощность — неудобный параметр, да и на практике не особо нужный. Поэтому практически обычно применяется мощность, усредненная за период.
Именно усредненная мощность указана на лампочках, нагревателях и прочих бытовых утюгах.

Рассчитывается усредненная мощность в общем случае по формуле:

$P_{ср} = {1 over {R cdot T} } cdot int_0^T { U^2(t) } dt $

А для нашей синусоиды — по гораздо более простой формуле:

$P_{ср} = {{U_m^2} over {2 cdot R}}$

Можете сами подставить вместо

$U(t)$ функцию

$U_m cdot sin( 2 cdot pi cdot {t over T} )$ и взять интеграл, если не верите.

Не думайте, что про мощность я вспомнил просто так, из вредности. Сейчас поймете, зачем она нам была нужна. Переходим к следующему вопросу.

Что же показывает вольтметр?

Для цепей постоянного тока, тут все однозначно — вольтметр показывает единственное напряжение между двумя контактами.

С цепями переменного тока все опять сложнее. Некоторые (и этих некоторых не так мало, как я убедился) считают, что вольтметр показывает пиковое значение напряжения Um, но это не так!

На самом деле, вольтметры обычно показывают действующее или эффективное, оно же среднеквадратичное, напряжение в сети .

Разумеется, речь идет о вольтметрах переменного напряжения! Поэтому, если будете измерять вольтметром напряжение сети, обязательно убедитесь, что он находится в режиме измерения переменного напряжения.

Оговорюсь, что «пиковые вольтметры», показывающие амплитудные значения напряжения, тоже существуют, но на практике при измерении напряжения питающей сети в быту обычно не применяются.

Разберемся, почему такие сложности. Почему бы не измерять просто амплитуду? Зачем выдумали какое-то «действующее значение» напряжения?

А все дело в потребляемой мощности. Я ведь не просто так писал о ней. Дело в том, что действующее (эффективное) значение переменного напряжения равно величине такого постоянного напряжения, которое за время, равное одному периоду этого переменного напряжения, произведет такую же работу, что и рассматриваемое переменное напряжение.

Или, по-простому, лампочка накаливания будет светить одинаково ярко, воткнем ли мы ее в сеть постоянного напряжения 220В или в цепь переменного тока с действующим значением напряжения 220В.

Для тех, кто уже знаком с интегралами или еще не забыл математику, приведу общую формулу расчета действующего напряжения произвольной формы:

$U_д = sqrt { {1 over T} cdot int_0^T { U^2(t) }dt }$

Из этой формулы также становится ясно, почему действующее (эффективное) значение переменного напряжения также называют «среднеквадратичным».

Заметим, что подкоренное выражение и есть та самая «усредненная за период мощность», стоит только поделить это выражение на сопротивление нагрузки R.

Применительно к синусоидальной форме напряжения, страшный интеграл после несложных преобразований превратится в простую формулу:

$U_д = {U_m over sqrt 2}$

где — действующее или среднеквадратичное значение напряжение (то самое, которое обычно показывает вольтметр), а Um — амплитудное значение.

Действующее напряжение хорошо тем, что для активной нагрузки, расчет усредненной мощности полностью совпадает с расчетом мощности на постоянном токе:

$P_{ср} = {U_m^2 over {2 cdot R}} = {U_д^2 over R}$

Это и не удивительно, если вспомнить определение действующего значения напряжения, которое было дано чуть выше.

Ну и, наконец, посчитаем, чему же равна амплитуда напряжения в розетке “на 220В“:

$U_m = U_д cdot sqrt 2 approx 220B cdot 1.41 = 310,2B $

В худшем случае, если у вас сеть на 240В, да еще и с допуском +10%, амплитуда будет аж

$U_m = (240B + 10%) cdot 1.41 approx 373B$!

Поэтому, если хотите, чтобы ваши устройства, питающиеся от сети, работали стабильно и не сгорали, выбирайте элементы, которые выдерживают пиковые напряжения не менее 400В. Разумеется, речь идет об элементах, на которые непосредственно подаётся сетевое напряжение.

Отмечу, что для не-синусоидальной формы сигнала действующее значение напряжения рассчитывается по иным формулам. Кому интересно — могут сами взять интегралы или обратиться к справочникам. Нас же интересует питающая сеть, а там всегда должна быть синусоида.

Фазы, фазы, фазы…

Помимо обычной однофазной осветительной сети ~220В все слышали и о трехфазной сети ~380В. Что такое 380В? А это межфазное эффективное напряжение.

Помните, я сказал, что в однофазной сети про фазу синусоиды можно забыть? Так вот, в трехфазной сети этого делать нельзя!

Если говорить по простому, то фаза — это сдвиг во времени одной синусоиды относительно другой. В однофазной сети мы всегда могли принять за начало отсчета любой момент времени — на расчеты это не влияло. В трехфазной сети необходимо учитывать насколько одна синусоида отстоит от другой. В трехфазных сетях переменного тока каждая из фаз отстоит от другой на треть периода или на 120 градусов. Напомню, что период измеряется также в градусах и полный период равен 360 градусов.

Если мы возьмем осциллограф с тремя лучами и прицепимся к трем фазам и одному нулю, то увидим такую картину.

«Синяя» фаза — начинается от нуля отсчета. «Красная» фаза — на треть периода (120 градусов) позже. И, наконец «зеленая» фаза начинается на две трети периода (240 градусов) позже «синей». Все фазы абсолютно симметричны друг относительно друга.

Какую именно фазу брать за точку отсчета — не важно. Картина будет одинаковой.

Математически можно записать уравнения всех трех фаз:

«Синяя» фаза:

$P(t)=U_m cdot sin( 2 cdot pi cdot {t over T} - 0 )$

«Красная» фаза:

$P(t)=U_m cdot sin( 2 cdot pi cdot {t over T} - { {2 over 3} cdot pi} )$

«Зеленая» фаза:

$P(t)=U_m cdot sin( 2 cdot pi cdot {t over T} - { {4 over 3} cdot pi} )$

Если измерить напряжение между любой из фаз и нулем в трехфазной сети — то получим обычные 220В (или 230В или 240В — как повезет, см. ГОСТ).

А если измерить напряжение между двумя фазами — то получим 380В (или 400В или 415В — не забываем об этом).

То есть трехфазная сеть — многолика. Ее можно использовать как три однофазные сети с напряжением 220В или как одну трехфазную сеть с напряжением 380В.

Откуда взялось 380В? А вот откуда.

Если мы подставим в формулу расчета действующего напряжения наши данные о двух любых фазах, то получим:

$U_{дф} = sqrt { {U_m^2 over T} cdot int_0^T ({{ sin(2 cdot pi cdot {t over T} - 0) - sin(2 cdot pi cdot {t over T} - {2 over 3} cdot pi) }})^2 dt }$

или, упрощая:

$U_{дф} = U_m cdot { sqrt 3 over sqrt 2 } = U_д cdot sqrt 3$

Uдф — действующее межфазное, оно же линейное напряжение.

Учитывая, что амплитуда каждой фазы

$U_ф approx 311B$ получим, что

$U_{дф} approx 380B$для межфазного напряжения. На рисунке наглядно показано, как образуется межфазное напряжение, которое обозначено F1-F2 из двух фазных напряжений фаз F1 и F2. Напряжение фаз F1 и F2 измеряется относительно нулевого провода. Линейное напряжение F1-F2 измеряется между двумя разными фазными проводами.

Как видим, что действующее межфазное напряжение больше амплитуды синусоидального напряжения одной фазы.

Амплитуда межфазного напряжения составляет:

$U_{mф} = U_{дф} cdot sqrt 2 =380B cdot sqrt 2 approx 538B$

Для наихудшего случая (сеть 240В и межфазное напряжение 415В, да еще 10% сверху) амплитуда межфазного напряжения составит:

$U_{mф} = U_{дф} cdot sqrt 2 =(415B + 10%) cdot sqrt 2 approx 645B$

Учтите это при работе в трехфазных сетях и выбирайте элементы, рассчитанные не менее, чем на 650В, если им предстоит работать между двумя фазами!

Надеюсь, теперь понятно что показывает вольтметр переменного тока?

Заключение

Итак, очень кратко, почти на пальцах, мы ознакомились с тем какие напряжения действуют в бытовых сетях переменного тока. Подведем краткие итоги всего, изложенного выше.

  • Фазное напряжение — это напряжение между фазой и нулевым проводом.
  • Линейное или межфазное напряжение — это напряжение между двумя разными фазными проводами одной трехфазной сети.
  • В сетях переменного тока РФ действуют три, хоть и близких, но разных стандарта (фазное/линейное): 220В/380В, 230В/400В и 240В/415В переменного тока с частотой 50Гц.
  • Вольтметр переменного тока обычно показывает действующее (оно же среднеквадратичное, оно же эффективное) напряжение, которое в $sqrt 2$ раза меньше, чем пиковое (амплитудное) напряжение в сети.
  • В наихудшем с точки зрения стандартов случае пиковое фазное напряжение составляет примерно 373В, а пиковое линейное напряжение — 645B. Это следует учитывать при разработке электронных схем.

Надеюсь эта статья помогла кому-то разобраться в теме и ответить для себя на некоторые вопросы.

Отправлять предложения и пожелания, замеченные опечатки и просто мнения можно в комментарии или на почту: shiotiny@yandex.ru.

Добавить комментарий