Как найти напряжение на каждом участке цепи



Скачать материал

Схемы со смешанным соединением сопротивлений



Скачать материал

  • Сейчас обучается 20 человек из 14 регионов

  • Сейчас обучается 142 человека из 54 регионов

  • Сейчас обучается 478 человек из 71 региона

Описание презентации по отдельным слайдам:

  • Схемы со смешанным соединением сопротивлений

    1 слайд

    Схемы со смешанным соединением сопротивлений

  • Закон ома
I = U/R

Сила тока на участке цепи прямо пропорциональна напряжению...

    2 слайд

    Закон ома

    I = U/R

    Сила тока на участке цепи прямо пропорциональна напряжению этого участка и обратно пропорциональна сопротивлению этого участка.

  • Способы соединения потребителейПоследовательное соединение



Iвх=I1=I2=I3
Uв...

    3 слайд

    Способы соединения потребителей
    Последовательное соединение

    Iвх=I1=I2=I3
    Uвх=U1+U2+U3
    Rвх=R1+R2+R3

  • Способы соединения потребителейПараллельное соединение

Iвх=I1+I2+I3
Uвх=U1=U...

    4 слайд

    Способы соединения потребителей
    Параллельное соединение

    Iвх=I1+I2+I3
    Uвх=U1=U2=U3
    1/Rвх=1/R1+1/R2+1/R3

    Rвх= (R1*R2)/(R1+R2)

  • R1 R2R3R4 R5ERiДано:                     Найти:
 Ri  = 1,2 Ом...

    5 слайд

    R1
    R2
    R3
    R4
    R5
    E
    Ri
    Дано: Найти:
    Ri = 1,2 Ом I1-5, Iвх, U1-5, Uвх.
    R1 = 64 Ом
    R2 = 40 Ом
    R3 = 60 Ом
    R4 = 24 Ом
    R5 = 24 Ом
    Е = 52,2 В

  • R1 R2R3R4 R5ERiR2 x R3R2 + R3
= R23 R23R234R23 + R4 = R234
R2345R234 x R5...

    6 слайд

    R1
    R2
    R3
    R4
    R5
    E
    Ri
    R2 x R3
    R2 + R3

    = R23
    R23
    R234
    R23 + R4 = R234

    R2345
    R234 x R5
    R234 + R5 = R2345

    Rэкв
    R2345 x R1
    R2345 + R1 = Rэкв

    Расчет сопротивлений:

  • R2R1R3R5R1R3,4,5R3,4R2RвхR4R5A5R2R1R2,3,4,5R1R3 + R4R3,4 =...

    7 слайд

    R2
    R1
    R3
    R5
    R1
    R3,4,5
    R3,4
    R2
    Rвх
    R4
    R5
    A5
    R2
    R1
    R2,3,4,5
    R1
    R3 + R4
    R3,4 =
    R3,4,5 =
    R3,4 х R5
    R2,3,4,5 =
    R2 х R3,4,5
    R2 + R3,4,5
    Rвх =
    R1 + R2,3,4,5
    R3 х R4
    R3,4 + R5

  • R2R2R3R5R1R3,4R1R2,3,4,5R4R5R1R2R3,4,5R1RвхR3 х R4R3 + R4R3,4 =...

    8 слайд

    R2
    R2
    R3
    R5
    R1
    R3,4
    R1
    R2,3,4,5
    R4
    R5
    R1
    R2
    R3,4,5
    R1
    Rвх
    R3 х R4
    R3 + R4
    R3,4 =
    R3,4,5 =
    R3,4 + R5
    R2,3,4,5 =
    R3,4,5 х R2
    R3,4,5 + R2
    Rвх =
    R2,3,4,5 + R1

  • Пример решения задачиДано:
Ri = 1 Ом
R1 = 3 Ом
R2 = 20 Ом
R3 = 6 Ом
R4 = 40 О...

    9 слайд

    Пример решения задачи
    Дано:
    Ri = 1 Ом
    R1 = 3 Ом
    R2 = 20 Ом
    R3 = 6 Ом
    R4 = 40 Ом
    R5 = 60 Ом
    I2 = 2, 4 А

    Найти:
    I1,I3,I4,I5
    U1, U2, U3,U4,U5
    E, Iвх, Uвх
    Составить баланс мощностей

    E

  • РешениеВычисляем входное сопротивление (Rвх):

R4 параллельно R5, значит
R4,5...

    10 слайд

    Решение
    Вычисляем входное сопротивление (Rвх):

    R4 параллельно R5, значит
    R4,5 = (R4*R5) / (R4+R5) = (40*60) / (40+60) = 24 Ом

    2) R3 соединено последовательно с R4,5, значит
    R3,4,5 = R3 + R4,5 = 6 +24 = 30 Ом

    3) R2 параллельно R3,4,5, значит
    R2,3,4,5 = (R2*R3,4,5)/ (R2+R3,4,5) = (20*30)/(20+30) = 12 Ом

    4) R1 соединено последовательно с R2,3,4,5, значит
    Rвх = R1 + R2,3,4,5, = 15 Ом
    E

  • 5) Находим напряжение по закону Ома для участка цепи
U2 = I2 * R2 = 2,4 А * 2...

    11 слайд

    5) Находим напряжение по закону Ома для участка цепи
    U2 = I2 * R2 = 2,4 А * 20 Ом = 48 В
    6) Т.к. R2 параллельно R3,4,5 ,то
    U2 = U3,4,5 = U2,3,4,5 = 48 В
    7) Находим силу тока по закону Ома для участка цепи
    I3,4,5 = (U3,4,5) / (R3,4,5) = 48 Ом / 30 Ом = 1,6 А
    9) Т.к. R3 последовательно соединено с R4,5
    I3,4,5 = I3 = I4,5 = 1,6 А
    10) Находим силу тока по закону Ома для участка цепи
    I2,3,4,5 = U2,3,4,5 / R2,3,4,5 = 48 Ом / 12 В = 4 А
    11) Т.к. R2.3.4.5 последовательно с R1 и Rвх
    I2.3.4.5 = I1 = Iвх = 4 А
    12) Находим напряжение по закону Ома для участка цепи
    U3 = I3 * R3 = 1,6 А * 6 Ом = 9,6 В

    E

  • 13) Находим напряжение по закону Ома для участка цепи 
U4,5 = I4,5 * R4,5 = 3...

    12 слайд

    13) Находим напряжение по закону Ома для участка цепи
    U4,5 = I4,5 * R4,5 = 38,4 А
    14) Т.к. R4 параллельно R5 то
    U4 = U5 = U4,5 = 38,4 В
    15) Находим силу тока по закону Ома для участка цепи
    I4 = U4 / R4 = 38,4 В/ 40 Ом = 0,96 А
    13) Находим напряжение по закону Ома для участка цепи
    U1 = I1 * R1 = 4 А * 3 Ом = 12 В
    14) Находим силу тока по закону Ома для участка цепи
    I5 = U5 / R5 = 38,4 В / 60 Ом = 0,64 А
    15) Находим напряжение по закону Ома для участка цепи
    Uвх = Iвх * Rвх = 4 * 15 = 60 В

    E

  • Баланс МощностейPист = E * Iвх 
Рнагр = P1 + P2 + P3 + P4 + P5 + Pi

Pист = 6...

    13 слайд

    Баланс Мощностей
    Pист = E * Iвх
    Рнагр = P1 + P2 + P3 + P4 + P5 + Pi

    Pист = 64 * 4 = 256 Вт
    Рнагр = (I12 * R1) + (I22 * R2) + (I32 * R3) + (I42 * R4) + (I52*R5) + (Iвх2 * Ri) = (42*3) + (2,42*20) + (1,62*6) + (0,962*40) + (0,642*60) + (42*1) = 256 Вт
    Pист = Pнагр
    Задача решена верно.
    16) Находим E по закону для полной цепи
    Iвх= E/(Rn+Ri) E = Iвх * (Rn+Ri) = 4 * 16 = 64 В

Краткое описание документа:

Данная презентация предназначена для преподавателей, объясняющих способы расчета задач с помощью законов Ома. В презентации дана краткая теория, основные формулы. Представлена схема удачно показывающая с помощью анимации “сворачивание” схем. Даны примеры расчета входного сопротивления с анимацией. Представлено решение задачи с акцентом на логику решения. Составлен баланс мощностей. Применение данной презентации упрощает объяснение данной темы, способствует лучшему усвоению материала, вызывает у студентов интерес, активизируется работа группы. Надеюсь, данная презентация пригодится и вам.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 251 903 материала в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

  • 10.02.2015
  • 702
  • 1
  • 10.02.2015
  • 538
  • 0
  • 10.02.2015
  • 1094
  • 0
  • 10.02.2015
  • 2772
  • 3
  • 10.02.2015
  • 3759
  • 1
  • 10.02.2015
  • 2548
  • 10
  • 10.02.2015
  • 2610
  • 0

Закон Ома назван в честь своего открывателя это ученый Георг Симон Ом. Свои эксперименты в области электричества он начал вдохновляясь опытами Фурье. Ом проводил свои опыты с различными материалами и изучение их электропроводности. Так была разработана знаменитая формула, которая стала краеугольной в современной физике, которая вошла в школьные учебники: I=U/R. Сила тока пропорциональна величине напряжения и имеет обратную пропорциональность сопротивлению.

В статье подробно разобраны области теории и практического применения принципов закона Ома в современной электротехнике. В качестве дополнения, в материале содержатся два обучающих видеоролика и один научный материал на тему статьи.

Закон Ома

Закон Ома показывает отношения между напряжением (U), током (I) и сопротивлением (R). Записано это может быть тремя разными способами:

U = I × R

или

I = V/R

или

R = V/I

Где:

  • V – напряжение в вольтах (В);
  • I – сила тока в амперах (А);
  • R – сопротивление в омах (Ом);

Для большинства схем амперы – слишком большие величины, а омы – слишком маленькие. Поэтому в формулу можно подставлять миллиамперы и килоомы. Если силу тока подставлять в миллиамперах (мА), то сопротивление обязательно должно быть в килоомах (кОм) и наоборот. Напряжение – всегда в вольтах.

Видоизменения закона Ома.
Видоизменения закона Ома.

Чтобы проще запомнить три разные версии определения Закона Ома, можно воспользоваться «VIR-треугольником».

  • Если надо вычислить напряжение, закрываем пальцем V. У нас остаются I и R. Они на одном уровне, значит между ними ставим знак умножения. Получается: V = I × R .
  • Если вычисляем ток, закрываем пальцем I. У нас остаётся V над R. Значит напряжение делится на сопротивление:  I = V/R .
  • Аналогичным образом поступаем при вычислении сопротивления. Закрываем R. Остаётся V над I. Значит: R = V/I .

Закон Ома, определение: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Есть также частный случай – Закон Ома для участка цепи – сила тока в участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению этого участка.

Закон Ома для цепи

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R, но некоторые изменения и уточнения внести, думаю, стоит. Возьмем замкнутую электрическую цепь и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

φ1-φ2=I*R, где

  • I – ток, протекающий по участку цепи.
  • R – сопротивление этого участка.
  • φ1-φ2 – разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R. Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U1=I*R1
  • U2=I*R2
  • Un=I*Rn
  • U=I*(R1+R2+…+Rn

Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

U=U1+U2+…+Un или U1/U2/…/Un=R1/R2/…/Rn

Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа.

Закон Ома для участка цепи.
Закон Ома для участка цепи.

Для ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:

Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

Для полной цепи

Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r). Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной. Закон Ома рассмотрен здесь достаточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

Все о законе Ома: простыми словами с примерами для “чайников”

Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС. Поэтому логичным является некоторое изменение выше рассмотренной формулы:

I = U / (R + r)

Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС. Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.

Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины. Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.

Для переменного тока

Переменный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление. Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением. Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).

Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида. И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее. Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.

Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.

Для замкнутой цепи

На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие активного сопротивления от реактивного в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.

Следствия закона Ома.
Следствия закона Ома.

Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.

Формула для расчета падения напряжения на индуктивном сопротивлении:

U = I ⋅ ωL

Где L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).

Формула для расчета падения напряжения на емкостном сопротивлении:

U = I / ω ⋅ С

С – емкость реактивного сопротивления.

Эти две формулы – частные случаи закона Ома для переменных цепей.

Полный же будет выглядеть следующем образом:

I = U / Z

Здесь Z – полное сопротивление переменной цепи известное как импеданс.

Сфера применения

Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:

  • Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
  • В сверхпроводниках;
  • Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
  • В вакуумных и газовых радиолампах;
  • В диодах и транзисторах.
Все о законе Ома: простыми словами с примерами для “чайников”
Все о законе Ома: простыми словами с примерами для “чайников”
Все о законе Ома: простыми словами с примерами для “чайников”

Последовательное и параллельное включение элементов

Для элементов электрической цепи (участка цепи) характерным моментом является последовательное либо параллельное соединение. Соответственно, каждый вид соединения сопровождается разным характером течения тока и подводкой напряжения. На этот счёт закон Ома также применяется по-разному, в зависимости от варианта включения элементов.

Цепь последовательно включенных резистивных элементов

Применительно к последовательному соединению (участку цепи с двумя компонентами) используется формулировка:

  • I = I1= I2 ;
  • U = U1+ U2 ;
  • R = R1+ R2

Такая формулировка явно демонстрирует, что, независимо от числа последовательно соединенных резистивных компонентов, ток, текущий на участке цепи, не меняет значения. Величина напряжения, приложенного к действующим резистивным компонентам схемы, является суммой и составляет в целом значение источника ЭДС.

При этом напряжение на каждом отдельном компоненте равно: Ux = I * Rx. Общее сопротивление следует рассматривать как сумму номиналов всех резистивных компонентов цепи.

Цепь параллельно включенных резистивных элементов

На случай, когда имеет место параллельное включение резистивных компонентов, справедливой относительно закона немецкого физика Ома считается формулировка:

  • I = I1+ I2 … ;
  • U = U1= U2 … ;
  • 1 / R = 1 / R1+ 1 / R2 + …

Не исключаются варианты составления схемных участков «смешанного» вида, когда используется параллельное и последовательное соединение. Для таких вариантов расчет обычно ведется изначальным расчетом резистивного номинала параллельного соединения. Затем к полученному результату добавляется номинал резистора, включенного последовательно.

Интегральная и дифференциальная формы закона

Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры. Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.

Для учёта таких различий существует вариация, так называемого, «дифференциально-интегрального закона Ома». Для бесконечно малого проводника рассчитывается уровень плотности тока в зависимости от напряженности и величины удельной проводимости.

Под дифференциальный расчет берется формула: J = ό * E. Для интегрального расчета, соответственно, формулировка: I * R = φ1 – φ2 + έ Однако эти примеры скорее уже ближе к школе высшей математики и в реальной практике простого электрика фактически не применяются.

Все о законе Ома: простыми словами с примерами для “чайников”

Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления, тем больше я понимаю что  делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.

Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей — проводников.

Для начала давайте вспомним, что такое проводник? Проводник — это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:

формула сопротивления проводника

формула сопротивление проводника

ρ – это удельное сопротивление, Ом × м

R – сопротивление проводника, Ом

S – площадь поперечного сечения, м2

l – длина проводника, м

Более подробно об этом я писал здесь.

Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.

резистор

обозначение резистора на схемах

Последовательное соединение проводников

Сопротивление при последовательном соединении проводников

Последовательное соединение проводников — это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.

последовательное соединение проводников

последовательное соединение резисторов

Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.

общее сопротивление при последовательном соединении

Получается, можно записать, что

формула при последовательном соединении проводников

формула при последовательном соединении резисторов

Пример

У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.

Решение

Rобщее =R1 + R2 + R3 = 3+5+2=10 Ом.

То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .

общее сопротивление

показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:

Сила тока через последовательное соединение проводников

Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.

замкнутая цепь

Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .

сила тока через последовательное соединение проводников

сила тока через последовательное соединение проводников

Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .

Напряжение при последовательном соединении проводников

Давайте еще раз рассмотрим цепь с тремя резисторами

цепь с тремя резисторами

Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?

Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на  любом резисторе. Давайте так и сделаем.

Пусть у нас будет цепь с такими параметрами.

задача на закон ома

Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.

общее сопротивление

Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.

Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3  . Но как это сделать?

падение напряжения на резисторе

Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.

Следовательно,

UR1 = IR1 =1×2=2 Вольта

UR2 = IR2 = 1×3=3 Вольта

UR3 = IR3 =1×5=5 Вольт

Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.

Получается

U=UR1+UR2+UR3

Мы получили самый простой делитель напряжения.

Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.

Параллельное соединение проводников

Параллельное соединение проводников выглядит вот так.

параллельное соединение проводников

параллельное соединение резисторов

Ну что, думаю, начнем с сопротивления.

Сопротивление при параллельном соединении проводников

Давайте пометим клеммы как А и В

В этом случае общее сопротивление RAB будет находиться по формуле

Если же мы имеем только два параллельно соединенных проводника

параллельное соединение двух резисторов

То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.

сопротивление двух резисторов, включенных параллельно формула

Напряжение при параллельном соединении проводников

Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.

резисторы в параллель

Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn

напряжение при параллельном соединении проводников

Сила тока при параллельном соединении проводников

Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.

Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.

делитель тока

Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что

I1 = U/R1

I2 = U/R2

I3 = U/R3

Если бы у нас еще были резисторы, соединенные параллельно, то для них

In = U/Rn

В этом случае, сила тока в цепи будет равна:

формула делителя тока

Задача

Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.

задача на делитель тока

Решение

Воспользуемся формулами, которые приводили выше.

I1 = U/R1

I2 = U/R2

I3 = U/R3

Если бы у нас еще были резисторы, соединенные параллельно, то для них

In = U/Rn

Следовательно,

I1 = U/R1 = 10/2=5 Ампер

I2 = U/R2 = 10/5=2 Ампера

I3 = U/R3 = 10/10=1 Ампер

Далее, воспользуемся формулой

формула делителя тока

чтобы найти силу тока, которая течет в цепи

I=I1 + I2 + I3 = 5+2+1=8 Ампер

2-ой способ найти I

I=U/Rобщее

Чтобы найти Rобщее мы должны воспользоваться формулой

Последовательное и параллельное соединение

Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них — «калькулятор резисторов«. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.

I=U/Rобщее = 10/1,25=8 Ампер.

Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.

Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.

Подробное объяснение на видео:

Прикольный набор радиолюбителя по ссылке <<<

Похожие статьи по теме «последовательное и параллельное соединение»

Закон Ома

Проводник (электрический проводник)

Что такое резистор

Делитель напряжения

Делитель тока

Что такое напряжение

Что такое сила тока

Вы уже знаете, что есть два типа соединения элементов электрической цепи: последовательный и параллельный. Последовательно мы подключали в цепь амперметр, а параллельно — вольтметр.

На данном уроке мы более подробно рассмотрим последовательное соединение. Мы будем использовать сразу несколько потребителей электроэнергии и узнаем, каким закономерностям подчиняются уже известные нам величины (сила тока, сопротивление и напряжение) при таком соединении элементов в цепи.  

Последовательное включение элементов в электрическую цепь

Соберем электрическую цепь. Последовательно соединим две электролампы, два источника тока и ключа (рисунок 1).

Обратите внимание, что при таком подключении аккумуляторов соблюдается определенная полярность подключения: провод, идущий от положительного полюса одного аккумулятора необходимо соединить с отрицательным полюсом другого аккумулятора. И, наоборот, провод идущий от отрицательного полюса одного аккумулятора соединяется с положительным полюсом другого.

Рисунок 1. Электрическая цепь с последовательным подключением электроламп

Если в такой цепи попытаться выключить только одну лампу, то погаснет и вторая.

Схема этой электрической цепи показана на рисунке 2.

Рисунок 2. Схема электрической цепи с последовательным подключением электроламп

В такую цепь мы можем подключить еще несколько ламп или некоторое количество других потребителей электроэнергии. Поэтому все закономерности, которые мы рассмотрим далее, будут справедливы для любого количества последовательно подключенных в цепь проводников.

Сила тока в цепи при последовательном соединении проводников

При изучении силы тока мы измеряли ее на различных участках электрической цепи (рисунок 3). Полученные с помощью амперметра значения силы тока были одинаковы.

Рисунок 3. Измерение силы тока на различных участках электрической цепи при последовательном соединении ее элементов

При этом все элементы у нас были соединены последовательно. Сделаем вывод.

При последовательном соединении сила тока в любых частях цепи одна и та же:
$I = I_1 = I_2 = … = I_n$.

Сопротивление в цепи при последовательном соединении проводников

Как найти общее сопротивление цепи, зная сопротивление отдельных проводников, при последовательном соединении?

Давайте порассуждаем. В цепи был один проводник с определенным сопротивлением. Мы последовательно подключаем второй. Представим эти два проводника в виде одного элемента цепи. Тогда получается, что, подсоединив второй проводник, мы увеличили длину первого.

Сопротивление же зависит от длины проводника. Поэтому суммарное сопротивление цепи будет точно больше сопротивления одного проводника.

Общее сопротивление цепи при последовательном соединении равно сумме сопротивлений отдельных проводников (или отдельных участков цепи):
$R = R_1 + R_2 + … + R_n$.

На схемах электрических цепей последовательное соединение нескольких проводников изображается так, как показано на рисунке 4.

Рисунок 4. Последовательное соединение проводников на схеме электрической цепи

Напряжение в цепи при последовательном соединении проводников

Используя закон Ома для участка цепи, мы можем найти напряжение и на концах этих участков:
$U_1 = IR_1$,
$U_2 = IR_2$,

$U_n = IR_n$.

Получается, что напряжение будет тем больше, чем больше сопротивление на участках цепи. Сила тока же везде будет одинакова.

Как найти напряжение участка цепи, состоящего из последовательно соединенных проводников, зная напряжение на каждом?

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:
$U = U_1 + U_2 + … + U_n$.

Полное напряжение в цепи и закон сохранения энергии

Давайте вспомним, что напряжение определяется работой электрического тока. Эта работа совершается при прохождении по участку цепи электрического заряда, равного $1 space Кл$:
$U = frac{A}{q}$.

За счет чего совершается эта работа? Мы уже говорили, что электрическое поле обладает некоторой энергией. Именно за счет нее и идет совершение работы.

Такая работа совершается на каждом участке цепи, которую мы рассматриваем. Пользуясь законом сохранения энергии, мы можем сделать следующий вывод.

Энергия, израсходованная на всей цепи, равна сумме энергий, которые расходуются на отдельных ее участках (проводниках).

Пример задачи

Два проводника сопротивлением $R_1 = 2 space Ом$ и $R_2 = 3 space Ом$ соединены последовательно. Сила тока в цепи равна $1 space А$. Определите сопротивление цепи, напряжение на каждом проводнике и полное напряжение всего участка цепи.

Так как проводники соединены последовательно, мы будем использовать формулы, полученные на данном уроке.

Дано:
$R_1 = 2 space Ом$
$R_2 = 3 space Ом$
$I = 1 space А$

$R — ?$
$U_1 — ?$
$U_2 — ?$
$U — ?$

Решение:

Общее сопротивление цепи будет равно сумме сопротивлений составляющих ее проводников:
$R = R_1 + R_2$.

Рассчитаем его:
$R = 2 space Ом + 3 space Ом = 5 space Ом$.

Сила тока на всех участках цепи будет одинакова и равна $1 space А$.

Запишем закон Ома для участка цепи с первым проводником и выразим из него напряжение на концах первого проводника:
$I = frac{U_1}{R_1}$,
$U_1 = IR_1$.

Рассчитаем его:
$U_1 = 1 space А cdot 2 space Ом = 2 space В$.

Так же рассчитаем напряжение на концах второго проводника:
$I = frac{U_2}{R_2}$,
$U_2 = IR_2$,
$U_2 = 1 space А cdot 3 space Ом = 3 space В$.

При последовательном соединении проводников полное напряжение в цепи мы можем рассчитать двумя способами.

Способ №1
Напряжение на всей цепи равно сумме напряжений на концах проводников в этой цепи:
$U = U_1 + U_2$,
$U = 2 space В + 3 space В = 5 space В$.

Способ №2
Мы уже знаем общее сопротивление двух проводников. Получается, что эти два проводника мы можем представить как один целый. Используем закон Ома для участка цепи:
$I = frac{U}{R}$,
$U = IR$,
$U = 1 space А cdot 5 space Ом = 5 space В$.

Ответ: $R = 5 space Ом$, $U_1 = 2 space В$, $U_2 = 3 space В$, $U = 5 space В$.

Упражнения

Упражнение №1

Цепь состоит из двух последовательно соединённых проводников, сопротивление которых $4 space Ом$ и $6 space Ом$. Сила тока в цепи равна $0.2 space А$. Найдите напряжение на каждом из проводников и общее напряжение.

Дано:
$R_1 = 4 space Ом$
$R_2 = 6 space Ом$

$I = 0.2 space А$

$U_1 — ?$
$U_2 — ?$
$U — ?$

Показать решение и ответ

Скрыть

Решение:

Используя закон Ома для участка цепи,  мы рассчитаем значения напряжения на концах первого и второго проводников. Сила тока на всех участках цепи одинакова.

Напряжение на концах первого проводника:
$I = frac{U_1}{R_1}$,
$U_1 = IR_1$,
$U_1 = 0.2 space А cdot 4 space Ом = 0.8 space В$.

Напряжение на концах второго проводника:
$I = frac{U_2}{R_2}$,
$U_2 = IR_2$,
$U_2 = 0.2 space А cdot 6 space Ом = 1.2 space В$.

Общее напряжение будет равно сумме напряжений на концах каждого проводника:
$U = U_1 + U_2$,
$U = 0.8 space В + 1.2 space В = 2 space В$.

Ответ: $U_1 = 0.8 space В$, $U_2 = 1.2 space В$, $U = 2 space В$.

Упражнение №2

Для электропоездов применяют напряжение, равное $3000 space В$. Как можно использовать для освещения вагонов лампы, рассчитанные на напряжение $50 space В$ каждая?

Такие лампы можно соединить последовательно в одну цепь. Главное, чтобы их суммарное напряжение не превышало общее. Рассчитаем количество таких ламп, которое мы можем включить в цепь.

Дано:
$U = 3000 space В$
$U_1 = 50 space В$

$n — ?$

Показать решение и ответ

Скрыть

Решение:

Все лампы будут иметь одинаковое напряжение в $50 space В$. Напряжение на всей цепи равно сумме напряжений на каждой лампе. Тогда:
$n = frac{U}{U_1}$,
$n = frac{3000 space В}{50 space} = 60$.

Получается, что в таком электропоезде мы можем разместить 60 ламп для освещения вагонов, соединив их последовательно.

Ответ: при последовательном соединении мы можем использовать $n = 60$ ламп.

Упражнение №3

Две одинаковые лампы, рассчитанные на $220 space В$ каждая, соединены последовательно и включены в сеть с напряжением $220 space В$. Под каким напряжением будет находиться каждая лампа?

Дано:

$U = 220 space В$

$U_1 — ?$
$U_2 — ?$

Показать решение и ответ

Скрыть

Решение:

Лампы соединены последовательно. Значит, $U = U_1 + U_2$.

Если лампы одинаковые, то они имеют одинаковые сопротивления $R$. Сила тока тоже одинакова в каждой лампе. Из этого мы можем сделать вывод, что напряжение на лампах будет одинаковым:
$U_1 = IR$, $U_2 = IR$, $U_1 = U_2$.

Тогда мы можем записать следующее:
$U = U_1 + U_2 = 2U_1$.

Рассчитаем напряжение на одной лампе:
$U_1 = U_2 =  frac{U}{2}$,

$U_1 = U_2  = frac{220 space В}{2} = 110 space В$.

Ответ: $U_1 = U_2 = 110 space В$.

Упражнение №4

Электрическая цепь состоит из источника тока — батареи аккумуляторов, создающей в цепи напряжение, равное $6 space В$, лампочки от карманного фонаря с сопротивлением в $13.5 space Ом$, двух спиралей c сопротивлением $3 space Ом$ и $2 space Ом$, ключа и соединительных проводов. Все детали цепи соединены последовательно. Начертите схему цепи. Определите силу тока в цепи, напряжение на концах каждого из потребителей тока.

Схема такой цепи изображена на рисунке 5.

Рисунок 5. Схема электрической цепи к упражнению №4

Дано:
$U = 6 space В$
$R_1 = 13.5 space Ом$
$R_2 = 3 space Ом$
$R_3 = 2 space Ом$

$I — ?$
$U_1 — ?$
$U_2 — ?$
$U_3 — ?$

Показать решение и ответ

Скрыть

Решение:

Сначала рассчитаем общее сопротивление на всей цепи:
$R = R_1 + R_2 + R_3$,
$R = 13.5 space Ом + 3 space Ом + 2 space Ом = 18.5 space Ом$.

Теперь используем закон Ома для того, чтобы рассчитать силу тока в цепи:
$I = frac{U}{R}$,
$I = frac{6 space В}{18.5 space Ом} approx 0.32 space А$.

Сила тока на каждом участке цепи при последовательном соединении элементов будет одинакова. Теперь мы будем использовать закон Ома отдельно для каждого проводника.

Рассчитаем напряжение на лампочке от карманного фонаря:
$U_1 = IR_1$,
$U_1 = 0.32 space А cdot 13.5 space Ом approx 4.3 space В$.

Рассчитаем напряжение на первой спирали:
$U_2 = IR_2$,
$U_2 = 0.32 space А cdot 3 space Ом approx 1 space В$.

Рассчитаем напряжение на второй спирали:
$U_3 = IR_3$,
$U_3 = 0.32 space А cdot 2 space Ом approx 0.6 space В$.

Ответ: $I approx 0.32 space А$, $U_1 approx 4.3 space В$, $U_2 approx 1 space В$, $U_3 approx 0.6 space В$.

Закон
Ома для участка цепи: сила
тока
I
на участке электрической цепи прямо
пропорциональна напряжению
U
на концах участка и обратно пропорциональна
его сопротивлению

R.

Формула
закона:

I=.
Отсюда запишем формулыUIR
и R
=
.


Рис.1.
Участок
цепи
Рис.2.
Полная
цепь

Закон
Ома для полной цепи: сила
тока
I
полной электрической цепи
равна
ЭДС
(электродвижущей силе) источника тока
Е,
деленной на полное сопротивление цепи
(R
+ r).
Полное
сопротивление цепи равно сумме
сопротивлений внешней цепи R
и внутреннего r
источника тока.
Формула
закона I
=


.
На
рис. 1 и 2 приведены схемы электрических
цепей.

3. Последовательное и параллельное соединение проводников

Проводники
в электрических цепях могут соединяться
последовательно
и параллельно.
Смешанное соединение сочетает оба эти
соединения.

Сопротивление,
при
включении которого
вместо всех других проводников,
находящихся между двумя точками цепи,
ток и напряжение остаются неизменными,
называют
эквивалентным
сопротивлением

этих
проводников.

Последовательное соединение

Последовательным
называется соединение, при котором
каждый
проводник соединяется только с одним
предыдущим и одним последующим
проводниками.

Как
следует из первого правила
Кирхгофа
,
при последовательном
соединении проводников сила электрического
тока, протекающего по всем проводникам,
одинакова (на основании закона сохранения
заряда).

1.
При последовательном соединении

проводников
(рис. 1)
сила
тока во всех проводниках одинакова:
I1 = I2 = 
I3
=
I


Рис.
1.
Последовательное
соединение двух проводников.

2.
Согласно закону Ома, напряжения
U1
и
U2
на
проводниках равны U1 = IR1,  U2 = IR2,
U3 = IR3.

Напряжение
при последовательном соединении
проводников равно сумме напряжений на
отдельных участках (проводниках)
электрической цепи.

U = U1
+
U2 + U3

По
закону
Ома, напряжения U1,
U2

на
проводниках равны
U1 = IR1,  U2 = IR2,
В
соответствии вторым правилом Кирхгофа
напряжение на всем участке:

U = U1
+
U2 =
IR1IR2
=

I(R
1+
R
2)=
I·R.

Получаем:
R =
R1 + R2 

Общее
напряжение
U
на проводниках равно сумме напряжений
U1,
U2
,
U3
равно:
U =
U1 + U2 + U3 = I·(R1 + R2
+ R3)
 = IR

где
RЭКВ


эквивалентное
сопротивление всей цепи. Отсюда: RЭКВ
=
R1 + R2 + R3

При
последовательном соединении эквивалентное
сопротивление цепи равно сумме
сопротивлений отдельных участков цепи:
R
 ЭКВ=
R1 + R2 + R3+…

Этот
результат справедлив для
любого числа

последовательно соединенных проводников.

Из
закона Ома
следует:
при равенстве сил тока при последовательном
соединении:

I = ,I = .
Отсюда
=
 или


=,
т. е. напряжения на отдельных участках
цепи прямо пропорциональны сопротивлениям
участков.

При
последовательном соединении n
одинаковых
проводников общее напряжение равно
произведению напряжению одного U1
на
их количество n:

UПОСЛЕД=
n
·
U1.
Аналогично
для сопротивлений:

RПОСЛЕД
=
n·
R1

При размыкании
цепи одного из последовательно
соединенных потребителей ток исчезает
во всей цепи, поэтому последовательное
соединение на практике не всегда удобно.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий