Как найти напряжение на концах провода

Содержание

  1. Другие вопросы из категории
  2. Читайте также
  3. Другие вопросы из категории
  4. Читайте также

1) I = UR
2) U = I * R
3) P = I*U
4) A = P

Через длину и сечение проводника ты можешь узнать ТОЛЬКО его сопротивление! Для определения напряжения тебе потребуется закон Ома, если, конечно, проводник не помещён в магнитное поле и в нём не наводится ЭДС.
Сопротивление проводника: R=p*l / s, где p- удельное сопротивление материала проводника (ом*м/кв. мм) , l- длина проводника в метрах, s- сечение проводника в кв. мм

Другие вопросы из категории

2.Двигаясь по шоссе,велосипедист проехал 900 м. за 1 мин.,а затем по плохой дороге-400 м. за 40 с.
Определите его среднюю скорость движения(в метрах в секунду.)

акробат будет стоять на нем?

(Физика. 7класс. Плавание тел)

Читайте также

будет 15 В? 2)Если напряжение на концах проводника 6В,то сила тока в нём 1.5 А.Каким должно быть напряжение на концах проводника,чтобы сила тока в нём была 0.5А?

•По какой формуле можно рассчитывать сопротивление (удельное)проводников ?

сечения константановой проволоки длиной 8 м и сопротивлением 2 Ом. 3. Определите общее сопротивление цепи и силу тока в неразветвленной части цепи если R1=30 Ом, R2= 10 Ом, R3= 30 Ом. 4. Из какого материала изготовлен провод длинной 1 км и сечением 10 мм(в квадрате), если сила тока равна 3 А, а напряжение на концах провода 120 В. 5. Определите общее сопротивление цепи и напряжение на концах участка АВ, если R1=4 Ом, R2 =6 Ом, R3 = 15 Ом, R4 = 4 ом 6. Определите общее сопротивление цепи если R1 = 4 Ом, R2 = 6 Ом, R3 = 12 Ом, R4 = 12 Ом, R5 = 6 Ом 7. Чему равно напряжение на концах участка АВ если R1 = 3 Ом, R2 = 2 Ом, R3 = 4 Ом, R4 = 10 Ом, R5 = 10 Ом. Определите силу тока в каждом резисторе, если напряжение на концах участка АВ равно 10 В, а R1 = 6 Ом, R2 = 12 Ом, R3 = 6 Ом.

Какой длины нужно взять нихромовый проводник площадью поперечного сечения 0,2 мм в кв. для изготовления спирали нагревательного элемента сопротивлением 22 Ом?

3) При напряжении на концах проводника 6 В сила тока 1,5 А. Какова сила тока при напряжении 12 В?

РЕШИТЕ ПОЖАЛУЙСТА С ФОРМУЛАМИ .

если напряжение на его концах уменшится до 1В?

1) I = UR
2) U = I * R
3) P = I*U
4) A = P

Через длину и сечение проводника ты можешь узнать ТОЛЬКО его сопротивление! Для определения напряжения тебе потребуется закон Ома, если, конечно, проводник не помещён в магнитное поле и в нём не наводится ЭДС.
Сопротивление проводника: R=p*l / s, где p- удельное сопротивление материала проводника (ом*м/кв. мм) , l- длина проводника в метрах, s- сечение проводника в кв. мм

Другие вопросы из категории

2.Двигаясь по шоссе,велосипедист проехал 900 м. за 1 мин.,а затем по плохой дороге-400 м. за 40 с.
Определите его среднюю скорость движения(в метрах в секунду.)

акробат будет стоять на нем?

(Физика. 7класс. Плавание тел)

Читайте также

будет 15 В? 2)Если напряжение на концах проводника 6В,то сила тока в нём 1.5 А.Каким должно быть напряжение на концах проводника,чтобы сила тока в нём была 0.5А?

•По какой формуле можно рассчитывать сопротивление (удельное)проводников ?

сечения константановой проволоки длиной 8 м и сопротивлением 2 Ом. 3. Определите общее сопротивление цепи и силу тока в неразветвленной части цепи если R1=30 Ом, R2= 10 Ом, R3= 30 Ом. 4. Из какого материала изготовлен провод длинной 1 км и сечением 10 мм(в квадрате), если сила тока равна 3 А, а напряжение на концах провода 120 В. 5. Определите общее сопротивление цепи и напряжение на концах участка АВ, если R1=4 Ом, R2 =6 Ом, R3 = 15 Ом, R4 = 4 ом 6. Определите общее сопротивление цепи если R1 = 4 Ом, R2 = 6 Ом, R3 = 12 Ом, R4 = 12 Ом, R5 = 6 Ом 7. Чему равно напряжение на концах участка АВ если R1 = 3 Ом, R2 = 2 Ом, R3 = 4 Ом, R4 = 10 Ом, R5 = 10 Ом. Определите силу тока в каждом резисторе, если напряжение на концах участка АВ равно 10 В, а R1 = 6 Ом, R2 = 12 Ом, R3 = 6 Ом.

Какой длины нужно взять нихромовый проводник площадью поперечного сечения 0,2 мм в кв. для изготовления спирали нагревательного элемента сопротивлением 22 Ом?

3) При напряжении на концах проводника 6 В сила тока 1,5 А. Какова сила тока при напряжении 12 В?

РЕШИТЕ ПОЖАЛУЙСТА С ФОРМУЛАМИ .

если напряжение на его концах уменшится до 1В?

OBRAZOVALKA.COM — образовательный портал
Наш сайт это площадка для образовательных консультаций, вопросов и ответов для школьников и студентов .

На вопросы могут отвечать также любые пользователи, в том числе и педагоги.

Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.

L = 200 см = 2 м.

S = 2 мм^2 = 2 *10^-6 м^2.

I = 2 А.

ρ = 0,15 *10^-6 Ом *м. 

U – ?

Переведем все величины в дано к единицам измерения Международной системы СИ.

1 м = 100 см, поэтому L = 200 см.

В 1 см 10 мм, значит в 1 м 1000 мм.

1 м^2 = 1 м *1 м = 1000 мм *1000 мм = 1 *10^6 мм^2. 

S = 2 мм^2 = 2 *10^-6 м^2. 

Закон Ома для участка цепи

Для проводника, по которому течет электрический ток, справедлив закон Ома для участка цепи.

Согласно закону Ома, сила тока в проводнике I прямо пропорциональна напряжению U на концах проводника и обратно пропорционально сопротивлению проводника R.

Формула выражающая закон Ома имеет вид: I = U/ R.

Выразим напряжение на концах проводника: U = I *R.

Сопротивление проводника R

Сопротивление R цилиндрического проводника определяется формулой: R = ρ *L / S, где 

  • ρ – удельное сопротивление материала из которого сделан проводник;
  • L – длинна проводника;
  • S – площадь поперечного сечения проводника.

Формула для определения напряжения на концах проводника будет иметь вид: 

 U = I * ρ *L / S.

Величину удельного сопротивления стали ρ = 0,15 *10^-6 Ом *м возьмем из таблицы удельного сопротивления веществ.

Подставим в формулу числовые значения величин из условия задачи.

U = 2 А * 0,15 *10^-6 Ом *м *2 м / 2 *10^-6 м^2 = 0,3 В.

Ответ: напряжение на концах стального проводника составляет U = 0,3 В.

Как измерить напряжение мультиметром

Почти каждому из нас рано или поздно доводилось (или еще придется) столкнуться с задачей измерить электрическое напряжение. Это может понадобиться вам в одной из бесконечного множества бытовых ситуаций, и хорошо бы заранее знать, как и при помощи чего это можно сделать.
Для измерения напряжения вам понадобится всего лишь один прибор под названием «мультиметр» и источник электроэнергии. Измерить напряжение завалявшейся батарейки, блока питания для ноутбука, оголенных проводов в квартире — это одни из наиболее частых применений.

В этой статье мы на примере рассмотрим как измерять напряжение электрической энергии при помощи бытового мультиметра.

В качестве примера, для чего это нужно знать каждому, можно привести несколько бытовых ситуаций: замерив напряжение на батарейке можно понять, насколько она «здорова», или может быть её уже можно выбрасывать; лампа в люстре не горит, хотя лампочка новая — стоит проверить, возможно проблема в проводке; при отключении электричества на щитке в подъезде не лишним будет убедиться, действительно ли вы обесточили всю квартиру. В общем, применений масса.

С задачами разобрались, теперь стоит рассказать о том, что вам для понадобится для измерений. В 99% бытовых ситуаций вам будет нужен лишь источник переменного или постоянного тока и «мультиметр» — прибор измеряющий напряжение, также называемый «тестером», и другие электрические показатели, а конкретно одна из его функций — вольтметр. Для домашних замеров подойдет самая простая модель, которую можно найти в магазине по цене от 200 рублей.

И совсем немного о токе. Напряжение электрического тока измеряется в вольтах (V). Сам ток может быть постоянным (DCV) или переменным (ACV). В розетке и домашней проводке ток всегда переменный, а у всего, где есть «+» и «-» (батареек, аккумуляторов и т.д.) постоянный. Первым делом определите, какой ток вы собрались измерять и выберите на мультиметре соответствующее положение переключателя: DCV — постоянный ток, ACV — переменный ток.

Цифровые значения на мультиметре — это максимальные измеряемые показатели. Если вы даже приблизительно не знаете какое напряжение вам предстоит измерить, начните с установки на самое высокое значение.

Стоит учесть, что многие современные мультиметры умеют сами определять какой ток на них подается — постоянный или переменный. Если ваш мультиметр из таких, то вместо положений переключателя DCV и ACV у вас будет одно положение — V. В таком случае просто выставьте его.

Приборы измерения напряжения

Индикаторы либо указатели своим действием указывают на наличие какого-то уровня напряжения на проверяемом участке. Они не предназначены для определения его величины.

Функция измерения возложена на приборы, которые наделены определенными метрологическими характеристиками — вольтметрами.

У цифровых приборов функции измерительной головки возложены на измерительные, логические и информационные органы.

Домашнему мастеру для выполнения подобной работы рекомендуется приобрести комбинированный прибор, обладающий функциями измерения напряжения, тока, сопротивления.

Мультиметры, тестеры и их разновидности

Мультиметр, он же мультитестер, являет собой специальное устройство для измерения самых разнообразных характеристик и параметров электрической сети, а также питающихся от нее деталей и элементов.

Прибор предназначен для того, чтобы на объекте строительства или ремонта можно было с высокой точностью определить:

  • постоянное и переменное напряжение;
  • переменный и постоянный ток;
  • сопротивление, емкость и многое другое.

Кроме вышеуказанных параметров, мультиметры оснащаются дополнительными функциями измерения, что позволяет также тестировать транзисторы, “прозванивать” кабель электропроводки до распределительной коробки и выходящие из нее провода, проверять работоспособность диодов и т.д.

Метрические приборы бывают двух основных видов: аналоговые и цифровые. Эти устройства отличаются функционалом, точностью измерения, качеством сборки, комплектацией. В любом случае это очень полезные измерительные системы для каждого.

В аналоговом мультитестере результат измерений отображается с помощью обычной стрелки на шкале. Иногда эксплуатация такого аналогового прибора не совсем уместна – новичку или не специалисту в области электрики тяжело разобраться со всеми шкалами, “ценой деления” определённого параметра, вычислить итоговое значение электрической характеристики.

И ещё, аналоговый тестер не имеет фиксации стрелки на позиции, что затрудняет считывание результата и вообще работу с прибором.

Цифровой мультиметр представляет результаты измерений в виде цифровых значений на жидкокристаллическом экране. Он обеспечивает предельную простоту эксплуатации устройства, позволяет исключить любые ошибки связанные со снятием показаний и расчётом необходимого параметра, учитывая “цену деления” шкалы. Это одна из основных причин популярности цифровых мультитестеров у мастеров.

Стандартные мультиметры могут стоить более 5 у.е. Но одно остаётся всегда неизменным – центральное место на панели занимает поворотный триггер. Не меняется расположение остальных элементов управления по углам панели, наличие необходимых разъёмов внизу панели, разноцветные условные обозначения.

Если будете приобретать такое изделие, обязательно покупайте с внешним силиконовым чехлов, который защищает от пыли, влаги, падений с небольшой высоты, имеет специальные зажимы и подставку, что бывает очень полезным в самых неожиданных ситуациях эксплуатации мультитестера.

Безопасная и правильная работа мультиметром

Работа с электрическими приборами и сетями должна быть безопасной. Это правило относиться и к процедуре прозвона проводников мультиметром. Выделим основные рекомендации, которых нужно придерживаться перед началом и в ходе работ:

  1. В первую очередь, цепь должна быть полностью обесточена посредством выключения автомата в распределительном щит, извлечения элементов питания (если рассматриваемый объект — электронный прибор).
  2. Имеющиеся в цепи конденсаторы должны быть разряжены закорачиванием. Иначе, при измерительных работах мультиметр может выйти из строя.
  3. Для удобства при прозвонке рекомендуется на концах измерительных проводов использовать специальные наконечники («крокодилы»). Данные приспособления создают надежный контакт с исследуемым проводником и, при этом, освобождают руки.
  4. Пытаясь зафиксировать щуп, не рекомендуется прикасаться пальцами рук к оголенным проводам и кончику щупа. В противном случае, полученные результаты могут быть некорректными.

Определение с помощью мультиметра

Любой домашний электрик должен иметь в своем наборе инструментов мультиметр. Это универсальный тестер, позволяющий проверять работоспособность электронных компонентов, измерять напряжение и силу тока, а также прозванивать цепи. Недорогое и качественное устройство с простейшим функционалом можно купить за 300-500 рублей. Профессиональные электрики используют более дорогие приборы с дополнительными опциями и минимальной погрешностью.

Мультиметры бывают двух видов по способу работы – электронные и аналоговые. Стрелочные или аналоговые – это простой прибор со стрелкой. Цифровой мультитестер показывает значения цифрами. Метод определения для обоих видов устройств одинаков.

Правила работы с мультиметром:

  • Нельзя проводить измерения при повышенной влажности.
  • Не используются неисправные щупы.
  • Предел измерения должен превышать измеряемое значение.
  • При замерах запрещено крутить ручки или ставить другие пределы.

В настоящее время активно используются именно цифровые мультиметры. Алгоритм проверки может отличаться.

Проводка из трех проводов без маркировки

Можно выбрать метод исключения. Чтобы найти фазу, мультиметр следует собрать и поставить щупы слева и справа – черный в разъем COM, красный – в разъем для измерения напряжения. Переключатель следует поставить в сектор переменного напряжения V

или ACV. Стрелкой выбирается граница напряжения – оно должно превышать сетевое. На тестере можно увидеть значения 500, 600, 750 Вт в зависимости от модели.

Затем проводятся измерения напряжения между зачищенными жилами. Может получиться 3 варианта:

  • Между нулем и фазой должно быть напряжение, близкое к сетевому 220 В.
  • Между фазой и землей также может быть 220 В. В случае защиты линии системой УЗО автомат может сработать. Если УЗО отсутствует или есть минимальный ток утечки, показываемое напряжение будет в пределах погрешности номинала.
  • Между нулем и землей напряжение нулевое.

После проведения измерений тестер выключается, концы проводника изолируются и на них наносится маркировка. Ее можно сделать с помощью цветного скотча или пластыря с соответствующими надписями.

Проверка контакта в розетке непосредственным замером напряжения

Мультиметр подготавливается, производится контрольное измерение напряжения в розетке. Это позволяет убедиться в отсутствии обрывов на линии и работоспособности самого устройства. Если полученные на дисплее цифры корректны, подсоединение выполнено верно.

Красным щупом нужно коснуться тестируемого проводника. В случае проверки розетки щуп ставится в гнездо. Если проверяется зачищенный конец кабеля, рекомендуется подключаться через зажим-крокодил. Второй щуп прикасается к пальцам руки. На дисплее замеряются показания. В случае установки черного щупа на ноль напряжение будет нулевым или близким к нулю. При попадании на фазу напряжение будет достигать десятков или сотен вольт.

Касание щупа рукой в данном измерении безопасно. Предварительно прибор тестировался на исправность, поэтому человек не будет поражен электрическим током, опасным для жизни. Но даже несмотря на безопасность процедуры не все могут переступить психологический барьер. Тогда можно коснуться щупом штукатурки, потолка или обоев. Они имеют небольшую влажность, поэтому показания на тестере будут видны. Они будут ниже необходимого значения, но определить фазу таким способом реально. Также в качестве второго контакта можно использовать любой заземленный прибор (отопительный радиатор, водопровод) или металлический каркас без заземления.

Поиск нуля и земли

Определение фазы не вызывает сложностей. Труднее отличить ноль от земли. Есть разные методики определения, но они все не являются достоверными. Точно выявить назначение жилы можно при помощи профессиональных приборов из арсенала специалистов.

Один из способов – проверка мультиметром. Если срабатывает УЗО, можно судить о том, что тестер был подключен между фазой и землей. При контакте с фазовым и нулевым проводником защитное устройство не срабатывает. Это связано с тем, что при замере между фазовой и заземляющей жилой образуется небольшой ток утечки, которого может не хватить для срабатывания защитной системы.

Второй способ – прозвон с помощью мультитестера. Мультиметр переводится в состояние измерения сопротивления. Диапазон можно поставить до 200 Ом. Обязательно нужно отключить напряжение на щитке. После этого следует проверить напряжение между проводниками и заземленным предметом. Значение сопротивления на заземляющей жиле должно быть ниже, чем на нулевой.

Описанные способы являются приблизительными и не дают стопроцентную гарантию правильности определения нуля и земли. Соединения могут быть разными, и разница в измерения во всех случаях бывают минимальной. При необходимости следует пользоваться специальными устройствами для определения.

Виды указателей напряжения для домашней сети

Частой ошибкой неопытных пользователей, создающей травмоопасную ситуацию, является использование электрических приборов не по их прямому назначению.

Все электрические приборы, включая индикаторы, создаются для работы только под определенным видом напряжения.

Эта величина всегда указывается производителем на корпусе.

Нельзя пользоваться индикатором на 220 вольт в сети 380 или выше. Это опасно для жизни.

Указатели напряжения до 0,4 кВ могут срабатывать на основе прохождения через них тока с:

  1. емкостным;
  2. или активным характером.

В первом случае ток идет через тело оператора, а во втором — минуя его по подключенным к цепи проводникам указателя.

Емкостные индикаторы напряжения

Их выполняют в виде отвертки с контактным кольцом. Острие указателя прикладывают к металлу проверяемого провода или контакту коммутационного прибора, а специальную металлическую площадку касаются пальцем руки.

Работа емкостного указателя напряжения

В этом случае создается электрическая цепь переменного тока, ограниченного встроенным в указатель резистором, по пути:

  • потенциал фазы;
  • проверяемый проводник;
  • внутренняя схема индикатора до контактной площадки;
  • человеческое тело;
  • контур земли.

Естественно, что ток указателя ограничен до безопасной величины в доли миллиампера. При его появлении загорается свет от вмонтированной в корпусе неоновой лампочки.

Индикатор напряжения ИН-90

Однопоолюсные индикаторы напряжения

Работая с подобными индикаторами можно ошибиться еще и по той причине, что при ярком свете солнца зрительное восприятие светящейся лампочки индикатора ослабляется, ее загорание можно просто не увидеть. Особенно это характерно для светодиодных бюджетных моделей.

При таких условиях лучше работают индикаторы с автономным питанием, дополнительно сигнализирующие о появлении напряжения писком зуммера.

Двухполюсные индикаторы напряжения

Эти указатели тоже работают по факту проходящего через них тока. Их наконечники прикладывают между проверяемыми потенциалами фазы и нуля. Человек не вступает в контакт с контролируемым током, отделен от него слоем усиленной изоляции.

Подобные указатели имеют в своем корпусе сигнальную лампу и два резистора:

  1. токоограничивающий;
  2. шунтирующий.

Двухполюсные индикаторы напряжения

Из старых моделей до сих пор популярны МИН-1. УНН-10. Диапазон рабочего напряжения лежит в пределах 70÷660 вольт, а лампа указателя зажигается от 60÷65. Эти приборы могут работать как в схемах переменного, так и постоянного тока.

Ассортимент современных приборов обширен. Среди них встречаются дорогие электронные и микропроцессорные изделия со множеством дополнительных функций, включающих:

  • проверку чередования фаз;
  • самодиагностику;
  • оценку работы УЗО;
  • автовключение;
  • подсветку зоны измерения;
  • звуковую индикацию и многие другие возможности.

Микропроцессорные индикаторы напряжения

На показания прибора такой конструкции не влияют паразитные емкости кабеля и связи. За счет этого их информация более достоверна и надежна, чем у емкостных аналогов.

Проверка приборов

Проверка тахометра

Для проверки нового тахометра необходимо подключить мультиметр к клемме на задней стороне прибора и заземлению. При подаче на прибор тока мультиметр зафиксирует показания. Этот прием можно использовать для любого прибора.

Многие приборы работают на токе, который проходит через стабилизатор напряжения. Если сразу несколько приборов отображают неверные показания, возможно, стабилизатор неисправен. Для проверки необходимо подключить к выходному разъему мультиметр и включить зажигание.

Проверка стабилизатора

В современных автомобилях некоторые приборы получают питание от стабилизатора напряжения. Если стабилизатор ломается, показания приборов искажаются. Перед проверкой каждого прибора необходимо проверить сам стабилизатор, подключив мультиметр к его выходному разъему и заземлению.

Мультиметр должен показывать примерно 10В, небольшие отклонения обусловлены действием реостата. Сильное отклонение свидетельствует о том, что мультиметр необходимо заменить.

Проверка исправности изоляции

Данное испытание проводят только с одного конца кабеля. Для этого зачищают проводники, включают мультиметр в режим измерения сопротивления, выбирают диапазон мегаом.

Не касаясь пальцами щупов, проверяют ими, нет ли пробоя между жилами.

Из-за емкости кабельных проводов на электронном дисплее вначале показания будут меняться, но в течение нескольких секунд емкость зарядится и на индикаторе должна высветиться единица в левой стороне экрана – это означает, что сопротивление настолько велико, что выходит за диапазон измерений.

Если же установится ноль, то это значит, что между жилами есть короткое замыкание. Бывает, что мультиметр показывает какое-то среднее значение. Если кабель новый, то он некачественный, и увлажнённая изоляция дает утечку, или же, может сказываться влияние электромагнитных помех.

В этом случае прибор переключают в более низкий диапазон – сотни килоом, и следят за показаниями – в случае электромагнитных наводок отображаемое на дисплее значение будет постоянно меняться, но если это неисправная изоляция, то показания будут стабильными.

Основные единицы измерения

Обязательно следует следить при проверке за руками – они не должны касаться щупов, чтобы не создавать погрешностей при измерениях. Часто таким способом можно проверить исправность проводки, находящейся во влажной стене, подключаясь к заведомо обесточенным и неподключённым к электроприборам проводам.

Прозвонка целостности проводника

В исправном кабеле каждая жила должна проводить электрический ток, и между ними не должно быть короткого замыкания.

Если кабель имеет маркированные провода, значит идентифицировать пары окончаний каждой жилы не нужно. В этом случае нет нужды подтягивать окончания кабеля в одно место, или тянуть провод от мультиметра к другому концу.

После проверки изоляции на пробой по описанному выше способу, достаточно будет зачистить и соединить в одну скрутку провода на одном конце кабеля, а на другом производить прозвонку.

Мультиметр переключают в режим измерения сопротивления, устанавливают самый низший диапазон – как правило, это 200 Ом, или специальный значок динамика специально предназначенный для прозвонки.

Мультиметр в положении переключения динамика для прозвонки

Всегда перед прозвонкой проверяют сам мультиметр – для этого соединяют два щупа вместе – тестер должен зазвенеть и показать ноль, уже после этого можно проводить измерения.

Для проверки будет достаточно подсоединить один щуп к любому проводу, а другим поочерёдно пройтись по всем жилам – везде они должны прозваниваться, то есть прибор должен издавать звуковой сигнал, если в нём присутствует данная опция, или показывать сопротивление, близкое к нулю.

Некоторые длинные кабели могут обладать сопротивлением в несколько Ом – это нормально. Если прибор показывает единицу справа – значит где-то в тестируемом проводе обрыв.

Как прозвонить проводку между распределительными коробками

Очень часто требуется найти окончания одного проводника в хитросплетении одноцветных проводов в распределительных коробках. В этом случае не обойтись без дополнительного проводника, с длиной большей расстояния между двумя коробками.

Как проверить высоковольтные провода

Обнаружить под капотом высоковольтные провода не составляет труда, как и их диагностика не таит в себе никаких сложностей. Проверить высоковольтные провода можно тремя способами, каждый из которых позволяет определить, наличие пробоя в них.

Визуальная диагностика

Самый простой способ проверки свечных проводов на наличие нарушения изоляции – это их визуальный осмотр. Необходимо внимательно посмотреть, чтобы по площади изоляции не было трещин, надрезов и сильных потертостей.

Еще один способ визуальной проверки свечных проводов – это наблюдение за их работой в темное время суток. Необходимо ночью открыть капот машины, завести двигатель, выключить фары и понаблюдать за высоковольтными проводами. Если в них имеются сильные пробои изоляции, в темноте «сверчки» будут видны невооруженным взглядом.

Проверка проводом

Для проверки свечных проводов может использоваться обыкновенный провод с зачищенными концами с двух сторон. Необходимо в темное время суток при включенном двигателе одну часть провода замкнуть «на массу» (корпус автомобиля), а второй водить по высоковольтным проводам в поисках места, где зачищенный наконечник начнет выдавать искру. Важно проверить не только изоляционный материал вокруг токопроводящей жилы, но и пластмассовые колпачки.

Диагностика мультиметром

Мультиметр в автомобильной диагностике чаще всего используется в качестве вольтметра, но имеется у него и еще одна полезная функция – возможность измерения сопротивления. Чтобы произвести замер необходимо полностью снять высоковольтные провода (или отключить один провод с двух сторон). Далее щупами выставленного в режим омметра прибора следует прикоснуться к двум сторонам провода, в результате чего мультиметр покажет информацию о сопротивлении.

Сопротивление исправных высоковольтных проводов находится на уровне до 10 кОм. При этом варьироваться оно может практически от нуля. Это зависит от типа самих проводов, используемой в них изоляции, длины, наличия микроповреждений и так далее.

Как проверить целостность провода в режиме определения сопротивления

В мультиметрах, где отсутствует функция прозвонки, проверку целостности провода можно осуществлять в режим измерения сопротивления.

Читать также: Угловой валик для покраски

В данном случае щупы подключаются также, как и при прозвонке, а прибор выставляется в режим определения сопротивления ().

Начинать измерения нужно на самом минимальном пороге шкалы прибора — например 200 Ом. Все действия такие же, как и при прозвонке. Нужно лишь следить за показаниями прибора. Если провод цел, то на дисплее отобразиться величина его сопротивления. Если есть обрыв, то сопротивление не отобразиться (OL — состояние перегрузки).

Найти напряжение концах проводника

Задача № 1. Два проводника сопротивлением 2 Ом и 3 Ом соединены последовательно. Сила тока в цепи 1 А. Определить сопротивление цепи, напряжение на каждом проводнике и полное напряжение.

Задача № 2. Два проводника сопротивлением 20 Ом и 30 Ом соединены последовательно. Напряжение на концах первого проводника 12 В. Определить сопротивление цепи, силу тока в цепи, напряжение на втором проводнике и полное напряжение.

Задача № 3. Два резистора соединены последовательно. Сопротивление первого 12 Ом, полное сопротивление 30 Ом. Сила тока в цепи 2 А. Определить сопротивление второго резистора, напряжение на каждом проводнике и полное напряжение.

Задача № 4. В каких пределах можно менять сопротивление в цепи, если сопротивление реостата R имеет пределы 0…10 Ом? Сопротивление резистора R1 равно 20 Ом.

Ответ: Сопротивления R и R1 соединены параллельны. Сопротивление цепи будет изменяться в пределах от 20 до 30 Ом.

Задача № 5. Последовательно с нитью накала радиолампы сопротивлением 3,9 Ом включен резистор, сопротивление которого 2,41 Ом. Определите их общее сопротивление.

Задача № 6. Общее сопротивление последовательно включенных двух ламп сопротивлением 15 Ом каждая и реостата равно 54 Ом. Определите сопротивление реостата.

Задача № 7. Два резистора сопротивлением 8 и 1 кОм соединены последовательно. Определите показание вольтметра, подключенного между точками А и С, если сила тока в цепи равна 3 мА. Что будет показывать вольтметр, подключенный между точками А и В, В и С?

Задача № 8. В цепь включены последовательно три проводника сопротивлениями: R1=5 Ом, R2=6 Ом, R3= 12 Ом. Какую силу тока показывает амперметр и каково напряжение между точками А и В, если показание вольтметра 1,2 В?

Задача № 9. Последовательно с электрической лампой включен реостат. Начертите схему цепи и определите сопротивление реостата и лампы, если напряжение на зажимах цепи 12 В. Вольтметр, подключенный к реостату, показывает 8 В. Сила тока в цепи 80 мА.

Краткая теория для решения Задачи на Последовательное соединение проводников.

Это конспект по теме «ЗАДАЧИ на Последовательное соединение проводников». Выберите дальнейшие действия:

Источник

Последовательное и параллельное соединения проводников

Урок 53. Физика 10 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Последовательное и параллельное соединения проводников»

От источника тока энергия может быть передана по проводам к устройствам, потребляющим энергию: электрической лампе, радиоприёмнику и так далее.

Совокупность устройств и элементов, предназначенных для протекания электрического тока, называют электрической цепью.

Любая электрическая цепь содержит, во-первых, источник тока, создающий необходимое напряжение, а во-вторых, нагрузку, то есть то устройство, в котором нужно создать ток и использовать одно из его действий. Нагрузкой может быть нагреватель или лампа накаливания (здесь используют тепловое действие тока), электродвигатель или звонок (используется магнитное действие тока), аккумулятор (это проявление химического действия тока). Звеньями же цепи являются соединительные провода и ключ, служащий для удобства и безопасности работы.

Рисунки, на которых изображены способы соединения электрических приборов в цепь, называются электрическими схемами.

Приборы на схемах принято обозначать условными знаками, часть из которых представлена на экране в виде таблицы.

Электрические цепи, с которыми приходится иметь дело на практике, обычно состоят не из одного проводника, а из системы различных проводников, которые могут быть соединены между собой по-разному.

Рассмотрим простую цепь, составленную из источника ток, ключа и двух проводников. Обратите внимание на то, что в представленной цепи конец одного проводника соединяется с началом другого, его конец — с началом третьего и так далее. Проще говоря, проводники имеют по одной общей точке. Такое соединение проводников принято называть последовательным соединением.

Как вы уже знаете, в проводниках, по которым течёт постоянный ток, электрический заряд не накапливается, и через любое поперечное сечение проводника за определённое время протекает один и тот же заряд. Следовательно, ток во всех частях последовательно соединённой цепи в каждый данный момент времени одинаков:

Напряжение же на концах каждого из проводников будет различно. Покажем это. Пусть I — это сила тока в цепи, R1 и R2 — сопротивления проводников, a U1 и U2 — напряжения на концах этих проводников.

На основании закона Ома мы с вами можем записать, что напряжения на концах проводников пропорциональны силе тока в цепи и их сопротивлениям:

Разделив первое равенство на второе, получим, что при последовательном соединении напряжения на проводниках пропорциональны их сопротивлениям:

Только при таком распределении напряжений и становится возможным один и тот же ток во всех участках цепи.

А полное напряжение на обоих проводниках (или напряжение на полюсах источника тока) равно сумме напряжений на отдельных проводниках:

Это легко проверить, если измерить напряжение на концах обоих проводников и на двух проводниках одновременно.

Также записанное нами равенство вытекает из того, что напряжение есть величина, измеряемая работой, совершаемой при перемещении единицы заряда на данном участке цепи:

Работа же по перемещению заряда во всех последовательно соединённых проводниках равна сумме работ на отдельных проводниках.

Применяя закон Ома для всего участка цепи с последовательным соединением и для каждого проводника в отдельности, нетрудно показать, что полное сопротивление участка цепи равно сумме сопротивлений отдельных проводников:

Совершенно аналогично можно показать, что в случае п последовательно соединённых проводников общее сопротивление участка цепи, состоящей из нескольких последовательно соединённых проводников, равно сумме сопротивлений отдельных проводников:

Рост сопротивления цепи при добавлении в неё новых проводников объясняется увеличением длины проводящей части. Поэтому сопротивление цепи становится больше сопротивления одного проводника.

На практике последовательное соединение нескольких проводников используется очень редко, например, в ёлочной гирлянде. Дело в том, что недостатком такого соединения является то, что в такую цепь можно подключать только тех потребителей, которые рассчитаны на одинаковую силу тока. Кроме того, если в такой цепи выключить ток в одном звене (например, перегорит одна из лампочек в гирлянде), то разрывается вся цепь.

Этих недостатков лишена цепь, в которой потребители соединены параллельно.

Параллельное соединение — это такое соединение проводников, при котором одни их концы соединены в один узел, другие концы — в другой узел.

Узлом принято называть точку разветвлённой цепи, в которой сходятся более двух проводников.

Следствием этого является то, что напряжение на каждом параллельно соединённом проводнике одинаково и равно напряжению на всём участке параллельно соединённых проводников:

При параллельном соединении ток распределяется по проводникам так же, как поток воды, разветвляющийся на два параллельных канала. Количество воды, протекающее ежесекундно через неразвтвлённую часть потока воды, равно сумме количеств воды, протекающих ежесекундно через каждый из каналов.

Аналогично обстоит дело и с прохождением электрических зарядов через параллельно соединённые проводники. Включив амперметры в цепь до разветвления и в каждую ветвь разветвления, можно убедиться, что ток в неразветвлённой части цепи равен сумме токов, текущих в отдельных параллельно соединённых проводниках:

Этот опыт служит лишь подтверждением того, что в случае установившегося тока электрические заряды не скопляются в точках разветвления, а сколько их подходит к точкам разветвления, столько же и уходит.

Обозначим сопротивление каждого из разветвлённых участков цепи через R1 и R2, a напряжение во всей цепи через U. Теперь применим к каждой ветви закона Ома для участка цепи:

И выразим из этих формул напряжение.

Так как напряжение на каждом параллельно соединённом проводнике одинаково, то давайте приравняем правые части последних двух равенств:

Отсюда находим, что токи в отдельных ветвях разветвлённой части цепи обратно пропорциональны их сопротивлениям:

Третья закономерность параллельного соединения определяет общее сопротивление разветвлённого участка. Учтём, что сила тока в цепи равна сумме сил токов в ветвях, а напряжение везде одинаково. Тогда, на основании закона Ома, получим, что величина, обратная сопротивлению участка параллельно соединённых проводников, равна сумме величин, обратных сопротивлению отдельных проводников:

При этом общее сопротивление разветвлённой части цепи меньше наименьшего из сопротивлений её ветвей.

Нетрудно показать, что если в разветвление будет включено не два, а несколько проводников, то данная закономерность также будет выполняться:

Из этого равенства следует, что общее сопротивление участка цепи, состоящего из п параллельно соединённых проводников с одинаковым сопротивлением, в п раз меньше сопротивления одного из них:

Параллельное соединение — это основной способ включения в электрическую цепь различных потребителей, так как в одну и ту же электрическую цепь могут быть включены самые различные потребители. Однако следует иметь в виду, что параллельно включаемые в данную цепь потребители должны быть рассчитаны на одно и то же напряжение, соответствующее напряжению в цепи.

Большинство задач на расчёт цепи сводится к определению токов, текущих в отдельных её участках, по заданному напряжению и по сопротивлениям отдельных проводников.

Для примера рассмотрим цепь, представленную на рисунке.

Пусть нам известно общее напряжение, питающее цепь, и сопротивления включённых в цепь резисторов (сопротивлением амперметра мы пренебрегаем, так как оно очень мало). Пусть нам надо найти силу тока, протекающего по каждому из резисторов.

Прежде всего мы должны установить, из скольких последовательных участков состоит наша цепь. Легко видеть, что таких участков три, причём второй и третий участки представляют собой разветвления. Обозначим сопротивления трёх последовательных участков нашей цепи через RI, RII, RIII.

Тогда всё сопротивление цепи выразится как сумма сопротивлений этих участков:

Общее сопротивление цепи необходимо знать, так как заданное общее напряжение можно отнести только к полному общему сопротивлению цепи. Применяя закон Ома, мы найдём полный ток, текущий в нашей цепи:

Нетрудно увидеть, что сила тока на первом резисторе равна силе тока во всей цепи:

Для того чтобы найти токи в отдельных ветвях, надо предварительно найти напряжение на отдельных участках последовательных цепей. А поможет нам это сделать закон Ома:

Незабываем о том, что RII и RIII — это эквивалентные сопротивления разветвлённых участков. Эти сопротивления мы с вами можем легко найти по закону параллельного соединения

Ну а дальше, зная напряжения на отдельных разветвлениях, найдём и токи в отдельных ветвях используя всё тот же закон Ома (при этом не забываем, что напряжение на концах всех параллельно соединённых проводников одно и то же):

Таким образом, задача, поставленная перед нами, полностью решена.

Источник

Формула закона Ома

{I = dfrac{U}{R}}

На этой странице вы можете рассчитать силу тока, напряжение и сопротивление по закону Ома для участка цепи с помощью удобного калькулятора онлайн

Закон Ома – один из фундаментальных законов электродинамики, который определяет взаимосвязь между напряжением, сопротивлением и силой тока. Он был открыт эмпирическим путем Георгом Омом в 1826 году.

Содержание:
  1. калькулятор закона Ома
  2. закон Ома для участка цепи
  3. формула силы тока
  4. формула напряжения
  5. формула сопротивления
  6. примеры задач

Закон Ома для участка цепи

Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению участка цепи I= dfrac{U}{R}

Формула силы тока

Формула позволяет найти силу тока I через напряжение U и сопротивление R по закону Ома для участка цепи.

формула силы тока по закону Ома

{I = dfrac{U}{R}}

I – сила тока

U – напряжение

R – сопротивление

Сила тока (I) в проводнике прямо пропорциональна напряжению (U) на его концах и обратно пропорциональна его сопротивлению (R).

Формула напряжения

Формула позволяет найти напряжение U через силу тока I и сопротивление R по закону Ома для участка цепи.

формула напряжения по закону Ома

{U = I cdot R}

U – напряжение

I – сила тока

R – сопротивление

Падение напряжение на проводнике равно произведению сопротивления проводника на силу тока в нем.

Формула сопротивления

Формула позволяет найти сопротивление R через силу тока I и напряжение U по закону Ома для участка цепи.

формула сопротивления по закону Ома

{R = dfrac{U}{I}}

R – сопротивление

U – напряжение

I – сила тока

Сопротивление проводника прямо пропорционально напряжению на его концах и обратно пропорционально величине силы тока, протекающего через него.

Примеры задач на нахождение силы тока, напряжения и сопротивления по закону Ома

Задача 1

Найдите силу тока в участке цепи, если его сопротивление 40 Ом, а напряжение на его концах 4 В.

Решение

Воспользуемся формулой силы тока. Подставим в нее значения напряжения и сопротивления, после чего останется произвести простейший математический расчет.

I = dfrac{U}{R} = dfrac{4}{40} = 0.1 А

Ответ: 0.1 А

На этой странице есть калькулятор, который поможет проверить полученный ответ.

Задача 2

Найдите напряжение на концах нагревательного элемента, если его сопротивление 40 Ом, а сила тока 2А.

Решение

Для решения этой задачи нам пригодится формула напряжения.

U = I cdot R = 2 cdot 40 = 80 В

Ответ: 80 В

Проверим получившийся результат с помощью калькулятора .

Задача 3

Найдите сопротивление спирали, сила тока в которой 0.5 А, а напряжение на ее концах 120 В.

Решение

Чтобы найти сопротивление спирали нам потребуется формула сопротивления.

R = dfrac{U}{I} = dfrac{120}{0.5} = 240 Ом

Ответ: 240 Ом

Проверка .

Добавить комментарий