Каждый электронщик должен знать основные параметры усилителя, так как усилитель в электронике используется абсолютно везде. В этой статье мы рассмотрим самые важные параметры усилителей.
Входное и выходное сопротивление
Кто в первый раз сталкивается с этими понятиями, читайте эту статью. Кому лень читать, вкратце объясню здесь из прошлой статьи. Каждый усилительный каскад имеем свое входное и выходное сопротивление. На схеме Rвх и Rвых
Входное сопротивление усилителя находится по формуле Rвх =Uвх / Iвх . Думаю, здесь вопросов возникать не должно. Эта формула справедлива как для постоянного тока, так и для переменного. В случае с постоянным током — это у нас будет усилитель постоянного тока (УПТ).
Немного иначе обстоят дела с выходным сопротивлением. В теории, можно замкнуть выходные клеммы 3 и 4 накоротко. В этом случае во выходной цепи усилителя у нас появится ток короткого замыкания Iкз
Более наглядно:
Ну и по закону Ома нетрудно догадаться, что Rвых = Eвых / Iкз . Но как же найти Евых ? Достаточно разомкнуть цепь и просто и замерить напряжение мультиметром. Это и будет Eвых. Физический смысл очень простой. Так как вольтметр обладает очень высоким входным сопротивлением, то в цепи у нас почти не будет течь ток, так как по закону Ома I=U/R. А если сопротивление нагрузки бесконечно большое, то, следовательно, Iкз будет бесконечно малое.
В этом случае этим бесконечно маленьким током можно пренебречь и считать, что в цепи нет никакой силы тока. А раз сила тока равна нулю, то и падение напряжения на Rвых также будет равняться нулю или формулой: URвых = IRвых = 0 Вольт. Следовательно, на клеммах 3 и 4 мы будем замерять Eвых .
Выходное сопротивление усилителя можно найти двумя способами: теоретическим и практическим. Теоретический способ, часто сложен, поскольку неизвестны многие параметры «черного ящика», называемого усилителем. Проще определить выходное сопротивление практическим путем.
Как найти выходное сопротивление на практике
Что нужно для этого? Номинальная мощность усилителя и допустимое напряжение на выходе. Не важно — усилитель это постоянного или переменного тока (напряжения). Тестирование усилителя любого типа желательно выполнять на уровне 70% допустимой выходной мощности. Это общая практика.
Если вы не забыли, мультиметр в этом случае нам покажет ЭДС Eвых , т. е. в данном случае Eвых = Uвых . (Что такое ЭДС).
Номинал нагрузочного сопротивления должен выбираться исходя из допустимого тока и мощности усилителя.
Пример:
Выходная мощность усилителя 10 Вт, допустимое выходное напряжение (эффективное) 100 В. В этом случае, резистор нагрузки должен иметь сопротивление не менее R=U2/P = 10000/10 = 1 кОм. Мощность резистора: PR = U2/R = 10000/1000 = 10 Вт
Какой же физический смысл этого опыта? В результате этих шагов, у нас цепь станет замкнутой, а два сопротивления, Rвых и Rн , образуют делитель напряжения. Сюда же можно приписать закон Ома для полной цепи, который выражается формулой:
где
I — сила тока в цепи, А
E — ЭДС, В
R — сопротивление нагрузки, Ом
r — внутреннее сопротивление источника ЭДС, Ом
Применительно к нашей ситуации, формула будет иметь такой вид:
Отсюда получаем:
Или словами, ЭДС равняется сумме падений напряжения на каждом сопротивлении.
Как вы могли заметить, падение напряжения на сопротивлении Rвых зависит от силы тока в цепи. Чем больше сила тока в цепи, тем больше падение напряжения на выходном сопротивлении Rвых . Но от чего же зависит сила тока в цепи? От нагрузки Rн ! Чем она меньше, тем больше сила Iвых в цепи, тем больше будет падение напряжения на Rвых , а значит, падение напряжения на URн будет меньше.
Теперь, зная этот принцип, можно косвенно вычислить выходное сопротивление Rвых .
Шаг номер 3: Замеряем напряжение на нагрузке URн. Вспоминаем формулу выше:
отсюда
из формулы
Получаем, что
Далее что нам требуется — это увеличивать входное напряжение и снимать выходное напряжение — так мы увидим всю нелинейность выходной характеристики от тока и сможем замерить выходное сопротивление в диапазоне нагрузок, так как большинство усилителей мощности имеют нелинейность выходного сопротивления от допустимого тока нагрузки.
Коэффициент усиления
Про коэффициенты усиления мы писали еще в прошлой статье.
Рабочий диапазон частот
Рабочий диапазон — это диапазон частот, где коэффициент усиления изменяется в допустимых пределах, заданных в технических условиях на усилитель. Для этого надо построить АЧХ усилителя. Обычно этот предел устанавливается на уровне -3 децибел. Почему именно -3 дБ? В свое время так было удобнее учитывать передаваемую энергию. В полосе — 3 дБ передается 50% мощности сигнала.
Но иногда требуется незначительное изменение коэффициента усиления. Например, в -1 дБ. В этом случае рабочий диапазон частот усилителя будет меньше:
Собственные шумы усилителя.
Что же такое шум?
В электронике шумом называют беспорядочные колебания амплитуды сигнала, которые глушат полезный сигнал. Сюда же относятся разного рода помехи. Собственные шумы усилителя — это шумы, которые зарождаются как внутри самого усилителя, так и могут быть вызваны внешним источником помех, либо некачественным питанием усилителя. Давайте рассмотрим основные виды шумов усилителя.
Фон
Этот шум вызван некачественным питанием усилителя. Если источник питания собран на сетевом трансформаторе, то шум будет на частоте 100 Гц (2х50Гц, по схеме диодного моста). То есть на выходе такого усилителя мы услышим гудение, если подцепим к выходу динамик. Думаю, вы часто слышали такое выражение «что-то динамики фонят». Это все из этой серии.
Помехи и наводки
Это могут быть внешние источники, которые так или иначе действуют на усилитель. Это может быть наводка от сети 220 Вольт (очень часто ее можно увидеть, если просто прикоснуться к сигнальному щупу осциллографа), это также может быть какая-либо искра, которая образуется в свечах двигателей внутреннего сгорания.
Небольшое лирическое отступление. Помню, как смотрел диснеевские мультики по первому каналу, а через дорогу сосед пилил дрова с помощью бензопилы Дружба-2. Тогда на экране ТВ были такие помехи, что я про себя тихо материл соседа.
Ну а как же без грозовых разрядов? Благодаря электромагнитному импульсу у нас появилось такое изобретение, как радио.
К источникам помех можно также отнести радио- и ТВ-станции, рядом лежащее и стоящее электрооборудование, типа мощных коммутационных механических ключей, разрядников и тд.
Ну и конечно, это шум самих радиоэлементов. Сюда относится тепловой шум (джонсоновский), дробовой шум, а также фликкер-шум.
Наиболее существенными являются шумы, которые возникают на входе усилителя в самом первом каскаде. Этот шум в дальнейшем усиливается также, как и входной полезный сигнал. В результате на выходе усилителя у нас будет усилен как полезный сигнал, так и шумовой. Поэтому, при проектировании качественных усилителей стараются как можно сильнее минимизировать шум на входе первого каскада усилителя.
Отношение сигнал/шум
Пусть у вас дома стоит телевизор, который ловит аналоговое вещание. На экране телевизора мы видим четкую картинку:
Но вдруг антенна на крыше вашего дома из-за сильного ветра чуток отклонилась в сторону и изображение ухудшилось
Потом антенна вообще упала с крыши, и на телевизоре мы видим теперь что-то типа этого
В каком случае отношение сигнал/шум будет больше, а в каком меньше? На первой картинке, где четкое изображение, отношение сигнала к шуму будет очень большое, так как не первой картинке мы простым взглядом не можем уловить каких-либо помех на изображении, хотя по идее они есть).
На второй картинке мы видим, что в изображении появились помехи, которые делают некомфортным просмотр картинки. Здесь отношение сигнала к шуму уже будет намного меньше, чем на первой картинке.
Ну и на третьей картинке шумы почти полностью одолели изображение. В этом случае можно сказать , что отношение сигнала к шуму будет ну очень малым.
Отношение сигнал/шум является количественной безразмерной величиной.
В аналоговой электронике для нормальной работы усилителя полезный сигнал должен в несколько раз превышать шумы, иначе это сильно скажется на качестве усиления, так как полезный сигнал суммируется с шумовым.
Отношение сигнал/шум в англоязычной литературе обозначается как SNR или S/N.
Так как порой это отношение достигает очень больших значений в цифрах, поэтому чаще всего его выражают в децибелах:
где
Ucигнал — среднеквадратичное значение полезного сигнала, В
Uшум — среднеквадратичное значение шумового сигнала, В
Pсигнал — мощность сигнала
Pшум — мощность шума
То есть в нашем случае с котиком на первой картинке амплитуда полезного видеосигнала в разы превосходила амплитуду шума, поэтому первая картинка была четкой. На третьей картинке амплитуда полезного видеосигнала почти была равна амплитуде шума, поэтому картинка получилась очень зашумленной.
Еще один пример. Вот синусоидальный сигнал с SNR=10:
А вот тот же самый синус с SNR=3
Как вы могли заметить, сигнал с SNR=10 намного «чище», чем с SNR=3.
SNR чаще всего можно увидеть при описании характеристик усилителя звука. Чем выше SNR, тем лучше по качеству звучания будет усилитель. Для HI-FI систем звучания этот показатель должен быть от 90 дБ и выше. Для телефонных разговоров вполне достаточно и 30 дБ.
На практике SNR измеряется на выходе усилителя с помощью милливольтметра с trueRMS, либо с помощью анализатора спектра.
Амплитудная характеристика
Амплитудная характеристика усилителя — это зависимость амплитуды сигнала на выходе от входного сигнала при фиксированной частоте. Обычно она составляет 1 кГц.
Амплитудная характеристика идеального усилителя по идее должна выглядеть вот так:
Это луч, который начинается от нулевой точки отсчета координат и простирается в бесконечность.
Но на самом деле реальная амплитудная характеристика усилителя выглядит вот так:
Здесь мы видим, что если даже входное напряжение Uвх =0, то на выходе усилителя мы все равно получим какой-то уровень сигнала. Это будет напряжение шума Uш .
Динамический диапазон усилителя
Динамический диапазон — это отношение максимально допустимого уровня выходного сигнала к его минимальному уровню, при котором обеспечивается заданное отношение сигнал/шум:
Чтобы понять концовку определения «обеспечивается заданное отношение сигнал/шум» динамического диапазона, давайте рассмотрим наш рисунок:
Допустим, наш усилитель должен иметь SNR=90 дБ. Будет ли правильно, если мы возьмем Uвых мин за Uшум?
Конечно же нет! В этом случае в этой точке на графике амплитуды сигнала и шума будут равны, а следовательно, по формуле
получим, что SNR=0 дБ.
Непорядок. Значит, надо взять такое значение Uвых , при котором бы соблюдалось равенство
Допустим, что Uшум =1 мкВ, подставляем в формулу
Из этого уравнения находим Uвых . Это будет как раз являться Uвых. мин. для формулы:
при SNR=90. В нашем случае это будет точка А.
Uвых макс берем в точке B, так как в этом случае это максимальное значение, при котором у нас в усилителе не возникают нелинейные искажения (о них чуть ниже).
Рабочая область усилителя будет обеспечиваться на отрезке АВ. В этом случае у нас будут минимальные искажения в сигнале, так как эта область линейная. Отношение максимально допустимого выходного сигнала к уровню шума — это предельный уровень динамического диапазона для аналогового усилителя.
Для усилителей звука выход за пределы этой рабочей области в большую сторону будет чреват нелинейными искажениями, а в меньшую — полезный сигнал задавят помехи. Да вы и сами, наверное замечали, что выкрутив на полную катушку ручку громкости дешевой китайской магнитолы, у нас качество звучания оставляло желать лучшего, так как в дело «вклинивались» нелинейные искажения.
Коэффициент полезного действия (КПД)
КПД представляет из себя отношение мощности на нагрузке усилителя к мощности, которая потребляется усилителем от источника питания
где
Pвых — это мощность на нагрузке, Вт
Pи.п. — мощность, потребляемая источником питания, Вт
Искажения, вносимые усилителем
Искажения определяют сравнением формы сигнала на входе и на выходе. Идеальным является усилитель, который в точности повторяет форму сигнала, поданного на вход. Но так как наш мир не идеален, и радиоэлементы тоже не идеальны, то и на выходе у нас сигнал будет всегда немного искаженный. Главное, чтобы эти искажения не были столь критичны.
В основном искажения делятся на 4 группы:
- Частотные
- Фазовые
- Переходные
- Нелинейные
Частотные искажения
Частотные искажения возникают вследствие того, что коэффициент усиления во всем диапазоне частот не одинаковый. Или простыми словами, какие-то частоты усиливаются хорошо, а какие-то плохо). Чтобы в этом разобраться, достаточно посмотреть на АЧХ усилителя.
В данном случае мы можем увидеть, что низкие и высокие частоты будут усиливаться меньше, чем средние частоты. А так как сложный сигнал состоит из множества частотных составляющих, вследствие этого и возникнут частотные искажения.
Фазовые искажения
Фазовые искажения возникают из-за того, что разные частоты с разной задержкой по времени появляются на выходе усилителя. Какие-то частоты запаздывают больше, а какие-то меньше. Давайте все это рассмотрим на примере двух картинок.
Допустим, мы «загоняем» на вход синусоидальный сигнал с низкой частотой и на выходе получаем уже усиленный сигнал, но немного с небольшой задержкой.
Но также не забывайте, что катушки и конденсаторы являются частото-зависимыми радиоэлементами. Их реактивное сопротивление зависит от частоты сигнала, поэтому, прогоняя через усилитель сигнал с другой частотой, мы получим уже совсем другую задержку сигнала
То есть в нашем случае t1 ≠ t2 . Хорошо это или плохо? Если мы будем усиливать синусоиду, то в принципе нам по барабану. Какая разница раньше он появится на выходе или позже? Главное то, что сигнал будет усиленный.
Все бы ничего, но стоит помнить, что сложные сигналы состоят из суммы множества синусоид различных частот и амплитуд.
Чтобы понять, что такое сумма сигналов, достаточно рассмотреть вот такие примеры:
ну и еще один, мне не жалко)
Складываем амплитуды в одинаковые моменты времени и получаем сумму этих двух сигналов.
А вот так из разных синусоид разных частот складывается прямоугольный сигнал:
В данном случае мы пытаемся «собрать» прямоугольный сигнал из суммы синусоид разных амплитуд и частот.
Но так как у нас усилитель задерживает разные сигналы по частоте по-разному, то у нас между сигналами происходит разнобой. Лучше всего это объяснит рисунок ниже. Имеем два синусоидальных сигнала с разной частотой и амплитудой:
Если их сложить, получим сложный сигнал:
Но что будет, если второй сигнал сдвинется по фазе относительно первого?
Смотрим теперь сумму этих сигналов:
Абсолютно другой сигнал! Чувствуете разницу? Чуток сдвинули фазу, а форма сигнала уже поменялась.
То есть на выходе усилителя мы хотели получить вот такой усиленный сигнал:
а получили такой:
В результате фазовых искажений наш сложный сигнал, состоящий из двух синусоид, поменял форму. На выходе усилителя мы получили совсем другой сигнал. А как вы помните, роль усилителя заключается в том, чтобы усиливать сигнал, сохраняя при этом его форму.
Фазо-частотная характеристика (ФЧХ) усилителя — это график зависимости угла сдвига фаз, вносимого усилителем, от частоты. Выглядеть она может примерно вот так:
где
φ — это сдвиг фазы относительно входного и выходного сигнала
f — частота сигнала
Человеческое ухо не замечает фазовых искажений, несмотря на то, что даже изменяется форма сигнала. Поэтому при проектировании звуковых усилителей фазовые искажения не принимают во внимание.
Частотные искажения и фазовые искажения относят к линейным искажениям, так как оба вида искажений обусловлены линейными элементами схемы. Если сказать по научному, у нас в спектре сигнала не появляется дополнительных гармоник.
Переходные искажения
Переходным искажением называют искажение прямоугольного импульса, которое подается на вход усилителя. На выходе такой импульс будет иметь уже другую форму, вызванную искажением сигнала внутри самого усилителя.
Для оценки переходных искажений используют переходную характеристику. Она представляет из себя зависимость напряжения или тока на выходе усилителя от времени от подачи на его вход прямоугольного импульса.
На рисунке ниже имеем прямоугольный сигнал, который подаем на вход усилителя, а на выходе усилителя уже будет искаженный усиленный сигнал. Это искажения вызваны, как обычно, с наличием в схеме усилителя реактивных радиоэлементов, то есть тех же самых катушек индуктивности и конденсаторов.
Для оценки переходных искажений используют такие параметры:
Um — это амплитуда импульса, отсчитывается от плоской вершины импульса, В
ΔUв — это выброс фронта импульса, В
ΔUс — спад вершины импульса, В
Следующие два параметра измеряются в диапазоне от 0,1Um и до 0,9Um :
tф — длительность фронта импульса
tc — длительность спада импульса
А длительность самого импульса tи измеряется на уровне 0,5Um .
Нелинейные искажения
Ну и напоследок мы с вами разберем нелинейные искажения. Нелинейными она называются из-за того, что такие искажения уже меняют форму сигнала, в отличие от линейных искажений. Все дело в том, что электронные лампы и полупроводники имеют нелинейную характеристику. Давайте рассмотрим все это дело более подробно.
Как вы могли заметить, на выходе у нас форма сигнала изменилась. Нашу верхнюю часть синусоиды усиленного сигнала немного «придавило». То есть мы подавали сигнал одной формы, а вышел сигнал совсем другой формы. Это не есть хорошо и с этим надо бороться.
Если сказать более научным радиотехническим языком, в нашем сигнале появились дополнительные гармоники, которых не было в исходном сигнале. В данном случае мы на вход загоняли простой синусоидальный сигнал, состоящий из одной гармоники, а получили на выходе сложный сигнал, состоящий уже из нескольких гармоник.
Для количественной оценки нелинейных искажений используется коэффициент гармонических искажений (КГИ). Он выражается формулой:
Эта величина находится как отношение среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход усилителя синусоидального сигнала.
или на английский манер
Также есть и подобный параметр коэффициент нелинейных искажений (КНИ). Он выражается формулой:
на английский манер
Эти два параметра выражаются в процентах. Для малых значений коэффициенты КГИ и КНИ почти совпадают. Так что коэффициент искажений можно считать как по первой, так и по второй формуле.
Консультант Jeer
5
Гершунский
с.233
Основные технические характеристики усилителей
Важнейшими
техническими показателями усилителя
являются:
коэффициенты
усиления (по напряжению, току и мощности),
входное и выходное сопротивления,
выходная мощность, коэффициент полезного
действия, номинальное входное напряжение
(чувствительность), диапазон усиливаемых
частот, динамический диапазон амплитуд
и уровень собственных помех, а также
показатели, характеризующие нелинейные,
частотные и фазовые искажения усиливаемого
сигнала.
Коэффициенты
усиления.
Коэффициентом усиления по напряжению
или просто коэффициентом усиления К,
называется величина, показывающая, во
сколько раз напряжение сигнала на выходе
усилителя больше, чем на его входе:
К
=
.
Значение
коэффициента усиления К
у различных усилителей напряжения может
иметь величину порядка десятков и сотен.
Но и этого в ряде случаев недостаточно
для получения на выходе усилителя
сигнала требуемой амплитуды. Тогда
прибегают к последовательному включению
ряда усилительных каскадов:
К
= К1∙
К2∙
Кn.
Коэффициент
усиления представляет собой безразмерную
величину. Учитывая, что в современных
усилительных схемах коэффициент,
выраженный в безразмерных единицах,
получается довольно громоздким числом,
в электронике получил распространение
способ выражения усилительных свойств
в логарифмических единицах – децибелах
(дБ).
Коэффициент усиления, выраженный в
децибелах, равен
К=
20lg
= 20lgК
Обратный
переход от децибел к безразмерной
величине производится при помощи
выражения
К
=
.
Если
принять К=
1, то
К
=
=10=
1,12.
Следовательно,
усиление равно одному децибелу, если
напряжение на выходе усилителя в 1,12
раза (на 12%) больше, чем напряжение на
входе. Коэффициент усиления многокаскадного
усилителя, выраженный в децибелах,
представляет собой сумму коэффициентов
усиления отдельных каскадов усиления,
выраженных в тех же единицах:
20lgК
= 20lgК1
+ 20lgК2
+ …+20lgКn
Кроме
коэффициента усиления по напряжению,
пользуются коэффициентами усиления по
току и по мощности, которые также могут
быть выражены в децибелах. Например,
если мощность сигнала на входе усилителя
имела значение Рвх,
а затем повысилась до Рвых,
то коэффициент усиления по мощности в
децибелах можно найти по формуле
.
Следует
помнить, что для перехода к децибелам
при логарифме отношения мощностей
ставится множитель 10, а при логарифме
отношения напряжений или токов ставится
множитель 20. Это объясняется тем, что
мощность пропорциональна квадрату
напряжения или квадрату тока
.
Входное и выходное сопротивления
Усилитель
можно рассматривать как активный
четырехполюсник, к входным зажимам
которого подключается источник
усиливаемого сигнала, а к выходным
сопротивление нагрузки. На рисунке
показана одна из возможных эквивалентных
схем усилительного каскада. Источник
входного сигнала показан в виде генератора
напряжения с э.д.с. Евх,
имеющего внутреннее сопротивление Rг.
Со стороны выхода усилитель представлен
в виде генератора напряжения с э.д.с.
Евых
и внутренним сопротивлением Rвых.
Усилитель одновременно является
нагрузкой для источника сигнала и
источником сигнала для внешней нагрузки
Rн,
причем нагрузкой усилителя может быть
не только оконечное устройство
(потребитель), но и вход следующего
каскада усилителя.
Входное
сопротивление усилителя в любом случае
представляет собой сопротивление между
входными зажимами усилителя. Оно равно
Выходное
сопротивление Rвых
определяют между выходными зажимами
усилителя при отключенном сопротивлении
нагрузки Rн.
В
зависимости от соотношения внутреннего
сопротивления источника Rг
и входного сопротивления усилителя Rвх
источник
сигнала может работать в режиме:
холостого
хода
(Rвх
>> Rг),
короткого
замыкания
(Rвх
<< Rг),
согласования
(Rвх
≈
Rг).
Аналогичные
режимы работы возможны и для выходной
цепи:
(Rн
>> Rвых)
– холостой ход; (Rн
<< Rвых)
– короткое замыкание; (Rн
>> Rвых)
– согласование.
В
соответствии с этим различают как для
входной, так и для выходной цепи режимы
усиления напряжения, тока и мощности.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
02.03.201612.64 Mб85Электрооборудование судов – Осокин, Хайдуков..djvu
Приветствую вас дорогие друзья! Вот наконец добрался я до своего компьютера, приготовил себе чайку с печеньками и понеслась…
Для тех кто впервые на моем блоге и не совсем понимает что здесь происходит спешу напомнить, меня зовут Владимир Васильев и на этих страницах я делюсь со своими читателями сакральными знаниями из области электроники и не только электроники. Так что может быть и вы здесь найдете для себя что-то полезное, по крайней мере я на это надеюсь. Обязательно подпишитесь, тогда вы ничего не пропустите.
А сегодня речь пойдет о таком электронном устройстве как операционный усилитель. Эти усилители применяются повсеместно, везде где требуется усилить сигнал по мощности найдется работенка для операционника.
Особенно распространено применение операционных усилителей в аудиотехнике. Каждый аудиофилл стремится усилить звучание своих музыкальных колонок и поэтому старается прикрутить усилитель по мощнее. Вот здесь мы и сталкиваемся с операционными усилителями, ведь многие аудиосистемы просто нашпигованы ими. Благодаря свойству операционного усилителя усиливать сигнал по мощности мы ощущаем более мощное давление на свои барабанные перепонки когда слушаем композиции на своих аудио колонках. Вот так вот в быту мы оцениваем качество работы операционного усилителя на слух.
В этой статье на слух мы оценивать ничего не будем но постараемся рассмотреть все детально и разложим все по полочкам чтобы стало понятно даже самому самоварному чайнику .
[contents]
Что такое операционный усилитель ?
Операционные усилители представляют собой микросхемы которые могут выглядеть по-разному.
Например на этой картинке изображены два операционных усилителя российского производства. Слева операционный усилитель К544УД2АР в пластмассовом DIP корпусе а справа изображен операционник в металлическом корпусе.
По началу, до знакомства с операционниками, микросхемы в таких металлических корпусах я постоянно путал с транзисторами. Думал что это такие хитромудрые многоэмиттерные транзисторы 🙂
Условное графическое обозначение (УГО)
Условное обозначение операционного усилителя выглядит следующим образом.
Итак операционный усилитель (ОУ) имеет два входа и один выход. Также имеются выводы для подключения питания но на условных графических обозначениях их обычно не указывают.
Для такого усилителя есть два правила которые помогут понять принцип работы:
- Выход операционника стремится к тому, чтобы разность напряжений на его входах была равна нулю
- Входы операционного усилителя ток не потребляют
Вход 1 обозначается знаком «+» и называется неинвертирующим а вход 2 обозначается как «-» и является инвертирующим.
Входы операционника обладают высоким входным сопротивлением или иначе говорят высоким импедансом.
Это говорит о том, что входы операционного усилителя ток почти не потребляют (буквально какие-то наноамперы). Усилитель просто оценивает величину напряжений на входах и в зависимости от этого выдает сигнал на выходе усиливая его.
Коэффициент усиления операционного усилителя имеет просто огромное значение, может достигать миллиона, а это очень большое значение! Значит это то, что если мы ко входу приложим небольшое напряжение, хотябы 1 мВ, то на выходе получим сразу максимум, напряжение почти равное напряжению источника питания ОУ. Из-за этого свойства операционники практически никогда не используют без обратной связи (ОС). Действительно какой смысл во входном сигнале если на выходе мы всегда получим максимальное напряжение, но об этом поговорим чуть позже.
Входы ОУ работают так, что если величина на неинвертирующем входе окажется больше чем на инвертирующем, то на выходе будет максимальное положительное значение +15В. Если на инвертирующем входе величина напряжения окажется более положительной то на выходе будем наблюдать максимум отрицательной величины, где-то -15В.
Действительно операционный усилитель может выдавать значения напряжений как положительной так и отрицательной полярности. У новичка может возникнуть вопрос о том как же такое возможно? Но такое действительно возможно и это связано с применением источника питания с расщепленным напряжением, так называемым двуполярным питанием. Давайте рассмотрим питание операционника чуток подробнее.
Правильное питание ОУ
Наверное не будет секретом, что для того, чтобы операционник работал, его нужно запитать, т.е. подключить его к источнику питания. Но есть интересный момент, как мы убедились чуток ранее операционный усилитель может выдавать на выход напряжения как положительной так и отрицательной полярности. Как такое может быть?
А такое быть может! Это связано с применением двуполярного источника питания, конечно возможно использование и однополярного источника но в этом случае возможности операционного усилителя будут ограничены.
Вообще в работе с источниками питания многое зависит от того что мы взяли за точку отсчета т.е. за 0 (ноль). Давайте с этим разберемся.
Пример на батарейках
Обычно примеры проще всего приводить на пальцах но в электронике думаю подойдут и пальчиковые батарейки 🙂
Допустим у нас есть обычная пальчиковая батарейка (батарейка типа АА). У нее есть два полюса плюсовой и минусовой. Когда минусовой полюс мы принимаем за ноль, считаем нулевой точкой отсчета то соответственно плюсовой полюс батарейки будет у нас показывать + 5В (значение с плюсом).
Это мы можем увидеть с помощью мультиметра (кстати статья про мультиметры в помощь), достаточно подключить минусовой черный щуп к минусу батарейки а красный щуп к плюсу и вуаля. Здесь все просто и логично.
Теперь немножко усложним задачу и возьмем точно такую же вторую батарейку. Подключим батарейки последовательно и рассмотрим как меняются показания измерительных приборов (мультиметров или вольтметров) в зависимости от различных точек приложения щупов.
Если мы за ноль приняли минусовой полюс крайней батарейки а измеряющий щуп подключим к плюсу батарейки то мультиметр нам покажет значение в +10 В.
Если за точку отсчета будет принят положительный полюс батарейки а измеряющий щуп был подключен к минусу то любой вольтметр нам покажет -10 В.
Но если за точку отсчета будет принята точка между двумя батарейками то в результате мы сможем плучить простой источник двуполярного питания. И вы можете в этом убедиться, мультиметр нам подтвердит что так оно и есть. У нас в наличии будет напряжение как положительной полярности +5В так и напряжение отрицательной полярности -5В.
Схемы источников двуполярного питания
Примеры на батарейках я привел для примера, чтобы было более понятно. Теперь давайте рассмотрим несколько примеров простых схем источников расщепленного питания которые можно применять в своих радиолюбительских конструкциях.
Схема с трансформатором, с отводом от «средней» точки
И первая схема источника питания для ОУ перед вами. Она достаточно простая но я немножко поясню принцип ее работы.
Схема питается от привычной нам домашней сети поэтому нет ничего удивительного что на первичную обмотку трансформатора приходит переменный ток в 220В. Затем трансформатор преобразует переменный ток 220В в такой же переменный но уже в 30В. Вот такую вот нам захотелось произвести трансформацию.
Да на вторичной обмотке будет переменное напряжение в 30В но обратите внимание на отвод от средней точки вторичной обмотки. На вторичной обмотке сделано ответвление, причем количество витков до этого ответвления равно числу витков после ответвления.
Благодаря этому ответвлению мы можем получить на выходе вторичной обмотки переменное напряжение как в 30 В так и переменку в 15В. Это знание мы берем на вооружение.
Далее нам нужно переменку выпрямить и превратить в постоянку поэтому диодный мост нам в помощь. Диодный мост с этой задачей справился и на выходе мы получили не очень стабильную постоянку в 30В. Это напряжение будет нам показывать мультиметр если мы подключим шупы к выходу диодного моста, но нам нужно помнить про ответвление на вторичной обмотке.
Это ответвление мы ведем далее и подключаем между электролитическими конденсаторами и затем между следующией парой высокочастотных кондерчиков. Чего мы этим добились?
Мы добились нулевой точки отсчета между полюсами потенциалов положительной и отрицательной полярности. В результате на выходе мы имеем достаточно стабильное напряжение как +15В так и -15В. Эту схему конечно можно еще более улучшить если добавить стабилитроны или интегральные стабилизаторы но тем не менее приведенная схема уже вполне может справиться с задачей питания операционных усилителей.
Схема с двумя диодными мостами
Эта схема на мой взгляд проще, проще в том ключе, что нет необходимости искать трансформатор с ответвлением от середины или формировать вторичную обмотку самостоятельно. Но здесь придется раскошелиться на второй диодный мост.
Диодные мосты включены так, что положительный потенциал формируется с катодов диодиков первого моста, а отрицательный потенциал выходит с анодов диодов второго моста. Здесь нулевая точка отсчета выводится между двумя мостами. Упомяну также, что здесь используются разделительные конденсаторы, они оберегают один диодный мост от воздействий со стороны второго.
Эта схема также легко подвергается различным улучшениям, но самое главное она решает основную задачу — с помощью нее можно запитать операционный усилитель.
Обратная связь ОУ
Как я уже упоминал операционные усилители почти всегда используют с обратной связью (ОС). Но что представляет собой обратная связь и для чего она нужна? Попробуем с этим разобраться.
С обратной связью мы сталкиваемся постоянно: когда хотим налить в кружку чая или даже сходить в туалет по малой нужде 🙂 Когда человек управляет автомобилем или велосипедом то здесь также работает обратная связь. Ведь для того, чтобы ехать легко и непринужденно мы вынуждены постоянно контролировать управление в зависимости от различных факторов: ситуации на дороге, технического состояния средства передвижения и так далее.
Если на дороге стало скользко ? Ага мы среагировали, сделали коррекцию и дальше двигаемся более осторожно.
В операционном усилителе все происходит подобным образом.
Без обратной связи при подаче на вход определенного сигнала на выходе мы всегда получим одно и тоже значение напряжения. Оно будет близко напряжению питания (так как коэффициент усиления очень большой). Мы не контролируем выходной сигнал. Но если часть сигнала с выхода мы отправим обратно на вход то что это даст?
Мы сможем контролировать выходное напряжение. Это управление будет на столько эффективным, что можно просто забыть про коэффициент усиления, операционник станет послушным и предсказуемым потому что его поведение будет зависеть лишь от обратной связи. Далее я расскажу как можно эффективно управлять выходным сигналом и как его контролировать, но для этого нам нужно знать некоторые детали.
Положительная обратная связь, отрицательная обратная связь
Да, в операционных усилителях применяют обратную связь и очень широко. Но обратная связь может быть как положительной так и отрицательной. Надо бы разобраться в чем суть.
Положительная обратная связь это когда часть выходного сигнала поступает обратно на вход причем она (часть выходного) суммируется с входным.
Положительная обратная связь в операционниках применяется не так широко как отрицательная. Более того положительная обратная связь чаще бывает нежелательным побочным явлением некоторых схем и положительной связи стараются избегать. Она является нежелательной потому, что эта связь может усиливать искажения в схеме и в итоге привести к нестабильности.
С другой стороны положительная обратная связь не уменьшает коэффициент усиления операционного усилителя что бывает полезно. А нестабильность также находит свое применение в компараторах, которые используют в АЦП (Аналого-цифровых преобразователях).
Отрицательная обратная связь это такая связь когда часть выходного сигнала поступает обратно на вход но при этом она вычитается из входного
А вот отрицательная обратная связь просто создана для операционных усилителей. Несмотря на то, что она способствует некоторому ослаблению коэффициента усиления, она приносит в схему стабильность и управляемость. В результате схема становится независимой от коэффициента усиления, ее свойства полностью управляются отрицательной обратной связью.
При использовании отрицательной обратной связи операционный усилитель приобретает одно очень полезное свойство. Операционник контролирует состояния своих входов и стремится к тому, потенциалы на его входах были равны. ОУ подстраивает свое выходное напряжение так, чтобы результирующий входной потенциал (разность Вх.1 и Вх.2) был нулевым.
Подавляющая часть схем на операционниках строится с применением отрицательной обратной связи! Так что для того чтобы разобраться как работает отрицательная связь нам нужно рассмотреть схемы включения ОУ.
Схемы включения операционных усилителей
Схемы включения операционных усилителей могут быть весьма разнообразны поэтому мне врятля удастся рассказать о каждой но я постараюсь рассмотреть основные.
Компаратор на ОУ
Формулы для компараторной схемы будут следующие:
Т.е. в результате будет напряжение соответствующее логической единице.
Т.е. в результате будет напряжение соответствующее логическому нулю.
Схема компаратора обладает высоким входным сопротивлением (импедансом) и низким выходным.
Рассмотрим для начала вот такую схему включения операционника в режиме компаратора. Эта схема включения лишена обратной связи. Такие схемы применяются в цифровой схемотехнике когда нужно оценить сигналы на входе, выяснить какой больше и выдать результат в цифровой форме. В итоге на выходе будет логическая 1 или логический ноль (к примеру 5В это 1 а 0В это ноль).
Допустим напряжение стабилизации стабилитрона 5В, на вход один мы приложили 3В а к входу 2 мы приложили 1В. Далее в компараторе происходит следующее, напряжение на прямом входе 1 используется как есть (просто потому что это неинвертирующий вход) а напряжение на инверсном входе 2 инвертируется. В результате где было 3В так и остается 3В а где был 1В будет -1В.
В результате 3В-1В =2В, но благодаря коэффициенту усиления операционника на выход пойдет напряжение равное напряжению источника питания, т.е. порядка 15В. Но стабилитрон отработает и на выход пойдет 5В что соответствует логической единице.
Теперь представили, что на вход 2 мы кинули 3В а на вход 1 приложили 1В. Операционник все это прожует, прямой вход оставит без изменений, а инверсный (инвертирующий) изменит на противоположный из 3В сделает -3В.
В результате 1В-3В=-2В, но согласно логике работы на выход пойдет минус источника питания т.е. -15В. Но у нас стоит стабилитрон и он это не пропустит и на выходе у нас будет величина близкая нулю. Это и будет логический ноль для цифровой схемы.
Триггер Шмитта на ОУ
Чуть ранее мы рассматривали такую схему включения ОУ как компаратор. В компараторе сравниваются два напряжения на входе и выдается результат на выходе. Но чтобы сравнивать входное напряжение с нулем нужно воспользоваться схемой представленной чуть выше.
Здесь сигнал подается на инвертирующий вход а прямой вход посажен на землю, на ноль.
Если на входе у нас напряжение больше нуля то на выходе будем иметь -15В. Если напряжение меньше нуля то на выходе будет+15В.
Но что случится если мы захотим подать напряжение равное нулю? Такое напряжение никогда не получится сделать, ведь идеального нуля не бывает и сигнал на входе хоть на доли микровольт но обязательно будет меняться в ту или другую сторону. В результате на выходе будут полный хаос, выходное напряжение будет многократно скакать максимума до минимума что на практике совершенно не удобно.
Для избавления от подобного хаоса вводит гистерезист — это некий зазор в пределах которого сигнал на выходе не будет меняться.
Этот зазор позволяет реализовать данная схема посредством положительной обратной связи.
Представим, что на вход мы подали 5В , на выходе в первое мгновение получится сигнал напряжением в -15В. Далее начинает отрабатывать положительная обратная связь. Обратная связь образует делитель напряжения в результате чего на прямом входе операционника появится напряжение -1,36В.
На инверсном входе у нас сигнал более положительный поэтому операционный усилитель отработает следующим образом. Внутри него сигнал в 5В инвертируется и становится -5В, далее два сигнала складываются и получается отрицательное значение. Отрицательное значение благодаря коэффициенту усиления станет -15В. Сигнал на выходе не изменится пока сигнал на входе не опустится менее -1,36В.
Пусть сигнал на входе изменился и стал -2В. В нутрях это -2В инвертируется и станет +2В, а -1,36В как был так и останется. Далее все это складывается и получается положительное значение которое на выходе превратится в +15В. На прямом входе значение -1,36В благодаря обратной связи превратится в +1,36В. Теперь чтобы изменить значение на выходе на противоположное нужно подать сигнал более 1,36В.
Таким образом у нас появилась зона с нулевой чувствительностью с диапазоном от -1,36В до +1,36В. Такая зона нечувствительности носит название гистерезис.
Повторитель
Наиболее простой обладатель отрицательной обратной связи это повторитель.
Повторитель выдает на выходе то напряжение, которое было подано на его вход. Казалось бы для чего это нужно ведь от этого ничего не меняется. Но в этом есть смысл, ведь вспомним свойство операционника, он обладает высоким входным сопротивлением и низким выходным. В схемах повторители выступают в роли буфера, который оберегает от перегрузок хилые выходы.
Чтобы понять как он работает отмотаете чуток назад, там где мы обсуждали отрицательную обратную связь. Там я упоминал, что в случае с отрицательной обратной связью операционник всеми возможными способами стремится к равному потенциалу по своим входам. Для этого он подстраивает напряжение на своем выходе так, чтобы разность потенциалов на его входах равнялась нулю.
Так допустим на входе у нас 1В. Чтобы потенциалы на входах были раны на инвертирующем входе должен быть также 1В. На то он и повторитель.
Неинвертирующий усилитель
Схема неинвертирующего усилителя очень похожа на схему повторителя, только здесь обратная связь представлена делителем напряжения и посажена на землю.
Посмотрим как все это работает. Допустим на вход подано 5В, резистор R1 = 10Ом, резистор R2 = 10Ом. Чтобы напряжение на входах были равны, операционник вынужден поднять напряжение на выходе так, чтобы потенциал на инверсном входе сравнялся с прямым. В данном случае делитель напряжения делит пополам, получается, что напряжение на выходе должно быть в два раза больше напряжения на входе.
Вообще чтобы применять эту схему включения даже не нужно ничего ворошить в голове, достаточно воспользоваться формулой, где достаточно узнать коэффициент К.
Инвертирующий усилитель
И сейчас мы рассмотрим работу такой схемы включения как инвертирующий усилитель. Для инвертирующего усилителя есть такие формулы:
Инвертирующий усилитель позволяет усиливать сигнал одновременно инвертируя (меняя знак ) его . Причем коэффициент усиления мы можем задать любой. Этот коэффициент усиления мы формируем посредством отрицательной обратной связи, которая представляет собой делитель напряжения.
Теперь попробуем его в работе, допустим на входе у нас сигнал в 1В, резистор R2 = 100Ом, резистор R1 = 10Ом. Сигнал со входа идет через R1, затем R2 и на выход. Допустим сигнал на выходе невероятным образом стал 0В. Рассчитаем делитель напряжения.
1В/110=Х/100, отсюда Х = 0,91В
Получается что в точке А потенциал равен 0,91В, но это противоречит правилу операционного усилителя. Ведь операционник стремится уравнять потенциалы на своих входах. Поэтому потенциал в точке А будет равен нулю и равен потенциалу в точке B.
Как сделать так чтобы на входе был 1В а в точке А был 0В?
Для этого нужно уменьшать напряжение на выходе. И в результате мы получаем
К сожалению инвертирующий усилитель обладает одним явным недостатком — низким входным сопротивлением, которое равняется резистору R1.
Сумматор инвертирующий
А эта схема включения позволяет складывать множество входных напряжений. Причем напряжения могут быть как положительными так и отрицательными. По истине на операционниках можно строить аналоговые компьютеры. Так чтож давайте разбираться.
Основой сумматора служит все тот же инвертирующий усилитель только с одним отличием, вместо одного входа он может иметь этих входов сколько угодно. Вспомним формулку и инвертирующего усилка.Потенциал точки Х будет равен нулю поэтому сумма токов входящих с каждого входа будет выглядеть вот так:Если нашей целью является чистое сложение входных напряжений то все резисторы в этой схеме выбираются одного номинала. Это приводит также что коэффициент усиления для каждого входа будет равен 1. Тогда формула для инвертирующего усилителя принимает вид:
Ну чтож, я думаю что с работой сумматора и других схем включения на операционниках разобраться не трудно. Достаточно немножко попрактиковаться и попробовать собрать эти схемы и посмотреть что происходит с входными и выходными сигналами.
А я на этом пожалуй остановлюсь ведь в работе с операционными усилителями применяются очень много различных схем включения, это различные преобразователи ток-напряжение, сумматоры, интеграторы и логарифмирующие усилители и все их рассматривать можно очень долго.
Если вас заинтересовали другие схемы включения и хотите с ними разобраться то советую полистать книжку П.Хоровица и У.Хилла, все обязательно встанет на свои места.
А на этом я буду завершать, тем более статья получилась достаточно объемной и после написания ее нужно чутка подшлифовать и навести марафет.
Друзья, не забывайте подписываться на обновления блога, ведь чем больше читателей подписано на обновления тем больше я понимаю что делаю что-то важное и полезное и это чертовски мотивирует на новые статьи и материалы.
Кстати друзья, у меня возникла одна классная идея и мне очень важно слышать ваше мнение. Я подумываю выпустить обучающий материал по операционным усилителям, этот материал будет в виде обычной pdf книжки или видеокурса, еще не решил. Мне кажется что несмотря на большое обилие информации в интернете и в литературе все=таки не хватает наглядной практической информации, такой, которую сможет понять каждый.
Так вот, напишите пожалуйста в комментариях какую информацию вы хотели бы видеть в этом обучающем материале чтобы я мог выдавать не просто полезную информацию а информацию которая действительно востребована.
А на этом у меня все, поэтому я желаю вам удачи, успехов и прекрасного настроения, даже не смотря на то что за окном зима!
С н/п Владимир Васильев.
P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!
Как и наушники, усилитель имеет свое собственное сопротивление. Очень часто, пропуская этот параметр, оценивая одни и те же наушники, слушатели приходят к противоположным мнениям относительно их звучания, касаемо их громкости и частотного баланса.
Рассмотрим подробно влияние сопротивления усилителя но общее звучание. В упрощенном виде электрическая схема выглядит так:
Условно, мы имеем дело с дополнительным сопротивлением R(Amplifier), которое многие не учитывают и потом удивляются, почему их ожидания от звучания наушников не оправдываются. В зависимости от величины сопротивления, усилители делятся на усилители напряжения (низкое значение сопротивления) и усилители тока (высокое сопротивление).
Само сопротивление принято называть импедансом или полным выходным сопротивлением усилителя. Более сложное название подчеркивает, что сопротивление может быть непостоянным и меняться в зависимости от частоты.
Из результатов измерений более 100 усилителей в проекте Reference Audio Analyzer можно выделить основные типы импедансов: равномерные и с повышением сопротивления в области низких частот.
Входное и выходное сопротивление
Кто в первый раз сталкивается с этими понятиями, читайте эту статью. Кому лень читать, вкратце объясню здесь из прошлой статьи. Каждый усилительный каскад имеем свое входное и выходное сопротивление. На схеме Rвх и Rвых
Входное сопротивление усилителя находится по формуле Rвх =Uвх / Iвх . Думаю, здесь вопросов возникать не должно. Эта формула справедлива как для постоянного тока, так и для переменного. В случае с постоянным током — это у нас будет усилитель постоянного тока (УПТ).
Немного иначе обстоят дела с выходным сопротивлением. В теории, можно замкнуть выходные клеммы 3 и 4 накоротко. В этом случае во выходной цепи усилителя у нас появится ток короткого замыкания Iкз
Более наглядно:
Ну и по закону Ома нетрудно догадаться, что Rвых = Eвых / Iкз . Но как же найти Евых ? Достаточно разомкнуть цепь и просто и замерить напряжение мультиметром. Это и будет Eвых. Физический смысл очень простой. Так как вольтметр обладает очень высоким входным сопротивлением, то в цепи у нас почти не будет течь ток, так как по закону Ома I=U/R. А если сопротивление нагрузки бесконечно большое, то, следовательно, Iкз будет бесконечно малое.
В этом случае этим бесконечно маленьким током можно пренебречь и считать, что в цепи нет никакой силы тока. А раз сила тока равна нулю, то и падение напряжения на Rвых также будет равняться нулю или формулой: URвых = IRвых = 0 Вольт. Следовательно, на клеммах 3 и 4 мы будем замерять Eвых .
Выходное сопротивление усилителя можно найти двумя способами: теоретическим и практическим. Теоретический способ, часто сложен, поскольку неизвестны многие параметры «черного ящика», называемого усилителем. Проще определить выходное сопротивление практическим путем.
Как найти выходное сопротивление на практике
Что нужно для этого? Номинальная мощность усилителя и допустимое напряжение на выходе. Не важно — усилитель это постоянного или переменного тока (напряжения). Тестирование усилителя любого типа желательно выполнять на уровне 70% допустимой выходной мощности. Это общая практика.
Если вы не забыли, мультиметр в этом случае нам покажет ЭДС Eвых , т. е. в данном случае Eвых = Uвых .
Номинал нагрузочного сопротивления должен выбираться исходя из допустимого тока и мощности усилителя.
Пример:
Выходная мощность усилителя 10 Вт, допустимое выходное напряжение (эффективное) 100 В. В этом случае, резистор нагрузки должен иметь сопротивление не менее R=U2/P = 10000/10 = 1 кОм. Мощность резистора: PR = U2/R = 10000/1000 = 10 Вт
Какой же физический смысл этого опыта? В результате этих шагов, у нас цепь станет замкнутой, а два сопротивления, Rвых и Rн , образуют делитель напряжения. Сюда же можно приписать закон Ома для полной цепи, который выражается формулой:
где
I — сила тока в цепи, А
E — ЭДС, В
R — сопротивление нагрузки, Ом
r — внутреннее сопротивление источника ЭДС, Ом
Применительно к нашей ситуации, формула будет иметь такой вид:
Отсюда получаем:
Или словами, ЭДС равняется сумме падений напряжения на каждом сопротивлении.
Как вы могли заметить, падение напряжения на сопротивлении Rвых зависит от силы тока в цепи. Чем больше сила тока в цепи, тем больше падение напряжения на выходном сопротивлении Rвых . Но от чего же зависит сила тока в цепи? От нагрузки Rн ! Чем она меньше, тем больше сила Iвых в цепи, тем больше будет падение напряжения на Rвых , а значит, падение напряжения на URн будет меньше.
Теперь, зная этот принцип, можно косвенно вычислить выходное сопротивление Rвых .
Шаг номер 3: Замеряем напряжение на нагрузке URн. Вспоминаем формулу выше:
отсюда
из формулы
Получаем, что
Далее что нам требуется — это увеличивать входное напряжение и снимать выходное напряжение — так мы увидим всю нелинейность выходной характеристики от тока и сможем замерить выходное сопротивление в диапазоне нагрузок, так как большинство усилителей мощности имеют нелинейность выходного сопротивления от допустимого тока нагрузки.
Усилители с характерными графиками полного выходного сопротивления
Усилители с ровным выходным сопротивлением
На графике показаны типовые линии импедансов с сопротивлением в 20, 50, 100 и 300 Ом.
При сопротивлении менее 3 Ом сопротивление называется «нулевым». К усилителям с «нулевым» сопротивлением относятся усилители Violectric.
К токовым усилителям можно отнести усилители Erzetich, где выходное сопротивление выше 60 Ом.
Близкое к нулю с повышением в области низких частот
Такую кривую импеданса можно наблюдать у усилителей с однополярным питанием, где постоянное смещение напряжение ликвидируется конденсатором на выходе. При подключении низкоомных наушников к такому усилителю на АЧХ обычно наблюдается снижение низких частот по уровню. Такие усилители относятся к категории усилителей с «нулевым» сопротивлением. Чаще всего такие усилители встречаются в плеерах и других мобильных устройствах.
Рабочий диапазон частот
Рабочий диапазон — это диапазон частот, где коэффициент усиления изменяется в допустимых пределах, заданных в технических условиях на усилитель. Для этого надо построить АЧХ усилителя. Обычно этот предел устанавливается на уровне -3 децибел. Почему именно -3 дБ? В свое время так было удобнее учитывать передаваемую энергию. В полосе — 3 дБ передается 50% мощности сигнала.
Но иногда требуется незначительное изменение коэффициента усиления. Например, в -1 дБ. В этом случае рабочий диапазон частот усилителя будет меньше:
Коэффициент усиления Ku
Для измерения коэффициента усиления соберем схему, для работы которой необходимо применять вспомогательный усилитель.
Для того, чтобы при измерении избавиться от напряжения Vos, необходимо производить измерения 2 раза, при разных G4. 1. G4=U1, тогда Uxi=Ux1. 2. G4=U2, тогда Uxi=Ux2.
Вывод формулы
Запишем уравнения Кирхгофа:
Составим уравнения для 2-х этапов измерения, проводя следующие замены переменных: 1. V1→V11, V3→V31, V4→V41, Uxi→Ux1, G4=U1. 2. V1→V12, V3→V32, V4→V42, Uxi→Ux2, G4=U2.
Получаем систему из 8-ми уравнений с 8-ю неизвестными: V11, V12, V31, V32, V41, V42, Ku, Vos. Решая уравнения, получаем:
Примечания к схеме моделирования
Измеряемое напряжение Uxi будет равно:
Для увеличения точности измерений необходимо увеличивать R3, однако смещение нуля может вывести из режима вспомогательный усилитель поэтому стоит выбирать усилитель с широким диапазоном биполярного питания.
Результаты моделирования
Переходим от теории к практике: подгружаем spice модель вспомогательного усилителя в симулятор и собираем схему измерения.
Схема измерения коэффициента усиления, собранная в симуляторе
Для компенсации всей системы необходимо использовать RC цепь на неинвертирующем входе вспомогательного усилителя.
Для измерений источник vtest создает 2 уровня напряжений U2, U1, после чего замеряется напряжение на vin, и по формуле пересчитывается в коэффициент усиления:
Работа схемы в tran анализе, где vin — выход вспомогательного усилителя для различных G3
Для исследуемого усилителя получается 105дБ.
Возможные трудности при измерениях
1) Влияние смещения нуля на рабочую точку вспомогательного усиления. При смещении нуля исследуемого усилителя 5мВ, выход вспомогательного усилителя по DC становится -4.7В проблема устраняется при использовании биполярного питания.
2) При моделировании с включенными в симуляторе шумами транзисторов, их амплитуда оказывается сопоставимой с разницей напряжений, необходимых для вычислений Ku:
Для улучшения точности измерений необходимо использовать усреднение, однако оно не помогает полностью избавиться от шума. Если коэффициент усиления не слишком высокий, шум не будет сильной помехой. У исследуемого усилителя минимальное значение Ku=66дБ:
Получается, чтобы отбраковать усилитель нужно задетектировать 0.4В, что с таким уровнем шума является легкой задачей.
3) Напряжение на выходе исследуемого усилителя будет равно V12+V12−Vtest. Для повышения точности необходимо задавать разницу между двумя vtest как можно больше, однако все это ограничивается допустимым выходным напряжением усилителя, это нужно также учитывать.
Собственные шумы усилителя.
Что же такое шум?
В электронике шумом называют беспорядочные колебания амплитуды сигнала, которые глушат полезный сигнал. Сюда же относятся разного рода помехи. Собственные шумы усилителя — это шумы, которые зарождаются как внутри самого усилителя, так и могут быть вызваны внешним источником помех, либо некачественным питанием усилителя. Давайте рассмотрим основные виды шумов усилителя.
Фон
Этот шум вызван некачественным питанием усилителя. Если источник питания собран на сетевом трансформаторе, то шум будет на частоте 100 Гц (2х50Гц, по схеме диодного моста). То есть на выходе такого усилителя мы услышим гудение, если подцепим к выходу динамик. Думаю, вы часто слышали такое выражение «что-то динамики фонят». Это все из этой серии.
Помехи и наводки
Это могут быть внешние источники, которые так или иначе действуют на усилитель. Это может быть наводка от сети 220 Вольт (очень часто ее можно увидеть, если просто прикоснуться к сигнальному щупу осциллографа), это также может быть какая-либо искра, которая образуется в свечах двигателей внутреннего сгорания.
Небольшое лирическое отступление. Помню, как смотрел диснеевские мультики по первому каналу, а через дорогу сосед пилил дрова с помощью бензопилы Дружба-2. Тогда на экране ТВ были такие помехи, что я про себя тихо материл соседа.
Ну а как же без грозовых разрядов? Благодаря электромагнитному импульсу у нас появилось такое изобретение, как радио.
К источникам помех можно также отнести радио- и ТВ-станции, рядом лежащее и стоящее электрооборудование, типа мощных коммутационных механических ключей, разрядников и тд.
Ну и конечно, это шум самих радиоэлементов. Сюда относится тепловой шум (джонсоновский), дробовой шум, а также фликкер-шум.
Наиболее существенными являются шумы, которые возникают на входе усилителя в самом первом каскаде. Этот шум в дальнейшем усиливается также, как и входной полезный сигнал. В результате на выходе усилителя у нас будет усилен как полезный сигнал, так и шумовой. Поэтому, при проектировании качественных усилителей стараются как можно сильнее минимизировать шум на входе первого каскада усилителя.
Предисловие
Ладно, начнем издалека… Как вы знаете, все электронные устройства состоят из блоков. Их еще часто называют каскады, модули, узлы и тд. В нашей статье будем использовать понятие «блок». Например, источник питания, собранный по этой схеме:
состоит из двух блоков. Я их пометил в красном и зеленом прямоугольниках.
В красном блоке мы получаем постоянное напряжение, а в зеленом блоке мы его стабилизируем. То есть блочная схема будет такой:
Блочная схема — это условное деление. В этом примере мы могли бы даже взять трансформатор, как отдельный блок, который понижает переменное напряжение одного номинала к другому. Как нам удобнее, так и делим на блоки нашу электронную безделушку. Метод «от простого к сложному» полностью работает в нашем мире. На низшем уровне находятся радиоэлементы, на высшем — готовое устройство, например, телевизор.
Ладно, что-то отвлеклись. Как вы поняли, любое устройство состоит из блоков, которые выполняют определенную функцию.
— Ага! Так что же получается? Я могу просто тупо взять готовые блоки и изобрести любое электронное устройство, которое мне придет в голову?
Да! Именно на это нацелена сейчас современная электроника Микроконтроллеры и конструкторы, типа Arduino, добавляют еще больше гибкости в творческие начинания молодых изобретателей.
На словах все выходит прекрасно, но всегда есть подводные камни, которые следует изучить, чтобы начать проектировать электронные устройства. Некоторые из этих камушков называются входным и выходным сопротивлением.
Думаю, все помнят, что такое сопротивление и что такое резистор. Резистор хоть и обладает сопротивлением, но это активное сопротивление. Катушка индуктивности и конденсатор будут уже обладать, так называемым, реактивным сопротивлением. Но что такое входное и выходное сопротивление? Это уже что-то новенькое. Если прислушаться к этим фразам, то входное сопротивление — это сопротивление какого-то входа, а выходное — сопротивление какого-либо выхода. Ну да, все почти так и есть. И где же нам найти в схеме эти входные и выходные сопротивления? А вот «прячутся» они в самих блоках радиоэлектронных устройств.
Отношение сигнал/шум
Пусть у вас дома стоит телевизор, который ловит аналоговое вещание. На экране телевизора мы видим четкую картинку:
Но вдруг антенна на крыше вашего дома из-за сильного ветра чуток отклонилась в сторону и изображение ухудшилось
Потом антенна вообще упала с крыши, и на телевизоре мы видим теперь что-то типа этого
В каком случае отношение сигнал/шум будет больше, а в каком меньше? На первой картинке, где четкое изображение, отношение сигнала к шуму будет очень большое, так как не первой картинке мы простым взглядом не можем уловить каких-либо помех на изображении, хотя по идее они есть).
На второй картинке мы видим, что в изображении появились помехи, которые делают некомфортным просмотр картинки. Здесь отношение сигнала к шуму уже будет намного меньше, чем на первой картинке.
Ну и на третьей картинке шумы почти полностью одолели изображение. В этом случае можно сказать , что отношение сигнала к шуму будет ну очень малым.
Отношение сигнал/шум является количественной безразмерной величиной.
В аналоговой электронике для нормальной работы усилителя полезный сигнал должен в несколько раз превышать шумы, иначе это сильно скажется на качестве усиления, так как полезный сигнал суммируется с шумовым.
Отношение сигнал/шум в англоязычной литературе обозначается как SNR или S/N.
Так как порой это отношение достигает очень больших значений в цифрах, поэтому чаще всего его выражают в децибелах:
где
Ucигнал — среднеквадратичное значение полезного сигнала, В
Uшум — среднеквадратичное значение шумового сигнала, В
Pсигнал — мощность сигнала
Pшум — мощность шума
То есть в нашем случае с котиком на первой картинке амплитуда полезного видеосигнала в разы превосходила амплитуду шума, поэтому первая картинка была четкой. На третьей картинке амплитуда полезного видеосигнала почти была равна амплитуде шума, поэтому картинка получилась очень зашумленной.
Еще один пример. Вот синусоидальный сигнал с SNR=10:
А вот тот же самый синус с SNR=3
Как вы могли заметить, сигнал с SNR=10 намного «чище», чем с SNR=3.
SNR чаще всего можно увидеть при описании характеристик усилителя звука. Чем выше SNR, тем лучше по качеству звучания будет усилитель. Для HI-FI систем звучания этот показатель должен быть от 90 дБ и выше. Для телефонных разговоров вполне достаточно и 30 дБ.
На практике SNR измеряется на выходе усилителя с помощью милливольтметра с trueRMS, либо с помощью анализатора спектра.
Измерения параметров ОУ
При разработке микросхем, в симуляторе довольно легко проверить все параметры, которые вас интересуют. В современных САПР есть много различных типов анализа схем, которые позволяют сделать это быстро. При работе с реальной схемой сталкиваешься сразу же с кучей проблем. Последний год, работал над проектом – изолированный усилитель ошибки. Проект запущен в изготовление на фабрике, а пока необходимо разобраться – как же все это дело проверить в жизни. Для работы данной схемы в составе изолированного DC-DC преобразователя очень важны параметры входного ОУ:
В РФ существует отдельный ГОСТ 23089, в котором описаны схемы измерений, но нигде не выведено как именно они работают и с какие проблемы могут встретиться в данном процессе. Рассмотрим подробно все схемы измерений, надеюсь кому-то это будет полезно при работе с аналоговым железом).
Амплитудная характеристика
Амплитудная характеристика усилителя — это зависимость амплитуды сигнала на выходе от входного сигнала при фиксированной частоте. Обычно она составляет 1 кГц.
Амплитудная характеристика идеального усилителя по идее должна выглядеть вот так:
Это луч, который начинается от нулевой точки отсчета координат и простирается в бесконечность.
Но на самом деле реальная амплитудная характеристика усилителя выглядит вот так:
Здесь мы видим, что если даже входное напряжение Uвх =0, то на выходе усилителя мы все равно получим какой-то уровень сигнала. Это будет напряжение шума Uш .
Измерение входного сопротивления на практике
Ну все, запарка прошла ;-). Давайте теперь на практике попробуем замерить входное сопротивление какого-либо устройства. Мой взгляд сразу упал на Транзистор-метр. Итак, выставляем на блоке питания рабочее напряжение этого транзистор-метра, то есть 9 Вольт, и во включенном состоянии замеряем потребляемую силу тока. Как замерить силу тока в цепи, читаем в этой статье. По схеме все это будет выглядеть вот так:
А на деле вот так:
Итак, у нас получилось 22,5 миллиАмпер.
Теперь, зная значение потребляемого тока, можно найти по этой формуле входное сопротивление:
Получаем:
Динамический диапазон усилителя
Динамический диапазон — это отношение максимально допустимого уровня выходного сигнала к его минимальному уровню, при котором обеспечивается заданное отношение сигнал/шум:
Чтобы понять концовку определения «обеспечивается заданное отношение сигнал/шум» динамического диапазона, давайте рассмотрим наш рисунок:
Допустим, наш усилитель должен иметь SNR=90 дБ. Будет ли правильно, если мы возьмем Uвых мин за Uшум?
Конечно же нет! В этом случае в этой точке на графике амплитуды сигнала и шума будут равны, а следовательно, по формуле
получим, что SNR=0 дБ.
Непорядок. Значит, надо взять такое значение Uвых , при котором бы соблюдалось равенство
Допустим, что Uшум =1 мкВ, подставляем в формулу
Из этого уравнения находим Uвых . Это будет как раз являться Uвых. мин. для формулы:
при SNR=90. В нашем случае это будет точка А.
Uвых макс берем в точке B, так как в этом случае это максимальное значение, при котором у нас в усилителе не возникают нелинейные искажения (о них чуть ниже).
Рабочая область усилителя будет обеспечиваться на отрезке АВ. В этом случае у нас будут минимальные искажения в сигнале, так как эта область линейная. Отношение максимально допустимого выходного сигнала к уровню шума — это предельный уровень динамического диапазона для аналогового усилителя.
Для усилителей звука выход за пределы этой рабочей области в большую сторону будет чреват нелинейными искажениями, а в меньшую — полезный сигнал задавят помехи. Да вы и сами, наверное замечали, что выкрутив на полную катушку ручку громкости дешевой китайской магнитолы, у нас качество звучания оставляло желать лучшего, так как в дело «вклинивались» нелинейные искажения.
Выводы
Какие можно сделать выводы? Гнаться за нулевым сопротивлением в большинстве случаев нет смысла. Для наушников с ярко выраженным резонансом в области низких частот может подойти как усилитель напряжения, так и токовый, и это будет компромисс между контролем низких частот и прозрачности звучания в остальном диапазоне.
Для ряда наушников, где производитель постарался снизить зависимость сопротивления от температуры, может вообще не быть разницы, с каким выходным сопротивлением усилитель используется.
У высокоомных наушников (таких как Sennheiser HD 650, HD 800, Beyerdynamic DT 880 Pro) есть преимущество, их колебания сопротивления мало отражаются на амплитуде сигнала и возможно поэтому за высокоомными наушниками закрепилась ассоциация как «качественный звук».
А в конечном итоге, связка «усилитель + наушники» выбирается по субъективному звучанию, где технически характеристики дают первичную информацию и на какие особенности стоит обратить внимание в первую очередь. Например, при оценке токового усилителя надо обратить внимание на качество низких частот, в то время как при использовании усилителя напряжения – нет ли излишней резкости или ощущения «мутности» в звучании. При использовании арматурных или гибридных наушников – подходит ли конечный частотный баланс.
Автор Кузнецов Роман romanrex
Искажения, вносимые усилителем
Искажения определяют сравнением формы сигнала на входе и на выходе. Идеальным является усилитель, который в точности повторяет форму сигнала, поданного на вход. Но так как наш мир не идеален, и радиоэлементы тоже не идеальны, то и на выходе у нас сигнал будет всегда немного искаженный. Главное, чтобы эти искажения не были столь критичны.
В основном искажения делятся на 4 группы:
- Частотные
- Фазовые
- Переходные
- Нелинейные
Частотные искажения
Частотные искажения возникают вследствие того, что коэффициент усиления во всем диапазоне частот не одинаковый. Или простыми словами, какие-то частоты усиливаются хорошо, а какие-то плохо). Чтобы в этом разобраться, достаточно посмотреть на АЧХ усилителя.
В данном случае мы можем увидеть, что низкие и высокие частоты будут усиливаться меньше, чем средние частоты. А так как сложный сигнал состоит из множества частотных составляющих, вследствие этого и возникнут частотные искажения.
Фазовые искажения
Фазовые искажения возникают из-за того, что разные частоты с разной задержкой по времени появляются на выходе усилителя. Какие-то частоты запаздывают больше, а какие-то меньше. Давайте все это рассмотрим на примере двух картинок.
Допустим, мы «загоняем» на вход синусоидальный сигнал с низкой частотой и на выходе получаем уже усиленный сигнал, но немного с небольшой задержкой.
Но также не забывайте, что катушки и конденсаторы являются частото-зависимыми радиоэлементами. Их реактивное сопротивление зависит от частоты сигнала, поэтому, прогоняя через усилитель сигнал с другой частотой, мы получим уже совсем другую задержку сигнала
То есть в нашем случае t1 ≠ t2 . Хорошо это или плохо? Если мы будем усиливать синусоиду, то в принципе нам по барабану. Какая разница раньше он появится на выходе или позже? Главное то, что сигнал будет усиленный.
Все бы ничего, но стоит помнить, что сложные сигналы состоят из суммы множества синусоид различных частот и амплитуд.
Чтобы понять, что такое сумма сигналов, достаточно рассмотреть вот такие примеры:
ну и еще один, мне не жалко)
Складываем амплитуды в одинаковые моменты времени и получаем сумму этих двух сигналов.
А вот так из разных синусоид разных частот складывается прямоугольный сигнал:
В данном случае мы пытаемся «собрать» прямоугольный сигнал из суммы синусоид разных амплитуд и частот.
Но так как у нас усилитель задерживает разные сигналы по частоте по-разному, то у нас между сигналами происходит разнобой. Лучше всего это объяснит рисунок ниже. Имеем два синусоидальных сигнала с разной частотой и амплитудой:
Если их сложить, получим сложный сигнал:
Но что будет, если второй сигнал сдвинется по фазе относительно первого?
Смотрим теперь сумму этих сигналов:
Абсолютно другой сигнал! Чувствуете разницу? Чуток сдвинули фазу, а форма сигнала уже поменялась.
То есть на выходе усилителя мы хотели получить вот такой усиленный сигнал:
а получили такой:
В результате фазовых искажений наш сложный сигнал, состоящий из двух синусоид, поменял форму. На выходе усилителя мы получили совсем другой сигнал. А как вы помните, роль усилителя заключается в том, чтобы усиливать сигнал, сохраняя при этом его форму.
Фазо-частотная характеристика (ФЧХ) усилителя — это график зависимости угла сдвига фаз, вносимого усилителем, от частоты. Выглядеть она может примерно вот так:
где
φ — это сдвиг фазы относительно входного и выходного сигнала
f — частота сигнала
Человеческое ухо не замечает фазовых искажений, несмотря на то, что даже изменяется форма сигнала. Поэтому при проектировании звуковых усилителей фазовые искажения не принимают во внимание.
Частотные искажения и фазовые искажения относят к линейным искажениям, так как оба вида искажений обусловлены линейными элементами схемы. Если сказать по научному, у нас в спектре сигнала не появляется дополнительных гармоник.
Переходные искажения
Переходным искажением называют искажение прямоугольного импульса, которое подается на вход усилителя. На выходе такой импульс будет иметь уже другую форму, вызванную искажением сигнала внутри самого усилителя.
Для оценки переходных искажений используют переходную характеристику. Она представляет из себя зависимость напряжения или тока на выходе усилителя от времени от подачи на его вход прямоугольного импульса.
На рисунке ниже имеем прямоугольный сигнал, который подаем на вход усилителя, а на выходе усилителя уже будет искаженный усиленный сигнал. Это искажения вызваны, как обычно, с наличием в схеме усилителя реактивных радиоэлементов, то есть тех же самых катушек индуктивности и конденсаторов.
Для оценки переходных искажений используют такие параметры:
Um — это амплитуда импульса, отсчитывается от плоской вершины импульса, В
ΔUв — это выброс фронта импульса, В
ΔUс — спад вершины импульса, В
Следующие два параметра измеряются в диапазоне от 0,1Um и до 0,9Um :
tф — длительность фронта импульса
tc — длительность спада импульса
А длительность самого импульса tи измеряется на уровне 0,5Um .
Производители звукотехники, выпуская изделия на рынок, обязательно указывают в паспорте технические характеристики. Ориентироваться в них непросто. Неискушенный покупатель в лучшем случае спросит у продавца о мощности усилителя, полосе частот, на худой конец, об искажениях. И, как правило, получит формальный ответ: мощность усилителя 100 ватт, полоса частот не хуже 20 Гц — 20 кГц, искажения — три сотки, что означает 0,03%. Однако многие усилители имеют подобные характеристики. Добиться их в настоящее время — задача несложная, но при одинаковых характеристиках аппараты могут звучать по-разному. Так на что же следует обращать внимание в первую очередь?
Каждое звено в цепи воспроизведения обладает своими особенными характеристиками, мы намерены указать их отдельно для акустики, усилителей (предварительного и мощности), проигрывателей (винила и компакт-дисков) и других источников и преобразователей сигнала.
Начнем с наиболее популярного и необходимого — предварительного усилителя. В английском он часто называется Line preamp, Control amp, Phono amp, Head amp, то есть аппарат, предназначенный для работы с различными источниками сигнала. Итак, рассмотрим его основные технические характеристики.
Характеристики предварительных усилителей:
Частотный диапазон или полоса воспроизводимых частот Frequency response
В зависимости от источника сигнала, указывается по двум входам. По входу головки звукоснимателя указывается отклонение частотной характеристики от уровня на частоте 1 кГц, в полосе частот 30 Гц — 15 кГц, либо 20 Гц — 20 кГц (смотря каким стандартом пользуется изготовитель). Например: Frequency response Disc input (RIAA Ref.1 kHz, 30 Hz to 15 kHz) +0.2/–0.25 dB.
По входам Aux/Line указывается частотная характеристика с определенным спадом на краях. Например: Frequency resp. Line –0.5 dB, 2 Hz to 100 kHz; –3 dB 0.88 Hz and >200 kHz.
В первом случае характеризуется качество корректора звукоснимателя при воспроизведении виниловых грампластинок. Естественно, чем меньше отклонение, тем лучше. Для техники высокого уровня допустимы отклонения ± 1дБ в полосе 20 Гц — 20 кГц. Ширина частотного диапазона по линейному входу также определяет качество аппарата — чем шире полоса частот, тем лучше. Особенно это касается расширения в сторону низких частот, вплоть до постоянного тока.
Суммарные гармонические искажения Total Harmonic Distortion + Noise
Они отражают наличие продуктов искажений в спектре простых (синусоидальных) сигналов. Величина суммарных гармонических искажений является функцией частоты при сигнале на выходе 1 В. Как правило, на краях диапазона имеет тенденцию к росту. Оценку гармонических искажений проводят по основным входам, отдельно для ММ, МС* и линейного входа. Указывается в процентах, либо в децибелах, 0.01% соответствует минус 80 дБ. Для транзисторной техники цифры порядка 0.005 — 0.05% являются типичными, для ламповой и 0.1% — приемлемая величина. Надо сказать, что суммарное значение гармонических искажений не является определяющим показателем хорошего звучания. Данная характеристика лишь формально описывает реакцию системы на входной сигнал. Как известно, ни один измерительный сигнал не способен заставить систему реагировать так, как это происходит при подаче реального звукового сигнала. Тем не менее разработчики стремятся любые искажения свести к минимуму.
Отношение сигнал/шум S/N ratio (IHF, CCIR, IEC-A)
В скобках указывается, какие применялись взвешивающие фильтры (обозначаются они по названию организаций, рекомендующих применение данного фильтра). Предварительный усилитель, имеющий низкое значение отношения сигнал/шум, будет не только шуметь как примус, но, что значительно хуже, съест тонкую музыкальную структуру звучания голосов и инструментов. Отношение сигнал/шум измеряется в децибелах, по каждому входу отдельно (вход закорачивается), по отношению к сигналу на выходе напряжением 1В и частотой 1 кГц. Для МС и ММ входов вполне достаточно 70-ти дБ. Линейный вход имеет, как правило, значение лучше, обычно порядка 85 — 95 дБ. Есть и чемпионы, как, например, предусилитель фирмы Primare Systems Model 201 с отношением сигнал/шум по линейному входу 102 дБ со взвешивающим фильтром IEC-A.
Чувствительность по входу Input Sensitivity
Указывает напряжение на входе, при котором напряжение на выходе усилителя будет равно 1 В. Сигнал на выходе источника для каждого из входов должен быть не меньше параметра чувствительности. В противном случае сигнал на выходе предусилителя будет иметь значительный шум или будет недостаточен для «раскачки» усилителя мощности. Например: Input Data (Sensitivity/Loading) Disc (MM)—0.5 mV/47 k, Disc (MC)—0.06 mV/47 Ohms, Aux/CD input — 100 mV/ 50 k. Типичными значениями чувствительности для предварительного усилителя являются следующие цифры: по входу МС — 0.2 — 0.3 мВ, по входу ММ — 1 — 3 мВ, по линейному входу — 100 — 200 мВ.
Разделение между каналами Channel separation
Могут употребляться другие термины: Stereo Separation, Crosstalk. Характеризует проникание сигнала из канала в канал, измеряется в децибелах. Как правило, разделение между каналами имеет тенденцию к уменьшению с ростом частоты, что приводит к ухудшению восприятия стереообраза на высоких частотах. Типичные значения для входов звукоснимателей на частоте 1 кГц — 80ё70дБ, на 20 кГц—50ё45дБ. По линейному входу этот показатель лучше на 10ё15дБ. Надо сказать, что у лучших головок звукоснимателей разделение между каналами на частоте 20 кГц достигает 30ё35 дБ, так что многие усилители с показателями, близкими к 35ё40 дБ, будут звучать плохо из-за потери локализации, глубины стереообраза, детальности на частотах выше 10 кГц. Пожалуй, чемпионом по этой характеристике может считаться American Hybrid Technology, имеющий в худшем случае 115 дБ!
Входной и выходной импедансы Input/Output impedance
Для согласования с ММ-головками звукоснимателей предусилитель может иметь переключатель входного сопротивления, скажем, от 10 кОм до 47 кОм. МС головки рассчитаны на меньшее значение импеданса. Канадский усилитель Sonic Frontiers SFP-1, например, при штатном сопротивлении на входе ММ/МС 47 к, комплектуется набором резисторов от 10 Ом до 1 кОм для точного согласования с применяемой головкой. Однако это вряд ли удобно для владельца, который должен самостоятельно решить, какой резистор ему ставить, да еще сделать достаточно качественные пайки. Линейный вход, как правило, имеет входной импеданс не ниже 30 кОм. Меньшее сопротивление создаст сложности для компакт-проигрывателей, магнитофонов, тюнеров: так как их выход может быть не приспособлен для работы на низкое сопротивление, возможно сильное ослабление сигнала. Выходное сопротивление характеризует способность системы работать на низкоомную нагрузку, например, на входное сопротивление усилителя с длинным межблочным кабелем. Так например, английский Art Audio VP1 имеет выходное сопротивление 35 кОм, что с трехметровым кабелем к усилителю мощности и сопротивлением по входу 10 кОм даст затухание 7 дБ на 20 кГц! Поэтому, чем ниже выходное сопротивление предусилителя, тем лучше. Типичным значением можно считать 1 кОм на частоте 1 кГц.
Присутствие напряжения смещения на выходе DC offset
Характеристика обязательная для высококачественной аппаратуры! Например, 50 мВ на выходе предусилителя, поданные на открытый вход усилителя мощности с усилением в 30 дБ, дадут на его выходе около 1.8 В постоянного напряжения! Конечно, такое напряжение не способно повредить акустическую систему (СЧ и ВЧ головки будут защищены фильтром, для НЧ головки такое напряжение не опасно), однако оно способно вызвать значительное смещение диффузора НЧ головки. В свою очередь это приведет к асимметрии расположения звуковой катушки в магнитном зазоре и увеличит искажения в НЧ области.
Техника высокого класса имеет балансные входы и выходы, что позволяет избежать проблем, возникающих с появлением постоянного напряжения на выходе предусилителя. Если у вас однотактный вход (разъем RCA) усилителя, а сам усилитель не имеет схемы, обеспечивающей отсутствие постоянного напряжения на выходе усилителя (DC servo), то при выборе предусилителя следует обратить внимание на этот параметр. Заметим, что величина смещения на выходе может быть разной у разных экземпляров одного и того же аппарата, однако цифра ±10мВ вполне допустима во всех случаях.
Приведенный перечень технических характеристик, конечно же, не исчерпывающий. Мы привели, на наш взгляд, основные, необходимые при оценке и выборе предварительного усилителя.
Характеристики усилителя мощности:
Задача выбора усилителя мощности не менее сложна, чем выбор предусилителя. Прежде чем принять решение, что возможно только после музыкального прослушивания, давайте заглянем в паспорт и ознакомимся с техническим характеристиками.
Выходная паспортная мощность Power output, Rated power
Это главная характеристика усилителя. Измеряется в ваттах на синусоидальном сигнале при заданной нагрузке. Обычно указывается мощность при нагрузке 8 и 4 Ом. Однако на музыкальном сигнале сопротивление АС падает порой до 1 Ома. Поэтому невредно поинтересоваться у продавца, какую мощность усилитель может отдать на 2-х омной нагрузке. Если мощность усилителя указана 100 Вт/8 Ом и 200 Вт/4 Ом — это отличная мощная машина, которой не страшны даже самые низкоомные колонки. Однако дело не в цифрах 100, 200, 500, 1000… Если у усилителя даже 20 Вт/8 Ом и 40 Вт/4 Ом, это также хорошо. Важно, чтобы мощность возрастала вдвое при уменьшении нагрузки в 2 раза. Такой усилитель обладает большой перегрузочной способностью, и если вы поменяете акустику на более низкоомную, усилитель не подведет.
Иная картина с ламповыми усилителями. Здесь, как правило, имеется несколько выходов (выходной трансформатор имеет отводы на вторичной обмотке для подключения соответствующей нагрузки). Если ваша акустическая система имеет сопротивление 8 Ом, подключите ее на 8-омный выход, если 4 Ома — на 4-омный. При правильном подключении усилитель отдаст максимальную мощность, на которую он рассчитан.
Полоса частот, частотный диапазон на уровне –3дБ (при мощности вдвое меньше паспортной) Power bandwidth (–3dB point)
Как правило, у транзисторных усилителей диапазон частот шире, чем у ламповых (от нескольких герц до сотен килогерц). Например, усилитель Audio Research D300 имеет полосу от нуля герц (постоянный ток) до 150 килогерц. А ламповый V70 той же фирмы — 12 Гц — 40 кГц, что однако не мешает его высокой популярности у аудиофилов.
Кратковременное пиковое значение выходного тока (при нагрузке 1 Ом) Peak output current
Характеризует мощность блока питания, надежность выходного каскада. У лучших транзисторных усилителей этот показатель порядка ± 30ё60А. Про такой усилитель можно сказать, что он управляет акустикой «железной рукой в бархатной перчатке». Хорошие ламповые усилители отдают в нагрузку ток порядка ± 10ё15А. Высокие значения выходного тока обеспечивают глубокий, плотный бас.
Характеристика искажений Distortion
Могут указываться и гармонические и интермодуляционные. Чем меньше эта цифра в процентах или в децибелах, тем меньше искажений вносит в усиливаемый сигнал данный усилитель. Однако более важна не величина, а спектр продуктов искажения. Двухтактные усилители эффективно подавляют в выходном каскаде вторую гармонику, но при этом могут иметь длинный хвост из четных и нечетных гармоник. У однотактных ламповых гармоники значительно больше по уровню, но они быстро затухают и, как правило, выше пятой гармоники искажений в спектре нет.
Ламповая техника имеет несколько худшие показатели по искажениям, но уже упомянутый Audio Research V70, имея 1 % искажений на максимальной мощности 60 Вт, по свидетельству зарубежных экспертов, звучит прекрасно. Измерения гармонических искажений производят на разных частотах, как правило, 20Гц, 1кГц и 20кГц, и выходных мощностях 1VA, 2/3 паспортной и на максимальной паспортной. На крайних частотах и на максимальной мощности может наблюдаться значительное увеличение уровня искажений.
В середине 70-х годов было модно приводить характеристики усилителя при различных интермодуляционных тестах. Появились понятия TIM (Transient InterModulation) — переходных, DIM (Dinamic InterModulation) — динамических интермодуляций. В настоящее время поведение усилителя при сложных измерительных сигналах интересует только специалистов и разработчиков. Мы же упомянем лишь стандартные измерения интермодуляционных искажений при одновременной подаче 2-х тонов 19 кГц/20 кГц на полной мощности. Хороший усилитель должен иметь показатель в пределах 0.02 — 0.1 %.
Входные импеданс и чувствительность Input Impedance, Input Sensitivity
Типичной цифрой для импеданса является 30 — 100 кОм. Входное сопротивление ниже 30 кОм может серьезно повлиять на частотную характеристику сигнала, поступающего от предусилителя.
Под чувствительностью понимается напряжение, поданное на вход, при котором усилитель развивает паспортную мощность. Обычным значением является 0.5 — 2 В.
Выходное сопротивление Output Impedance
Характеризует способность усилителя одинаково хорошо работать на акустические системы как с высоким, так и с низким импедансом. Существует заблуждение, что чем больше коэффициент демпфирования (номинальный импеданс акустической системы, деленный на выходное сопротивление усилителя), тем лучше управление акустикой по басу. Однако коэффициент демпфирования, равный 2000, окажется лучше 20-ти всего лишь на 5 — 10 % на НЧ характеристике, т.е. ожидаемое увеличение звукового давления на НЧ менее 1 дБ! Тем не менее, очень малое значение демпфирования, положим, меньше 10, может привести к заметному изменению частотной характеристики АС.
Мощность источника питания. Энергия, запасенная в конденсаторах и индуктивностях фильтра. Power supply capacitance. Energy storage.
Именно эта энергия определяет динамический диапазон при воспроизведении. Измеряется в джоулях. Типичный усилитель с двумя конденсаторами по 10 000 мкФ на 60 В имеет всего 72 Дж. (Транзисторные чемпионы имеют суммарную емкость конденсаторов порядка 0.5 — 1.0 фарады). Для сравнения, у фотовспышки в средней фотостудии — 500 — 1000 Дж. А вот у Audio Research V140 — 415 Дж. Представляете, какие мускулы у этого лампового моноусилителя! Поэтому, когда приводится эта характеристика, обязательно обратите на нее внимание.
Мы намеренно не привели такие характеристики, как отношение сигнал/шум, разделение между каналами, присутствие постоянного напряжения на выходе. Они по определению и измерению подобны приведенным выше у предусилителя. Рекомендуемые в данной статье пределы параметров не следует рассматривать как жесткие ограничения при выборе усилителей. Даже в усилителях высокого класса возможны отклонения одного-двух параметров от приведенных здесь диапазонов. Окончательный выбор должен определяться результатами прослушивания.
Если у вас возникнут вопросы по неотмеченным здесь характеристикам или собственные мнения, пишите в редакцию.
4.1. Структурная схема усилителя
Усилителем называется устройство, предназначенное для усиления мощности входного сигнала. Усиление происходит с помощью активных элементов за счет потребления энергии от источника питания. Активными элементами в усилителях чаще всего являются транзисторы; такие усилители принято называть полупроводниковыми, или транзисторными. В любом усилителе входной сигнал управляет передачей энергии источника питания в нагрузку.
Принцип действия усилительного каскада удобно пояснить с помощью схемы, приведенной на рис.4.1. Основой усилителя являются два элемента: резистор R
и управляемый активный элемент
АЭ
транзистор, сопротивление которого изменяется под действием входного сигнала
Uвх
. За счет изменения сопротивления
АЭ
изменяется ток, протекающий от источника питания с напряжением
Eп
в цепи резистора
R
и
АЭ
. В результате будут меняться падение напряжения на резисторе, а следовательно, и выходное напряжение
Uвых.
Здесь процесс усиления основан на преобразовании энергии источника питания
Eп
в энергию выходного напряжения.
Рассмотрим структурную схему усилительного каскада, приведенную на рис.4.2. Усилитель представлен как активный четырехполюсник. Источник входного сигнала показан в виде генератора напряжения Eг
, имеющего внутреннее сопротивление
Rг
. На выходе усилителя включен резистор нагрузки
Rн.
Ни генератор
Eг
, ни нагрузка не являются частями усилительного каскада, но довольно часто играют значительную роль в его работе. Усилитель на рис.4.2 представляется своими входным
Rвх
и выходным
Rвых
сопротивлениями.
По роду усиливаемой величины различают усилители напряжения, тока и мощности.
Удобно подразделять усилительные каскады по соотношению величин Rвх
и
Rг
. Если в усилителе
Rвх>>Rг,
то он является усилителем напряжения. В усилителе тока
Rвх<г, т.е. имеет место токовый вход. В усилителе мощности вход согласован с источником входного сигнала, т.е. Rвх »Rг,
По соотношению между величинами Rвых
и
Rн
также можно разделить усилители на усилители напряжения (
Rвых<н
), тока с токовым выходом (
Rвых>>Rн
), и мощности, которые работают на согласованную нагрузку (
Rвых»Rн
).
Как правило усилитель состоит из нескольких усилительных каскадов (рис.4.3). Первый каскад называется входным, а последний — выходным ил
и оконечным. Входной каскад осуществляет согласование усилителя с источником входного сигнала, поэтому усилитель напряжения должен иметь большое входное сопротивление. Кроме того, крайне желательно, чтобы входной каскад имел минимальный коэффициент шума.
Выходной каскад многокаскадного усилителя чаще всего является усилителем мощности и призван работать на низкоомную нагрузку. Поэтому требуется, чтобы выходной каскад имел большую допустимую мощность, малое выходное сопротивление, высокий коэффициент полезного действия и малый коэффициент гармоник. Промежуточные каскады необходимы для обеспечения заданного усиления, т.е. основным их параметром является коэффициент усиления ( по напряжению).
Соединение каскадов между собой в многокаскадном усилителе может быть осуществлено различными способами. Один из широко распространенных способов для усилителей переменного тока или напряжения реализуется с помощью разделительных емкостей. Такой усилитель называется усилителем с емкостной связью. Для усилителей постоянного тока используется непосредственная (гальваническая) связь. Отметим, что непосредственная связь между каскадами широко представлена в ИС.
Смещение нуля Vos
Рассмотрим схему для измерения смещения:
Найдем формулу, которая будет определять напряжение смещения.
Вывод формулы
Составим систему уравнений:
Решая систему неизвестные V1 и Vos, получаем:
Итого:
Примечания к схеме моделирования
Выходное напряжение вспомогательного усилителя определяется формулой:
Для увеличения точности измерений необходимо увеличивать R5, однако смещение нуля может вывести из режима вспомогательный усилитель поэтому стоит выбирать усилитель с широким диапазоном биполярного питания.
Результаты моделирования
Приступим к моделированию. Собираем схему измерения с учетом цепи коррекции и однополярного питания исследуемого усилителя:
Схема измерения напряжения смещения, собранная в симуляторе
Проведем AC анализ с цепью коррекции:
AC анализ на стабильность обратной связи
Система работает стабильно, теперь проведем измерения для разных смещений нуля: Voff=-5m:2m:5m
Напряжения на выходе вспомогательного усилителя для различных значений смещения нуля и G3
При измерении смещения выход вспомогательного усилителя варьируется от -3.5В до 5.4В. Итого для Vos при Vcm=0.4, 1.5 получаем следующие значения по формулам:
1) При смещении нуля исследуемого усилителя -5мВ, выход вспомогательного усилителя по DC становится -3.5В. Для vos=5мВ – напряжение становится 5.4В проблема устраняется при использовании биполярного питания.
2) При добавлении шума, картина измерений не сильно ухудшается:
Результаты для измерений с шумом используется усреднение: