Как найти напряжение стабилитрона формула

Стабилитроны

Добавлено 12 июня 2017 в 02:10

Если мы подключим диод и резистор последовательно с источником постоянного напряжения так, чтобы диод был смещен в прямом направлении (как показано на рисунке ниже (a)), падение напряжения на диоде будет оставаться достаточно постоянным в широком диапазоне напряжений источника питания.

В соответствии с диодным уравнением Шокли, ток через прямо-смещенный PN переход пропорционален e, возведенному в степень прямого падения напряжения. Поскольку это экспоненциальная функция, ток растет довольно быстро при умеренном увеличении падения напряжения. Другой способ рассмотреть это: сказать что напряжение, падающее на прямо-смещенном диоде, слабо изменяется при больших изменениях тока, протекающего через диод. На схеме, показанной на рисунке ниже (a), ток ограничен напряжением источника питания, последовательно включенным резистором и падением напряжения на диоде, которое, как мы знаем, не сильно отличается от 0,7 вольта. Если напряжение источника питания будет увеличено, падение напряжения на резисторе увеличится почти на такое же значение, а падение напряжения на диоде увеличится очень слабо. И наоборот, уменьшение напряжения источника питания приведет к почти равному уменьшению падения напряжения на резисторе и небольшому уменьшению падения напряжения на диоде. Одним словом, мы могли бы обобщить это поведение, сказав, что диод стабилизирует падение напряжения на уровне примерно 0,7 вольта.

Управление напряжением – это очень полезное свойство диода. Предположим, что мы собрали какую-то схему, которая не допускает изменений напряжения источника питания, но которую необходимо запитать от батареи гальванических элементов, напряжение которых меняется в течение всего срока службы. Мы могли бы собрать схему, как показано на рисунке, и подключить схему, требующую стабилизированного напряжения, к диоду, где она получит неизменные 0,7 вольта.

Это, безусловно, сработает, но для большинства практических схем любого типа для правильной работы требуется напряжение питания свыше 0,7 вольта. Одним из способов увеличения уровня нашего стабилизированного напряжения может быть последовательное соединение нескольких диодов, поскольку падение напряжения на каждом отдельном диоде, равное 0,7 вольта, увеличит итоговое значение на эту величину. Например, если бы у нас было десять последовательно включенных диодов, стабилизированное напряжение было бы в десять раз больше 0,7 вольта, то есть 7 вольт (рисунок ниже (b)).

Прямое смещение Si диодов: (a) одиночный диод, 0,7В, (b) 10 диодов, включенных последовательно, 7,0В.

Прямое смещение Si диодов: (a) одиночный диод, 0,7В, (b) 10 диодов, включенных последовательно, 7,0В.

До тех пор, пока напряжение не упадет ниже 7 вольт, на 10-диодном «стеке» будет падать примерно 7 вольт.

Если требуются большие стабилизированные напряжения, мы можем либо использовать большее количество диодов, включенных последовательно, (по моему мнению, не самый изящный способ), либо попробовать принципиально другой подход. Мы знаем, что прямое напряжение диода является довольно постоянной величиной в широком диапазоне условий, также как и обратное напряжение пробоя, которое, как правило, значительно больше прямого напряжения. Если мы поменяем полярность диода в нашей схеме однодиодного стабилизатора и увеличим напряжение источника питания до того момента, когда произойдет «пробой» диода (диод больше не может противостоять приложенному к нему напряжению обратного смещения), диод будет стабилизировать напряжение аналогичным образом в этой точке пробоя, не позволяя ему увеличиваться дальше, как показано на рисунке ниже.

Пробой обратно смещенного Si диода при напряжении примерно 100 В

Пробой обратно смещенного Si диода при напряжении примерно 100 В.

К сожалению, когда обыкновенные выпрямительные диоды «пробиваются», они обычно разрушаются. Тем не менее, можно создать специальный тип диода, который может обрабатывать пробой без полного разрушения. Этот тип диода называется стабилитроном, и его условное графическое обозначение приведено на рисунке ниже.

Условное графическое обозначение стабилитрона

Условное графическое обозначение стабилитрона

При прямом смещении стабилитроны ведут себя так же, как стандартные выпрямительные диоды: они обладают прямым падением напряжения, которое соответствует «диодному уравнению» и составляет примерно 0,7 вольта. В режиме обратного смещения они не проводят ток до тех пор, пока приложенное напряжение не достигнет или не превысит так называемого напряжения стабилизации, и в этот момент стабилитрон способен проводить значительный ток и при этом будет пытаться ограничить напряжение, падающее на нем, до значения напряжения стабилизации. Пока мощность, рассеиваемая этим обратным током, не превышает тепловых ограничений стабилитрона, стабилитрон не будет поврежден.

Стабилитроны изготавливаются с напряжениями стабилизации в диапазоне от нескольких вольт до сотен вольт. Это напряжение стабилизации незначительно изменяется в зависимости от температуры, и его погрешность может составлять от 5 до 10 процентов от характеристик, указанных производителем. Однако, эта стабильность и точность обычно достаточны для использования стабилитрона в качестве стабилизатора напряжения в общей схеме питания, показанной на рисунке ниже.

Схема стабилизатора напряжения на стабилитроне, напряжение стабилизации = 12,6 В

Схема стабилизатора напряжения на стабилитроне, напряжение стабилизации = 12,6 В

Пожалуйста, обратите внимание на направление включения стабилитрона на приведенной выше схеме: стабилитрон смещен в обратном направлении, и это сделано преднамеренно. Если бы мы включили стабилитрон «обычным» способом, чтобы он был смещен в прямом направлении, то на нем падало бы только 0,7 вольта, как на обычном выпрямительном диоде. Если мы хотим использовать свойства обратного пробоя стабилитрона, то мы должны использовать его в режиме обратного смещения. Пока напряжение питание остается выше напряжения стабилизации (12,6 вольт в этом примере), напряжение, падающее на стабилитроне, останется примерно на уровне 12,6 вольт.

Как и любой полупроводниковый прибор, стабилитрон чувствителен к температуре. Слишком высокая температура разрушит стабилитрон, и поскольку он и понижает напряжение, и проводит ток, то он выделяет тепло в соответствии с законом Джоуля (P = IU). Поэтому необходимо быть осторожным при проектировании схемы стабилизатора напряжения, чтобы не превышалась номинальная мощность рассеивания стабилитрона. Интересно отметить, что когда стабилитроны выходят из строя из-за высокой мощности рассеивания, они обычно замыкаются накоротко, а не разрываются. Диод, вышедший из строя по такой же причине, легко обнаружить: на нем падение напряжения практически равно нулю, как на куске провода.

Рассмотрим схему стабилизатора напряжения на стабилитроне математически, определяя все напряжения, токи и рассеиваемые мощности. Взяв ту же схему, что была показана ранее, мы выполним вычисления, принимая, что напряжение стабилитрона равно 12,6 вольт, напряжение питания равно 45 вольт, а сопротивнение последовательно включенного резистора равно 1000 Ом (мы будет считать, что напряжение стабилитрона составляет ровно 12,6 вольт, чтобы избежать необходимости оценивать все значения как «приблизительные» на рисунке (a) ниже).

Если напряжение стабилитрона составляет 12,6 вольт, а напряжение источника питания составляет 45 вольт, падение напряжения на резисторе будет составлять 32,4 вольта (45 вольт – 12,6 вольт = 32,4 вольта). 32,4 вольта, падающие на 1000 Ом, дают в цепи ток 32,4 мА (рисунок (b) ниже).

(a) Стабилизатор напряжения на стабилитроне с резистором 1000 Ом. (b) Расчет падений напряжения и тока.

(a) Стабилизатор напряжения на стабилитроне с резистором 1000 Ом. (b) Расчет падений напряжения и тока.

Мощность рассчитывается путем умножения тока на напряжение (P=IU), поэтому мы можем легко рассчитать рассеивание мощности как для резистора, так и для стабилитрона:

[P_{резистор} = (32,4 мА)(32,4 В)]

[P_{резистор} = 1,0498 Вт]

[P_{стабилитрон} = (32,4 мА)(12,6 В)]

[P_{стабилитрон} = 408,24 мВт]

Для этой схемы было бы достаточно стабилитрона с номинальной мощностью 0,5 ватта и резистора с мощностью рассеивания 1,5 или 2 ватта.

Если чрезмерная рассеиваемая мощность вредна, то почему бы не спроектировать схему с наименьшим возможным количеством рассеивания? Почему бы просто не установить резистор с очень высоким сопротивлением, тем самым сильно ограничивая ток и сохраняя показатели рассеивания очень низкими? Возьмем эту же схему, например, с резистором 100 кОм, вместо резистора 1 кОм. Обратите внимание, что и напряжение питания, и напряжение стабилитрона не изменились:

Стабилизатор напряжения на стабилитроне с резистором 100 кОм

Стабилизатор напряжения на стабилитроне с резистором 100 кОм

При 1/100 от значения тока, который был у нас ранее (324 мкА, вместо 32,4 мА), оба значения рассеиваемой мощности должны уменьшиться в 100 раз:

[P_{резистор} = (324 мкА)(32,4 В)]

[P_{резистор} = 10,498 мВт]

[P_{стабилитрон} = (324 мкА)(12,6 В)]

[P_{стабилитрон} = 4,0824 мВт]

Кажется идеальным, не так ли? Меньшая рассеиваемая мощность означает более низкую рабочую температуру и для стабилитрона, и для резистора, а также меньшие потери энергии в системе, верно? Более высокое значение сопротивления уменьшает уровни рассеиваемой мощности в схеме, но к сожалению, создает другую проблему. Помните, что цель схемы стабилизатора – обеспечить стабильное напряжение для другой схемы. Другими словами, мы в конечном итоге собираемся запитать что-то напряжением 12,6 вольт, и это что-то будет обладать собственным потреблением тока. Рассмотрим нашу первую схему стабилизатора, на этот раз с нагрузкой 500 Ом, подключенной параллельно стабилитрону, на рисунке ниже.

Стабилизатор напряжения на стабилитроне с последовательно включенным резистором 1 кОм и нагрузкой 500 Ом

Стабилизатор напряжения на стабилитроне с последовательно включенным резистором 1 кОм и нагрузкой 500 Ом

Если 12,6 вольт поддерживаются при нагрузке 500 Ом, нагрузка будет потреблять ток 25,2 мА. Для того, чтобы «понижающий» резистор снизил напряжение на 32,4 вольта (снижение напряжения источника питания 45 вольт до 12,6 вольт на стабилитроне), он все равно должен проводить ток 32,4 мА. Это приводит к тому, что через стабилитрон будет протекать ток 7,2 мА.

Теперь рассмотрим нашу «энергосберегающую» схему стабилизатора с понижающим резистором 100 кОм, подключив к ней такую же нагрузку 500 Ом. Предполагается, что она должна поддерживать на нагрузке 12,6 вольт, как и предыдущая схема. Однако, как мы увидим, она не может выполнить эту задачу (рисунок ниже).

Нестабилизатор напряжения на стабилитроне с последовательно включенным резистором 100 кОм и нагрузкой 500 Ом

Нестабилизатор напряжения на стабилитроне с последовательно включенным резистором 100 кОм и нагрузкой 500 Ом

При большом номинале понижающего резистора на нагрузке 500 Ом будет напряжение около 224 мВ, что намного меньше ожидаемого значения 12,6 вольт! Почему так? Если бы у нас на самом деле было на нагрузке 12,6 вольт, то был бы и ток 25,2 мА, как и раньше. Этот ток нагрузки должен был бы пройти черезе последовательный понижающий резистор, как это было раньше, но с новым (намного большим!) понижающим резистором падение напряжения на этом резисторе с протекающим через него током 25,2 мА составило бы 2 520 вольт! Поскольку у нас, очевидно, нет такого большого напряжения, подаваемого с аккумулятора, то этого не может быть.

Ситуацию легче понять, если мы временно удалим стабилитрон из схемы и проанализируем поведение только двух резисторов на рисунке ниже.

Нестабилизатор с удаленным стабилитроном

Нестабилизатор с удаленным стабилитроном

И понижающий резистор 100 кОм, и сопротивление нагрузки 500 Ом включены последовательно, обеспечивая общее сопротивление схемы 100,5 кОм. При полном напряжении 45 В и общем сопротивлении 100,5 кОм, закон Ома (I=U/R) говорит нам, что ток составит 447,76 мкА. Рассчитав падения напряжения на обоих резисторах (U=IR), мы получим 44,776 вольта и 224 мВ, соответственно. Если бы в этот момент мы вернули стабилитрон, он также «увидел» 224 мВ на нем, будучи включенным параллельно сопротивлению нагрузки. Это намного ниже напряжения пробоя стабилитрона, и поэтому он не будет «пробит» и не будет проводить ток. В этом отношении, при низком напряжении стабилитрон не будет работать, даже если он будет смещен в прямом направлении. По крайней мере, на него должно поступать 12,6 вольт, чтобы его «активировать».

Аналитическая методика удаления стабилитрона из схемы и наблюдения наличия или отсутствия достаточного напряжения для его проводимости является обоснованной. Только то, что стабилитрон включен в схему, не гарантирует, что полное напряжение стабилитрона всегда дойдет до него! Помните, что стабилитроны работают, ограничивая напряжение до некоторого максимального уровня; они не могут компенсировать недостаток напряжения.

Таким образом, любая схема стабилизатора на стабилитроне будет работать до тех пор, пока сопротивление нагрузки будет равно или больше некоторого минимального значения. Если сопротивление нагрузки слишком низкое, это приведет к слишком большому току, что приведет к слишком большому напряжению на понижающем резисторе, что оставит на стабилитроне напряжение недостаточное, чтобы заставить его проводить ток. Когда стабилитрон перестает проводить ток, он больше не может регулировать напряжение, и напряжение на нагрузке будет ниже точки регулирования.

Однако, наша схема стабилизатора с понижающим резистором 100 кОм должна подходить для некоторого значения сопротивления нагрузки. Чтобы найти это подходящее значение сопротивления нагрузки, мы можем использовать таблицу для расчета сопротивления в цепи из двух последовательно включенных резисторов (без стабилитрона), введя известные значения общего напряжения и сопротивления понижающего резистора, и рассчитав для ожидаемого на нагрузке напряжения 12,6 вольт:

Расчет сопротивления нагрузки стабилизатора напряжения на стабилитроне 1

При 45 вольтах общего напряжения и 12,6 вольтах на нагрузке, мы должны получить 32,4 вольта на понижающем резисторе Rпониж:

Расчет сопротивления нагрузки стабилизатора напряжения на стабилитроне 2

При 32,4 вольтах на понижающем резисторе и его сопротивлении 100 кОм ток, протекающий через него, составит 324 мкА:

Расчет сопротивления нагрузки стабилизатора напряжения на стабилитроне 3

При последовательном включении ток, протекающий через все компоненты, одинаков:

Расчет сопротивления нагрузки стабилизатора напряжения на стабилитроне 4

Расчитать сопротивление нагрузки теперь довольно просто согласно закону Ома (R=U/I), что даст нам 38,889 кОм:

Расчет сопротивления нагрузки стабилизатора напряжения на стабилитроне 5

Таким образом, если сопротивление нагрузки составляет точно 38,889 кОм, на нем будет 12,6 вольт и со стабилитроном, и без него. Любое сопротивление нагрузки менее 38,889 кОм приведет к напряжению на нагрузке менее 12,6 вольт и со стабилитроном, и без него. При использовании стабилитрона напряжение на нагрузке будет стабилизироваться до 12,6 вольт для любого сопротивления нагрузки более 38,889 кОм.

При изначальном значении 1 кОм понижающего резистора схема нашего стабилизатора смогла бы адекватно стабилизировать напряжение даже при сопротивлении нагрузки до 500 Ом. То, что мы видим, представляет собой компромисс между рассеиванием мощности и допустимым сопротивлением нагрузки. Более высокое сопротивление понижающего резистора дает нам меньшее рассеивание мощности за счет повышения минимально допустимого значения сопротивления нагрузки. Если мы хотим стабилизировать напряжение для низких значений сопротивления нагрузки, схема должна быть подготовлена для работы с рассеиванием большой мощности.

Стабилитроны регулируют напряжение, действуя как дополнительные нагрузки, потребляя в зависимости от необходимости большую или меньшую величину тока, чтобы обеспечить постоянное падение напряжения на нагрузке. Это аналогично регулированию скорости автомобиля путем торможения, а не изменением положения дроссельной заслонки: это не только расточительно, но и тормоза должны быть построены так, чтобы управлять всей мощностью двигателя тогда, как условия вождения не требуют этого. Несмотря на эту фундаментальную неэффективность, схемы стабилизаторов напряжения на стабилитронах широко используются из-за своей простоты. В мощных приложениях, где неэффективность неприемлема, применяются другие методы управления напряжением. Но даже тогда небольшие схемы на стабилитронах часто используются для обеспечения «опорного» напряжения для управления более эффективной схемой, контролирующей основную мощность.

Стабилитроны изготавливаются для стандартных номиналов напряжений, перечисленных в таблице ниже. Таблица «Основные напряжения стабилитронов» перечисляет основные напряжения для компонентов мощностью 0,5 и 1,3 Вт. Ватты соответствуют мощности, которую компонент может рассеять без повреждения.

Основные напряжения стабилитронов

0,5 Вт            
2,4 В 3,0 В 3,3 В 3,6 В 3,9 В 4,3 В 4,7 В
5,1 В 5,6 В 6,2 В 6,8 В 7,5 В 8,2 В 9,1 В
10 В 11 В 12 В 13 В 15 В 16 В 18 В
20 В 24 В 27 В 30 В      
1,3 Вт            
4,7 В 5,1 В 5,6 В 6,2 В 6,8 В 7,5 В 8,2 В
9,1 В 10 В 11 В 12 В 13 В 15 В 16 В
18 В 20 В 22 В 24 В 27 В 30 В 33 В
36 В 39 В 43 В 47 В 51 В 56 В 62 В
68 В 75 В 100 В 200 В      

Ограничитель напряжения на стабилитронах: схема ограничителя, которая отсекает пики сигнала примерно на уровне напряжения стабилизации стабилитронов. Схема, показанная на рисунке ниже, имеет два стабилитрона, соединенных последовательно, но направленных противоположно друг другу, чтобы симметрично ограничивать сигнал примерно на уровне напряжения стабилизации. Резистор ограничивает потребляемый стабилитронами ток до безопасного значения.

Ограничитель напряжения на стабилитронах

Ограничитель напряжения на стабилитронах
*SPICE 03445.eps
D1 4 0 diode
D2 4 2 diode
R1 2 1 1.0k
V1 1 0 SIN(0 20 1k)
.model diode d bv=10
.tran 0.001m 2m
.end

Напряжения пробоя стабилитрона устанавливается на уровень 10 В с помощью параметра bv=10 модели диода в списке соединений spice, приведенном выше. Это заставляет стабилитроны ограничивать напряжение на уровне около 10 В. Встречно включенные стабилитроны ограничивают оба пика. Для положительного полупериода, верхний стабилитрон смещен в обратном направлении, пробивающем стабилитрон при напряжении 10 В. На нижнем стабилитроне падает примерно 0,7 В, так как он смещен в прямом направлении. Таким образом, более точный уровень отсечки составляет 10 + 0,7 = 10,7 В. Аналогично отсечка при отрицательном полупериоде происходит на уровне –10,7 В. Рисунок ниже показывает уровень отсечки немного больше ±10 В.

Диаграмма работы ограничителя напряжения на стабилитронах: входной сигнал v(1) ограничивается до сигнала v(2)

Диаграмма работы ограничителя напряжения на стабилитронах: входной сигнал v(1) ограничивается до сигнала v(2)

Подведем итоги:

  • Стабилитроны предназначен для работы в режиме обратного смещения, обеспечивая относительно низкий, стабильный уровень пробоя, то есть напряжение стабилизации, при котором они начинают проводить значительный обратный ток.
  • Стабилитрон может работать в качестве стабилизатора напряжения, действуя в качестве вспомогательной нагрузки, потребляющей больший ток от источник, если его напряжение слишком большое, или меньший ток, если напряжение слишком низкое.

Теги

LTspiceДиодМоделированиеОбучениеСтабилитронЭлектроника

Предложите, как улучшить StudyLib

(Для жалоб на нарушения авторских прав, используйте

другую форму
)

Ваш е-мэйл

Заполните, если хотите получить ответ

Оцените наш проект

1

2

3

4

5

Доброго времени суток. Сегодня мой пост о стабилизаторах напряжения. Что же это такое? Прежде всего, любой радиоэлектронной схеме для работы необходим источник питания. Источники питания бывают разные: стабилизированные и нестабилизированные, постоянного тока и переменного тока, импульсные и линейные, резонансные и квазирезонансные. Такое большое разнообразие обусловлено различными схемами, от которых будут работать электронные схемы. Ниже приведена таблица сравнения схем источников питания.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Показатель Линейный источник питания Импульсный источник питания
Стоимость Низкая Высока
Масса Большая Небольшая
ВЧ-шум Отсутствует Высокий
КПД 35 — 50 % 70 — 90 %
Несколько выходов Нет Есть

Для питания электронных схем, которые не требуют высокой стабильности питающего напряжения постоянного тока или большой выходной мощности, целесообразно применять простые, надёжные и дешевые линейные источники напряжения. Основой любого линейного источника напряжения является параметрический стабилизатор напряжения. Основой таких устройств является элемент с нелинейной вольт-амперной характеристикой, у которого напряжение на электродах мало зависит от протекающего через элемент тока. Одним из таких элементов является стабилитрон.

Стабилитрон представляет собой особую группу диодов, режим работы которых характеризуется обратной ветвью вольт-амперной характеристики в области пробоя. Рассмотрим поподробнее вольт-амперную характеристику диода.

Вольт-амперная характеристика диода
Вольт-амперная характеристика диода

Принцип работы стабилитрона

Когда диод включён в прямом направлении (анод – «+», катод – «–»), то он свободно начинает пропускать ток при напряжении Uпор, а при включении в обратном направлении (анод – «–», катод – «+») через диод может проходить лишь ток Iобр, который имеет значение нескольких мкА. Если увеличивать обратное напряжение Uобр на диоде до определённого значения Uобр.max произойдёт электрический пробой диода и если ток достаточно вели, то происходит тепловой пробой и диод выходит из строя. Диод можно заставить работать в области электрического пробоя, если ограничить ток, который проходит через диод (напряжение пробоя для разных диодов составляет 50 – 200 В).

Стабилитрон же разработан таким образом, что его вольт-амперная характеристика в области пробоя обладает высокой линейностью, а напряжение пробоя достаточно постоянно. Таким образом можно сказать, что стабилизация напряжения стабилитроном осуществляется при его работе на обратной ветви вольт-амперной характеристики, в области же прямой ветви стабилитрон ведёт себя аналогично обыкновенному диоду. Стабилитрон обозначается следующим образом

Обозначение стабилитрона
Обозначение стабилитрона

Основные параметры стабилитрона

Рассмотрим основные параметры стабилитрона по его вольт-амперной характеристике.

Вольт-амперная характеристика стабилитрона
Вольт-амперная характеристика стабилитрона

Напряжение стабилизации Uст определяется напряжением на стабилитроне при протекании тока стабилизации Iст. В настоящее время выпускаютя стабилитроны с напряжением стабилизации от 0,7 до 200 В.

Максимально допустимый постоянный ток стабилизации Iст.max ограничен значением максимально допустимой рассеиваемой мощности Pmax, зависящей в свою очередь от температуры окружающей среды.

Минимальный ток стабилизации Iст.min определяется минимальным значением тока через стабилитрон, при котором ещё полностью сохраняется работоспособность прибора. Между значениями Iст.max и Iст.min вольт-амперная характеристика стабилитрона наиболее линейна и напряжение стабилизации изменяется незначительно.

Дифференциальное сопротивление стабилитрона rСТ – величина, определяемая отношением приращения напряжения стабилизации на приборе ΔUCT к вызвавшему его малому приращению тока стабилизации ΔiCT.

Стабилитрон, включённый в прямом направлении, как обычный диод, характеризуется значениями постоянного прямого напряжения Uпр и максимально допустимого постоянного прямого тока Iпр.max.

Параметрический стабилизатор

Основная схема включения стабилитрона, которая является схемой параметрического стабилизатора, а также источником опорного напряжения в стабилизаторах других типов приведена ниже.

Схема включения стабилитрона
Схема включения стабилитрона

Данная схема представляет собой делитель напряжения, состоящий из балластного резистора R1 и стабилитрона VD, параллельно которому включено сопротивление нагрузки RН. Такой стабилизатор напряжения обеспечивает стабилизацию выходного напряжения при изменении напряжения питания UП и тока нагрузки IН.

Рассмотрим принцип работы данной схемы. Увеличении напряжения на входе стабилизатора приводит к увеличению тока который проходит через резистор R1 и стабилитрон VD. За счёт своей вольт-амперной характеристики напряжение на стабилитроне VD практически не изменится, а соответственно напряжение на сопротивлении нагрузки Rн тоже. Таким образом практически всё изменение напряжение будет приложено к резистору R1. Таким образом достаточно легко подсчитать необходимые параметры схемы.

Расчёт параметрического стабилизатора.

Исходными данными для расчёта для расчёта простайшего параметрического стабилизатора напряжения являются:

входное напряжение U0;

выходное напряжение U1 = Ust – напряжение стабилизации;

выходной ток IH = IST;

Для примера возьмём следующие данные: U0 = 12 В, U1 = 5 В, IH = 10 мА = 0,01 А.

1. По напряжению стабилизации выбираем стабилитрон типа BZX85C5V1RL (Ust = 5,1 В, дифференциальное сопротивление rst = 10 Ом).

2. Определяем необходимое балластное сопротивление R1:

3. Определяем коэффициент стабилизации:

4. Определяем коэффициент полезного действия

Увеличение мощности параметрического стабилизатора

Максимальная выходная мощность простейшего параметрического стабилизатора напряжения зависит от значений Iст.max и Pmax стабилитрона. Мощность параметрического стабилизатора может быть увеличена, если в качестве регулирующего компонента использовать транзистор, который будет выступать в качестве усилителя постоянного тока.

Параллельный стабилизатор

Схема стабилизатора напряжения с параллельным включением транзистора
Схема ПСН с параллельным включением транзистора

Схема представляет собой эмиттерный повторитель, параллельно транзистору VT включено сопротивление нагрузки RH. Балластный резистор R1 может быть включён как в коллекторную, так ив эмиттерную цепи транзистора. Напряжение на нагрузке равно

Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UCT) на выходе стабилизатора, происходит увеличение напряжения база-эмиттер (UEB) и коллекторного тока IK, так как транзистор работает в области усиления. Возрастание коллекторного тока приводит к увеличению падения напряжения на балластном резисторе R1, что компенсирует рост напряжения на выходе стабилизатора (U1 = UCT). Поскольку ток IСТ стабилитрона является одновременно базовым током транзистора, очевидно, что ток нагрузки в этой схеме может быть в h21e раз больше, чем в простейшей схеме параметрического стабилизатора. Резистор R2 увеличивает ток через стабилитрон, обеспечивая его устойчивую работу при максимальном значении коэффициента h21e, минимальном напряжении питания U0 и максимальном токе нагрузки IН.

Коэффициент стабилизации будет равен

где RVT – входное сопротивление эмиттерного повторителя

где Re и Rb – сопротивления эмиттера и базы транзистора.

Сопротивление Re существенно зависит от эмиттерного тока. С уменьшением тока эмиттера сопротивление Re быстро возрастает и это приводит к увеличению RVT, что ухудшает стабилизирующие свойства. Уменьшить значение Re можно за счёт применения мощных транзисторов или составных транзисторов.

Последовательный стабилизаттор

Параметрический стабилизатор напряжения, схема которого представлена ниже, представляет собой эмиттерный повторитель на транзисторе VT с последовательно включённым сопротивлением нагрузки RH. Источником опорного напряжения в данной схеме является стабилитрон VD.

Схема стабилизатора с последовательным включением транзистора
Схема ПСН с последовательным включением транзистора

Выходное напряжение стабилизатора:

Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UST) на выходе стабилизатора происходит уменьшение отпирающего напряжения UEB транзистора и его базовый ток уменьшается. Это приводит к росту напряжения на переходе коллектор – эмиттер, в результате чего выходное напряжение практически не изменяется. Оптимальное значение тока опорного стабилитрона VD определяется сопротивлением резистора R2, включённого в цепь источника питания U0. При постоянном значении входного напряжения U0 базовый ток транзистора IB и ток стабилизации связаны между собой соотношением IB + IST = const.

Коэффициент стабилизации схемы

где Rk – сопротивление коллектора биполярного транзистора.

Обычно kST ≈ 15…20.

Коэффициент стабилизации параметрического стабилизатора напряжения может быть существенно увеличен при введении в его схему отдельного вспомогательного источника с U’0 > U1 и применении составного транзистора.

Схема стабилизатора напряжения с составным транзистором
Схема ПСН с составным транзистором и питанием стабилитрона от отдельного источника напряжения

Ток в стабилитроне Решение

ШАГ 0: Сводка предварительного расчета

ШАГ 1. Преобразование входов в базовый блок

Начальное напряжение Зенера: 10.8 вольт –> 10.8 вольт Конверсия не требуется
Окончательное напряжение стабилитрона: 9.6 вольт –> 9.6 вольт Конверсия не требуется
Зенеровское сопротивление: 8 ом –> 8 ом Конверсия не требуется

ШАГ 2: Оцените формулу

ШАГ 3: Преобразуйте результат в единицу вывода

0.15 Ампер –>150 Миллиампер (Проверьте преобразование здесь)




19 Диоды Калькуляторы

Ток в стабилитроне формула

Ток в стабилитроне = (Начальное напряжение ЗенераОкончательное напряжение стабилитрона)/Зенеровское сопротивление

IZ = (VinitialVf)/Rz

Как протекает ток через стабилитрон?

Стабилитрон – это кремниевый полупроводниковый прибор, который позволяет току течь в прямом или обратном направлении. Диод состоит из специального, сильно легированного pn перехода, предназначенного для проведения в обратном направлении при достижении определенного заданного напряжения.

Почему в стабилитроне внезапно увеличивается ток?

Когда стабилитрон включен с обратным смещением, когда приложенное напряжение достигает напряжения пробоя стабилитрона, из-за разрыва связей происходит внезапное увеличение тока в стабилитроне.

Цель работы:Построение обратной
ветви вольтамперной характеристики
стабилитрона и определение напряжения
стабилизации; вычисление тока и мощности,
рассеиваемой стабилитроном; определение
дифференциального сопротивления
стабилитрона по вольтамперной
характеристике; исследование изменения
напряжения стабилитрона при изменении
входного напряжения в схеме параметрического
стабилизатора; исследование изменения
напряжения на стабилитроне при изменении
сопротивления в схеме параметрического
стабилизатора.

Краткие сведенья из теории

Стабилитроном
называют кремниевый полупроводниковый
диод, ВАХ которого имеет участки малой
зависимости напряжения от тока (рис.
5.1).

Рисунок 5.1 – Вольтамперная характеристика
стабилитрона

На
обратной ветви таким участком является
участок D-F. При значительных изменениях
напряжения
напряжение на стабилитроне изменяется
незначительно отдо.
При этом обратный ток через стабилитрон
изменяется отдо.
На участке D-F стабилитрон работает в
режиме неразрушающего электрического
пробоя; при этом электрический пробой
в тепловой не переходит. Он наступает
на участке F-H.

Основными
параметрами стабилитронов являются:
‑ номинальное напряжение стабилизации,
соответствующее номинальному току
стабилизации;‑ разброс напряжения стабилизации
– это интервал напряжения стабилизации,
в пределах которого оно находится

.

‑интервал
тока стабилизации

где
максимально допустимый ток стабилизации,
при превышении которого наступает
разрушающий тепловой пробой (точка F на
рис. 5.1);

‑минимально
допустимый ток стабилизации, ниже
которого сопротивление стабилитрона
резко возрастает и уменьшается(точка D на рис. 5.1);

‑средний
температурный коэффициент напряжения
стабилизации, показывающий, на сколько
процентов изменяется
при изменении температуры на 1°C.

;

‑дифференциальное
сопротивление, определяющее стабилизирующие
свойства стабилитрона и показывающее,
в какой степени
зависит от

.

Определение
дифференциального сопротивления
стабилитрона производится путём
построения треугольника в районе точки
E с
.
Чем меньше размеры треугольника DFG
(рис.5.1), тем точнее определяется.
Треугольник, с помощью которого
вычисляются нужные параметры на
вольтамперных характеристиках, называется
характеристическим.

В первом
квадранте ВАХ на рис 5.1 приведена прямая
ветвь стабилитрона. Видно, что при
значительных изменениях прямого
напряжения
‑ прямое напряжение на диоде изменяется
незначительно отдо,
при этом прямой ток через диод изменяется
отдо.
Дифференциальное сопротивление диода
при прямом включении вычисляется с
помощью характеристического треугольника
ACI (рис. 5.1)

.

Диоды,
обладающие малой зависимостью
от,
применяются для стабилизации малых
сопротивлений и называются стабисторами.

Стабилитроны
применяются для стабилизации напряжения
в широких приделах. Стабилизаторы
напряжения на основе стабилитронов
называются параметрическими стабилизаторами
(рис. 5.2).

Рисунок 5.2 – Схема
параметрического стабилизатора
напряжения

Основным
параметром параметрического стабилизатора
напряжения является коэффициент
стабилизации
,
представляющий отношение относительного
изменения входного напряженияк относительному изменению выходного
напряжения

.

При
подключении стабилитрона к источнику
постоянного напряжения через резистор
получается простейшая схема параметрического
стабилизатора (рис. 5.3). Ток
стабилитрона может быть определен
вычислением падения напряжения на
резисторе R

Іст
= (Е – Uст)/R,
(5.1)

где Е
‑ напряжение источника питания.

Напряжение
стабилизации
стабилитрона определяется точкой на
вольтамперной характеристике, в которой
ток стабилитрона резко увеличивается.
Мощность рассеивания стабилитрона Рст
вычисляется как произведение тока
на напряжение

Рст
=.

Дифференциальное
сопротивление стабилитрона вычисляется
так же, как для диода, по наклону
вольтамперной характеристики.

Рисунок 5.3 – Схема
параметрического стабилизатора
напряжения

Эксперимент 1.
Измерение напряжения и вычисление тока

через
стабилитрон

Соберите
схему, представленную на рис. 5.3. Тип
стабилитрона, для соответствующего
варианта представлен в таблице 5.1.

Для всех экспериментов
использовать выбранный тип диода.

Таблица 5.1 – Типы
стабилитронов, для соответствующего
варианта

Вариант

1

2

3

4

5

6

Тип

стабилитрона

1N4733A

1N4750A

1N4370A

BZV37

BZV49C2V4

BZD23-C120

Включите схему.

1. Измерьте
значение напряжения
на стабилитроне при значениях ЭДС
источника, приведенных в табл. 5.2, и
занесите в таблицу результаты измерений.

2.
Вычислите ток
стабилитрона для каждого значения
напряжения U
Результаты вычислений занесите в таблицу
5.2.

3. По
данным таблицы постройте вольтамперную
характеристику стабилитрона.

4. Оцените
по вольтамперной характеристике
стабилитрона напряжение стабилизации.

5.
Вычислите мощность Рст,
рассеиваемую на стабилитроне при
напряжении Е = 20 В.

6. Измерьте
наклон ВАХ в области стабилизации
напряжения и оцените дифференциальное
сопротивление стабилитрона в этой
области.

Таблица 5.2 Данные
для построения ВАХ стабилитрона

Е, В

0

4

6

10

15

20

25

30

35

U, мВ

,
мА

Эксперимент 2.
Получение нагрузочной характеристики

параметрического
стабилизатора

Соберите
схему, представленную на рис. 5.3.

1.
Подключите резистор RL
=75 Ом параллельно
стабилитрону. Значение источника ЭДС
установите равным 20 В. Включите схему.
Запишите значение напряжения Uст
на стабилитроне в таблицу 5.3.

2.
Повторите п. 1 при коротком замыкании и
при сопротивлениях резистора RL
из табл.5.3.

3.
Рассчитайте ток I1
через резистор R, включенный последовательно
с источником, ток IL
через резистор RL,
и ток стабилитрона I
для каждого значения RL
из таблицы 5.3.

4.
Рассчитать напряжение стабилитрона
U
и значения I1,
IL,
U

при Е = 20 В.

Таблица
5.3 ‑ Измерение точек нагрузочной
характеристики

параметрического
стабилизатора.

RL,Oм

75

100

200

300

600

1000

к.з.

U,B

I1
мА

IL.мA

I
,
мА

Эксперимент 3.
Получение ВАХ стабилитрона

на
экране осциллографа

Соберите
схему, представленную на рис. 5.4. Включите
схему. Запишите в экспериментальные
данные напряжение стабилизации,
полученное из графика на экране
осциллографа.

Рисунок 5.4 – Схема для
измерения напряжения стабилизации

Добавить комментарий