Закон Ома для участка цепи
Основным законом электротехники, при помощи которого можно изучать и рассчитывать электрические цепи, является закон Ома, устанавливающий соотношение между током, напряжением и сопротивлением. Необходимо отчетливо понимать его сущность и уметь правильно пользоваться им при решении практических задач. Часто в электротехнике допускаются ошибки из-за неумения правильно применить закон Ома.
Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.
Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.
В популярной форме этот закон можно сформулировать следующим образом: чем выше напряжение при одном и том же сопротивлении, тем выше сила тока и в то же время чем выше сопротивление при одном и том же напряжении, тем ниже сила тока.
Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.
Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:
Любой участок или элемент электрической цепи можно охарактеризовать при помощи трёх характеристик: тока, напряжения и сопротивления.
Как использовать треугольник Ома: закрываем искомую величину — два других символа дадут формулу для её вычисления. Кстати, законом Ома называется только одна формула из треугольника – та, которая отражает зависимость тока от напряжения и сопротивления. Две другие формулы, хотя и являются её следствием, физического смысла не имеют.
Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:
Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление — в килоомах и мегаомах соответственно.
Другие статьи про электричество в простом и доступном изложении:
Закон Ома справедлив для любого участка цепи. Если требуется определить ток в данном участке цепи, то необходимо напряжение, действующее на этом участке (рис. 1), разделить на сопротивление именно этого участка.
Рис 1. Применение закона Ома для участка цепи
Приведем пример расчета тока по закону Ома . Пусть требуется определить ток в лампе, имеющей сопротивление 2,5 Ом, если напряжение, приложенное к лампе, составляет 5 В. Разделив 5 В на 2,5 Ом, получим значение тока, равное 2 А. Во втором примере определим ток, который будет протекать под действием напряжения 500 В в цепи, сопротивление которой равно 0,5 МОм. Для этого выразим сопротивление в омах. Разделив 500 В на 500 000 Ом, найдем значение тока в цепи, которое равно 0,001 А или 1 мА.
Часто, зная ток и сопротивление, определяют с помощью закона Ома напряжение. Запишем формулу для определения напряжения
Из этой формулы видно, что напряжение на концах данного участка цепи прямо пропорционально току и сопротивлению . Смысл этой зависимости понять нетрудно. Если не изменять сопротивление участка цепи, то увеличить ток можно только путем увеличения напряжения. Значит при постоянном сопротивлении большему току соответствует большее напряжение. Если же надо получить один и тот же ток при различных сопротивлениях, то при большем сопротивлении должно быть соответственно большее напряжение.
Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны. Потери и падение напряжения — в чем различие?
Падение напряжения — постепенное падение потенциала вдоль цепи, по которой течет ток, обусловленное тем, что цепь обладает активным сопротивлением. По закону Ома падение напряжения в каком-либо участке цепи U равно произведению сопротивления этого участка цепи R на силу тока в нем I , т. е. U — RI. Таким образом, чем больше сопротивление участка цепи, тем больше падение напряжения в этом участке цепи при данной силе тока.
Расчет напряжения с помощью закона Ома можно показать на следующем примере. Пусть через участок цепи с сопротивлением 10 кОм проходит ток 5 мА и требуется определить напряжение на этом участке.
Умножив I = 0,005 А на R — 10 000 Ом, получим напряжение,равное 5 0 В. Можно было бы получить тот же результат, умножив 5 мА на 10 кОм: U = 50 В
В электронных устройствах ток обычно выражается в миллиамперах, а сопротивление — в килоомах. Поэтому удобно в расчетах по закону Ома применять именно эти единицы измерений.
По закону Ома рассчитывается также сопротивление, если известно напряжение и ток. Формула для этого случая пишется следующим образом: R = U/I.
Сопротивление всегда представляет собой отношение напряжения к току. Если напряжение увеличить или уменьшить в несколько раз, то ток увеличится или уменьшится в такое же число раз. Отношение напряжения к току, равное сопротивлению, остается неизменным.
Не следует понимать формулу для определения сопротивления в том смысле, что сопротивление данного проводника зависит оттока и напряжения. Известно, что оно зависит от длины, площади сечения и материала проводника. По внешнему виду формула для определения сопротивления напоминает формулу для расчета тока, но между ними имеется принципиальная разница.
Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.
Когда один и тот же ток проходит в двух участках цепи, а напряжения, приложенные к ним, различны, то ясно, что участок, к которому приложено большее напряжение, имеет соответственно большее сопротивление.
А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.
Расчет сопротивления с помощью закона Ома для участка цепи покажем на следующем примере. Пусть требуется найти сопротивление участка, через который при напряжении 40 В проходит ток 50 мА. Выразив ток в амперах, получим I = 0,05 А. Разделим 40 на 0,05 и найдем, что сопротивление составляет 800 Ом.
Закон Ома можно наглядно представить в виде так называемой вольт-амперной характеристики . Как известно, прямая пропорциональная зависимость между двумя величинами представляет собой прямую линию, проходящую через начало координат. Такую зависимость принято называть линейной .
На рис. 2 показан в качестве примера график закона Ома для участка цепи с сопротивлением 100 Ом. По горизонтальной оси отложено напряжение в вольтах, а по вертикальной оси — ток в амперах. Масштаб тока и напряжения может быть выбран каким угодно. Прямая линия проведена так, что для любой ее точки отношение напряжения к току равно 100 Ом. Например, если U = 50 В, то I = 0,5 А и R = 50 : 0,5 = 100 Ом.
Рис. 2 . Закон Ома (вольт-амперная характеристика)
График закона Ома для отрицательных значений тока и напряжения имеет такой же вид. Это говорит о том, что ток в цепи проходит одинаково в обоих направлениях. Чем больше сопротивление, тем меньше получается ток при данном напряжении и тем более полого идет прямая.
Приборы, у которых вольт-амперная характеристика является прямой линией, проходящей через начало координат, т. е. сопротивление остается постоянным при изменении напряжения или тока, называются линейными приборами . Применяют также термины линейные цепи, линейные сопротивления.
Существуют также приборы, у которых сопротивление изменяется при изменении напряжения или тока. Тогда зависимость между током и напряжением выражается не по закону Ома, а более сложно. Для таких приборов вольт-амперная характеристика не будет прямой линией, проходящей через начало координат, а является либо кривой, либо ломаной линией. Эти приборы называются нелинейными .
Источник
Закон Ома для участка цепи: формула. Зависимость силы тока от напряжения
Закон Ома для участка цепи — одна из основ электротехники. Данный закон указывает на соотношение между током, напряжением и сопротивлением.
Сам Закон Ома для участка цепи гласит так:
Сила тока в проводнике (участке электрической цепи) прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника (участка электрической цепи)
Из этого определения Георг Ом вывел следующую формулу:
Формула, вытекающая из закона Ома, также известна в просторечии как формула URI. Такое название появилось от последовательности букв в формуле:
- R — сопротивление проводника (Ом);
- I — сила тока в проводнике (Ампер);
- U — напряжение приложенное к проводнику (Вольт).
Электрическая цепь и закон Ома
Три величины — напряжение, электрический ток и сопротивление — могут быть четко представлены в электрической цепи. В простейшем случае она состоит из источника постоянного напряжения и резистора. Резистор подключен к источнику напряжения, а для упрощения возьмем, что сопротивление проводов равно 0 Ом.
Рис. 1. Электрическая цепь
Направление электрического тока.
В электротехнике ток течет от плюса до минуса (смотрите рисунок 1). Другими словами, как только возникает замкнутая цепь, ток начинает течь от положительного полюса к отрицательному полюсу источника напряжения. Мы говорим о замкнутой цепи, когда два полюса источника напряжения соединены друг с другом сопротивлением.
Как и чем измерять ток и напряжение?
Есть два способа определения силы тока и напряжения. С одной стороны, их можно определить арифметически с помощью закона Ома для участка цепи. С другой стороны, две переменные также могут быть определены путем измерения.
Однако для арифметического определения тока или напряжения должны быть известны две другие величины (напряжение и сопротивление либо ток и сопротивление).
С другой стороны, метрологический метод также работает с любой электрической цепью. Для этого в электрическую цепь необходимо вставить амперметр и вольтметр . Они используются для измерения силы тока и напряжения. Но здесь также применяется закон Ома, поскольку сопротивление нельзя измерить напрямую, но его можно будет рассчитать, когда будут измерены значения тока и напряжения.
Итак, ток измеряется так амперметром, который последовательно подключается к потребителю (резистору, лампе накаливания и т. д.), Через который нужно определять ток. На принципиальной схеме он изображен как A внутри круга (см. рисунок 1). Амперметр имеет очень низкое внутреннее сопротивление, чтобы не влиять на ток, который должен протекать через потребителя. В идеале, внутреннее сопротивление амперметра принимается равным 0 Ом и поэтому просто опускается.
Измерение напряжения производится с помощью вольтметра, который замеряет разность потенциалов между двумя его точками подключения. На электрической схеме он обозначен буквой V внутри круга (см. рисунок 1). В отличие от амперметра, вольтметр подключается параллельно нагрузке, на которой измеряется напряжение. Добавление вольтметра параллельно некоторому потребителю (например, резистору) создает току еще один «обходной» путь, что резко изменяет параметры цепи. Чтобы избежать этих нежелательных последствий, надо применять вольтметры с максимально большим сопротивлением.
Вольт-амперная характеристика (ВАХ).
Вольт-амперная характеристика или характеристика UI резистора может быть записана путем приложения к нему различных напряжений и последующего измерения тока. Обычно при омическом сопротивлении достаточно одной точки измерения, которая затем соединяется с началом системы координат. Однако на практике, для целей контроля, выполняют серию измерений с тремя точками измерения.
Затем эти точки измерения отмечаются в системе координат и соединяются. Напряжение откладывают по оси абсцисс, а ток — по оси ординат. Пример ВАХ смотрите на рисунке ниже
ВАХ может быть использована для определения тока через резистор при определенном напряжении.
«Треугольник Ома»
Связь между отдельными величинами из закона Ома может быть показана в так называемом «треугольнике Ома».
Вверху треугольника вы найдете напряжение U, слева — сопротивление R, а справа — ток I.
Треугольник Ома
Если вы хотите определить недостающую величину, то прикройте эту величину мысленно или пальцем, а затем посмотрите на две другие величины. Если две «не закрытые» величины находятся рядом друг с другом, то они умножаются. С другой стороны, если они расположены друг над другом, то верхняя величина делится на нижнюю.
Например, вы «закрываете» напряжение U в вершине «треугольника Ома». Две оставшиеся величины, то есть сопротивление R и ток I, находятся рядом. Соответственно, чтобы получить напряжение U, нужно умножить сопротивление R на ток I. Это в точности соответствует формуле закона Ома для участка электрической цепи.
Калькулятор, который основан на законе Ома
Используйте этот калькулятор, который основан на законе Ома для расчета соотношений между током, напряжением, сопротивлением и мощностью в электрических цепях. Чтобы воспользоваться калькулятором, введите значения в 2 любых поля и нажмите кнопку «рассчитать».
Источник
-
Напряжение на участке цепи.
Под
напряжением на некотором участке
электрической цепи понимают разность
потенциалов между крайними точками
этого участка.
На
рис. 13 изображен участок цепи, на котором
есть резистор сопротивлением
и нет ЭДС. Крайние точки этого участка
обозначены буквами a
и b.
Пусть ток течет от точки a
к точке b.
Рис.
13. Участок электрической цепи
На
участке без ЭДС ток течет от более
высокого потенциала к более низкому.
Следовательно, потенциал
точки
a
выше потенциала
точки b
на величину, равную произведению тока
на сопротивление :
.
В
соответствии с определением, напряжение
между точками a
и b
.
(8)
Другими
словами, напряжение на резисторе равно
произведению тока, протекающего по
резистору, на величину сопротивления
этого резистора.
В
электротехнике разность потенциалов
на концах резистора принято называть
либо «напряжением на резисторе», либо
«падением напряжения». В литературе
встречаются оба этих определения.
Рассмотрим
теперь вопрос о напряжении на участке
цепи, содержащем не только резистор, но
и источник ЭДС.
На
рис. 14 а
и б
показаны участки некоторых цепей, по
которым протекает ток ..
Найдем напряжение между точками a
и c
для этих участков.
а)
б)
Рис.
14. Участки электрической цепи
По
определению
.
(9)
Выразим
потенциал точки a
через потенциал точки c.
При перемещении от точки c
к точке b
(рис. 14,а)
идем встречно ЭДС ,
поэтому потенциал точки b
оказывается меньше, чем потенциал точки
c
на величину ЭДС ,
т.е.
.
(10)
На
рис. 14,б
при перемещении от точки c
к точке b
идем согласно ЭДС
и потому потенциал точки b
оказывается больше, чем потенциал точки
c
на величину ЭДС ,
т.е.
.
(11)
Ранее
говорилось, что на участке цепи без ЭДС
ток течет от более высокого потенциала
к более низкому. Поэтому в обеих схемах
рис. 14 потенциал точки a
выше, чем потенциал точки b
на величину падения напряжения на
резисторе сопротивлением :
. (12)
Таким
образом, для рис. 14,а
имеем
,
или
.
(13)
И
для рис. 14, б
имеем
,
или
.
(14)
Положительное
направление напряжения указывают на
схемах стрелкой. Стрелка должна быть
направлена от первой буквы индекса ко
второй. Так, положительное направление
напряжения
изобразится
стрелкой, направленной от a
к c.
Из
самого определения напряжения следует
также, что .
Поэтому .
Другими словами, изменение чередования
индексов равносильно изменению знака
этого напряжения. Из изложенного ясно,
что напряжение может быть и положительной,
и отрицательной величиной.
-
Закон Ома для участка цепи, не содержащего эдс.
Закон
Ома устанавливает связь между током и
напряжением на некотором участке цепи.
Так, применительно к участку цепи,
изображенному на рис. 13 имеем
или
.
(15)
-
Закон Ома для участка цепи, содержащего эдс.
Закон
Ома для участка цепи, содержащего ЭДС,
позволяет найти ток этого участка по
известной разности потенциалов на
концах этого участка и имеющейся на
этом участке ЭДС .
Так из уравнения (13) имеем для схемы рис.
14, а
.
(16)
Аналогично
из уравнения (14) для схемы рис. 14, б
следует
.
(17)
Уравнения
(16) и (17) выражают собой закон Ома для
участка цепи, содержащего ЭДС, для разных
случаев включения ЭДС .
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Для описания процесса протекания электрического тока в цепи у нас есть уже три характеристики: сила тока, напряжение и сопротивление.
Мы выяснили, что некоторые из них связаны между собой. Сила тока зависит от напряжения. Эти величины прямо пропорциональны друг другу. Во сколько раз увеличивается напряжение на концах проводника, во столько же раз увеличивается сила тока в нем. Проводник мы меняли в этих опытах, сопротивление оставалось постоянным.
Далее мы узнали, что сила тока зависит и от электрического сопротивления проводника. Показания амперметра при подключении в цепь разных проводников менялись. Напряжение при этом оставалось в этих проводниках постоянным.
Но мы пока не установили, каким образом между собой связаны сразу эти три величины. На данном уроке мы опытным путем докажем эту связь и познакомимся с законом Ома для участка цепи.
Опытное определение зависимости силы тока от сопротивления при постоянном напряжении
Для того, чтобы определить зависимость силы тока от сопротивления проводника, мы проведем еще один опыт. Теперь мы будем знать электрическое сопротивление тех проводников, которые будем использовать.
Обратите внимание, что в ходе опыта напряжение на концах используемых проводников должно быть постоянным. Эта величина не должна изменяться, чтобы мы могли корректно оценить зависимость силы тока от сопротивления.
Соберем электрическую цепь из источника тока, ключа, амперметра, проводника. К проводнику параллельно подсоединим вольтметр (рисунок 1).
Проводников у нас будет три разных. Они обладают разными сопротивлениями. Мы будем поочередно подключать их в цепь. Каждый раз мы будем фиксировать показания амперметра.
По показаниям вольтметра необходимо следить, чтобы напряжение на концах каждого проводника было одинаковым.
Связь силы тока и сопротивления
Проведя все измерения, мы занесли их результаты в таблицу 1.
№ опыта | Напряжение на концах проводника, $В$ | Сопротивление проводника, $Ом$ | Сила тока в цепи, $А$ |
1 | 2 | 1 | 2 |
2 | 2 | 2 | 1 |
3 | 2 | 4 | 0,5 |
Давайте проанализируем наши результаты.
В первом опыте сила тока составила $2 space А$ при сопротивлении проводника в $1 space Ом$.
Для следующего опыта мы взяли проводник с сопротивлением в $2 space Ом$. Это в два раза больше, чем в первом опыте. А вот сила тока составила $1 space А$. Она стала в два раза меньше.
В третьем опыте сопротивление проводника было равно $4 space Ом$. То есть, в четыре раза больше, чем в первом опыте. Сила тока стала равна $0.5 space А$. Она уменьшилась в четыре раза.
Напряжение на концах проводников во всех трех опытах оставалось постоянным. Оно было равно $2 space В$.
Так какова зависимость силы тока в проводнике от сопротивления этого проводника?
Из наших опытов мы можем сделать определенный вывод.
Сила тока в проводнике обратно пропорциональна сопротивлению проводника.
Закон Ома для участка цепи
В 1827 году немецкий физик Георг Ом (рисунок 2) открыл закон, описывающий зависимость силы тока от напряжения на концах проводника и сопротивления этого проводника. Проводник является частью электрической цепи. Этот закон был назван в честь этого ученого и называется законом Ома для участка цепи.
Как формулируется закон Ома?
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.
$I = frac{U}{R}$,
где $I$ — сила тока в участке цепи, $U$ — напряжение на концах этого участка, $R$ — электрическое сопротивление участка.
График зависимости силы тока от сопротивления проводника
На рисунке 3 изображен график зависимости силы тока от сопротивления. Напряжение при этом на концах проводника остается постоянным.
Здесь по горизонтальной оси отложены сопротивления проводников в омах, а по вертикальной — сила тока в амперах.
Формулы для вычисления напряжения и сопротивления
Из формулы $I = frac{U}{R}$ мы можем выразить напряжение и сопротивление:
$U = IR$,
$R = frac{U}{I}$.
При расчете сопротивления проводника помните, что $R$ — постоянная величина для каждого проводника. Она не будет изменяться при изменениях силы тока или напряжения.
Упражнения
Упражнение №1
Напряжение на зажимах электрического утюга $220 space В$, сопротивление нагревательного элемента утюга $50 space Ом$. Чему равна сила тока в нагревательном элементе?
Дано:
$U = 220 space В$
$R = 50 space Ом$
$I — ?$
Показать решение и ответ
Скрыть
Решение:
Закон Ома для участка цепи: $I = frac{U}{R}$.
Рассчитаем силу тока:
$I = frac{220 space В}{50 space Ом} = 4.4 space А$.
Ответ: $I = 4.4 space А$.
Упражнение №2
Сила тока в спирали электрической лампы $0.7 space А$, сопротивление лампы $310 space Ом$. Определите напряжение, под которым находится лампа.
Дано:
$I = 0.7 space А$
$R = 310 space Ом$
$u — ?$
Показать решение и ответ
Скрыть
Решение:
Закон Ома для участка цепи: $I = frac{U}{R}$.
Выразим отсюда напряжение и рассчитаем его:
$U = IR$,
$U = 0.7 space А cdot 310 space Ом = 217 space В$.
Ответ: $U = 217 space В$.
Упражнение №3
Каким сопротивлением обладает вольтметр, рассчитанный на $150 space В$, если сила тока в нем не должна превышать $0.01 space А$?
Дано:
$U_{max} = 150 space В$
$I_{max} = 0.01 space А$
$R — ?$
Показать решение и ответ
Скрыть
Решение:
Запишем закон Ома для участка цепи: $I = frac{U}{R}$.
Выразим отсюда сопротивление и рассчитаем его значение, используя максимальные значения напряжения и силы тока, соответствующие прибору:
$R = frac{U_{max}}{I_{max}}$,
$R = frac{150 space В}{0.01 space А} = 15 space 000 space Ом = 15 space кОм$.
Ответ: $R = 15 space кОм$.
Упражнение №4
Определите по графику (рисунок 4) сопротивление проводника.
Возьмем из графика данные. При напряжении, равном $10 space В$, сила тока в проводнике равна $2.5 space А$. Запишем условие задачи и решим ее.
Обратите внимание, что сопротивление $R$ не зависит ни от силы тока, ни от напряжения. Поэтому вы можете выбирать другие значения силы тока и напряжения из графика. Ваш ответ к этой задаче от этого не изменится.
Дано:
$U = 10 space В$
$I = 2.5 space А$
$R — ?$
Показать решение и ответ
Скрыть
Решение:
Запишем закон Ома для участка цепи: $I = frac{U}{R}$.
Выразим отсюда сопротивление и рассчитаем его значение, используя данные графика:
$R = frac{U}{I}$,
$R = frac{10 space В}{2.5 space А} = 4 space Ом$.
Ответ: $R = 4 space Ом$.
Упражнение №5
Рассмотрите рисунок 1 и таблицу результатов опыта, выполняемого в соответствии с этим рисунком. Что изменится на рисунке и в схеме электрической цепи, когда будут проводиться опыты №2 и №3, указанные в таблице 1?
Для опыта №2:
на рисунке будет подключен другой проводник, имеющий сопротивление $2 space Ом$. Амперметр будет показывать силу тока, равную $1 space A$.
Для опыта №3:
на рисунке ничего не изменится. Это иллюстрация именно этого опыта (в цепь подключен проводник с сопротивлением $4 space Ом$).
Схема электрической цепи будет одинаковой для всех трех опытов, если не отмечать сопротивление проводника (рисунок 5).
Упражнение №6
По показаниям приборов (рисунок 6) определите сопротивление проводника АВ.
Дано:
$U = 4 space В$
$I = 1 space А$
$R — ?$
Показать решение и ответ
Скрыть
Решение:
Выразим сопротивление из закона Ома для участка цепи:
$I = frac{U}{R}$,
$R = frac{U}{I}$.
Из прошлого урока: этот проводник AB — железная проволока. Рассчитаем ее сопротивление:
$R = frac{4 space В}{1 space А} = 4 space Ом$.
Ответ: $R = 4 space Ом$.
Упражнение №7
На рисунке 7 изображены графики зависимости силы тока от напряжения для двух проводников А и В. Какой из этих проводников обладает большим сопротивлением? Определите сопротивление каждого из проводников.
Возьмем данные из графиков. Для проводника A выберем напряжение, равное $6 space В$. При таком напряжении сила тока в этом проводнике будет равна $3 space А$. Для проводника B возьмем значение напряжения, равное $4 space В$. Ему соответствует сила тока, равная $1 space А$. Теперь мы можем записать условия задачи и решить ее.
Дано:
$U_A = 6 space В$
$I_A = 3 space А$
$U_B = 4 space В$
$I_B = 1 space А$
$R_A — ?$
$R_B — ?$
Показать решение и ответ
Скрыть
Решение:
Закон Ома для участка цепи: $I = frac{U}{R}$.
Выразим сопротивление: $R = frac{U}{I}$.
Рассчитаем сопротивление для проводника A:
$R_A = frac{U_A}{I_A}$,
$R_A = frac{6 space В}{3 space А} = 2 space Ом$.
Рассчитаем сопротивление для проводника B:
$R_B = frac{U_B}{I_B}$,
$R_B = frac{4 space В}{1 space А} = 4 space Ом$.
Проводник B обладает большим сопротивлением, чем проводник A. Его сопротивление больше в 2 раза $(frac{R_B}{R_A} = frac{4 space Ом}{2 space Ом} = 2$).
Ответ: сопротивление проводника B в 2 раза больше сопротивления проводника A; $R_A = 2 space Ом$, $R_B = 4 space Ом$.
Переменный электрический ток
Переменный ток (AC – Alternating Current) – электрический ток, меняющий свою величину и направление с течением времени.
Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC. Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.
DC – Direct Current – постоянный ток, не меняющий своей величины и направления.
В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.
При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.
Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.
Величина тока будет равна квадратному корню из суммы квадратов двух величин – значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.
Термины AC и DC применимы как для тока, так и для напряжения.
Параметры переменного тока и напряжения
Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:
Период T – время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.
Частота f – величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz). Частота f = 1 /T
Циклическая частота ω – угловая частота, равная количеству периодов за 2π секунд.
Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°
Начальная фаза ψ – величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.
Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.
Мгновенное значение – величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.
Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:
i = I ampsin(ωt); u = U ampsin(ωt)
С учётом начальной фазы:
i = I ampsin(ωt + ψ); u = U ampsin(ωt + ψ)
Здесь I amp и U amp – амплитудные значения тока и напряжения.
Амплитудное значение – максимальное по модулю мгновенное значение за период.
Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) – максимальное отклонение от нулевого значения.
Среднее значение (avg) – определяется как среднеарифметическое всех мгновенных значений за период T.
Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.
Средневыпрямленное значение – среднеарифметическое модулей всех мгновенных значений за период.
Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.
Среднеквадратичное значение (rms) – определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.
Для синусоидального тока и напряжения амплитудой I amp (U amp) среднеквадратичное значение определится из расчёта:
Среднеквадратичное – это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.
Коэффициент амплитуды и коэффициент формы
Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.
Коэффициент амплитуды – отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1
Коэффициент формы – отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1
Замечания и предложения принимаются и приветствуются!
Решение типовых задач. Синусоидальные токи, напряжения
Синусоидальные токи, напряжения. Параметры идеальных элементов электрических цепей синусоидального тока
Общие сведения. Электромагнитный процесс в электрической цепи считается периодическим, если мгновенные значения напряжений и токов повторяются через равные промежутки времени Т. Время Т называется периодом. Напряжения u(t) = u(t+T) и токи i(t)=i(t+T) ветвей электрической цепи являются периодическими функциями времени.
Величина, обратная периоду (число периодов в единицу времени), называется частотой: f = 1/T. Частота имеет размерность 1/c, а единицей измерения частоты служит Герц (Гц).
Широкое применение в электротехнике нашли синусоидальные напряжения и токи:
,
В этих выражениях:
– ω = 2π/T = 2πf – угловая частота (скорость изменения аргумента),
– ωt + ψu, ωt + ψi – фазы, соответственно напряжения и тока.
Графики изменения u(t), i(t) удобно представлять не в функции времени t, а в функции угловой величины ωt , пропорциональной t (рис. 1.1).
Величина φ = (ωt + ψu) – (ωt + ψi) = ψu, – ψi называется углом сдвига фаз. На рис. 1.1 ψu > 0, ψi > 0, φ = ψu – ψi > 0, т.е. напряжение опережает ток. Аналогично можно ввести понятие углов сдвига фаз между двумя напряжениями или токами.
Количество тепла, рассеиваемого на сопротивление R при протекании по нему тока, электромагнитная сила взаимодействия двух проводников с равными токами, пропорциональны квадрату тока. Поэтому о величине тока судят по действующему значению за период. Действующее значение периодического тока i(t) определяется по выражению
.
Для квадратов левой и правой частей этого равенства, после умножения их на RT, будем иметь:
.
Из этого равенства следует, что действующее значение периодического тока равно по величине такому постоянному току I, который на неизменном сопротивлении R за время T выделяет тоже количество тепла, что и ток i(t).
При синусоидальном токе i(t) = Im sin ωt интеграл
.
Следовательно, действующее значение синусоидального тока равно
Действующее значение синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:
; .
Для измерения действующих значений используются приборы электромагнитной, электродинамической, тепловой и др. систем.
Среднее значение синусоидального тока определяется как среднее за половину периода. Поэтому,
.
Средние значения синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:
; .
Отношение амплитудного значения к действующему называется коэффициентом амплитуды ka, а отношение действующего значения к среднему – коэффициентом формы kф. Для синусоидальных величин, например, тока i(t), эти коэффициенты равны:
; .
Для синусоидальных токов i(t) = Im sin(ωt + ψi) уравнения идеальных элементов R, L, C при принятых на рис. 1.2. положительных направлениях имеют вид
; ;
.
На активном сопротивлении R мгновенные значения напряжения и тока совпадают по фазе. Угол сдвига фаз φ = 0.
На индуктивности L мгновенное значение тока отстает от мгновенного значения напряжения на угол . Угол сдвига фаз .
На емкости C мгновенное значение напряжения отстает от мгновенного значения тока на угол . Угол сдвига фаз .
Величины ωL и 1/ωC имеют размерность [Ом] и называются реактивным сопротивлением индуктивности или индуктивным сопротивлением XL:
и реактивным сопротивлением емкости или емкостным сопротивлением XС:
.
Величины 1/ωL и ωC имеют размерность [Ом -1 ] и называются реактивной проводимостью индуктивности или индуктивной проводимостью BL:
и реактивной проводимостью емкости или емкостной проводимостью BС:
.
Связь между действующими значениями напряжения и тока на идеальных элементах R, L, C устанавливают уравнения:
; ;
; ;
; .
Для синусоидального напряжения u = Um sin ωt начальная фаза тока на входе пассивного двухполюсника (рис. 1.3.) равна
Проекция напряжения на линию тока
называется активной составляющей напряжения.
Проекция напряжения на линию, перпендикулярную току,
называется реактивной составляющей напряжения.
Проекция тока на линию напряжения
называется активной составляющей тока.
Проекция тока на линию, перпендикулярную напряжению,
называется реактивной составляющей тока.
Имеют место очевидные соотношения:
; .
В цепи синусоидального тока для пассивного двухполюсника по определению вводятся следующие величины:
1. Полное сопротивление Z:
,
2. Эквивалентные активное Rэк и реактивное Xэк сопротивления:
, ,
3. Полная проводимость Y:
,
4. Эквивалентные активная Gэк и реактивная Bэк проводимости:
, .
Из треугольников сопротивлений и проводимостей (рис. 1.4) следует:
; ; ,
; ; ,
; ; .
Эквивалентные параметры являются измеряемыми величинами, поэтому могут быть определены из физического эксперимента (рис. 1.5).
Электрическая цепь по схеме рис. 1.5 должна содержать амперметр А и вольтметр U для измерения действующих значений напряжения и тока, фазометр φ для измерения угла сдвига фаз между мгновенными значениями напряжения и тока на входе пассивного двухполюсника П.
Угол сдвига фаз пассивного двухполюсника .
Физическая величина, численно равная среднему значению от произведения мгновенных значений напряжения u(t) и тока i(t), называется активной мощностью Р.По определению имеем:
Расчетные величины
;
называются полной мощностью S и реактивной мощностью Q в цепи синусоидального тока. Имеет место равенство
.
Коэффициент мощности kм в цепи синусоидального тока определяется выражением:
.
Единицей измерения активной мощности является Ватт [Вт]. Для измерения активной мощности служит ваттметр. Ваттметр включается по схеме рис. 1.6.
Единица измерения полной мощности [ВА], реактивной – [ВАр].
Для вычисления мощностей удобно использовать следующие выражения:
;
;
.
Решение типовых задач. Для измерения мгновенных значений напряжений u(t) и токов i(t) служит осциллограф. Поскольку сопротивление входа этого прибора очень большое, непосредственно для измерения тока осциллограф использовать нельзя. Измеряют не ток, а пропорциональное току напряжение на шунте Rш (рис. 1.7, а).
Задача 1.1. К источнику синусоидального напряжения частотой f = 50 Гц подключена катушка индуктивности (рис. 1.7, а). Активное сопротивление провода, из которого изготовлена катушка, R = 10 Ом, индуктивность L = 1,6 мГн. Осциллограмма напряжения uш(t) представлена на рис. 1.7, б. Сопротивление шунта Rш = 0,1 Ом. Масштаб по вертикальной оси осциллограммы mu = 0,02 В/дел (0,02 вольта на деление).
Рассчитать действующие значения напряжения uRL, составляющих uR и uL этого напряжения. Построить графики мгновенных значений напряжений uRL, составляющих uR и uL.
Решение. По осциллограмме рис. 1.7, б двойная амплитуда напряжения на шунте 2А = 10 дел. Находим амплитудное значение Im тока i:
.
Реактивное сопротивление Х индуктивности L на частоте
.
; .
Мгновенные значения составляющих напряжения на сопротивление R катушки индуктивности и индуктивности L соответственно равны (ψi = 0):
;
.
Мгновенное значение напряжения на активном сопротивлении в фазе с током, на индуктивности – опережает на угол .
Действующие значения напряжений:
;
;
.
Векторные диаграммы напряжений и тока приведены на рис. 1.8.
.
(т.к. ψi = 0),
.
Задача 1.2. К цепи со схемой рис.1.10 приложено синусоидальное напряжение u = 141 sin 314t B.
Найти мгновенные и действующие значения тока и напряжения на всех участках цепи, если R = 30 Ом,
Решение. Назначаем положительные направления тока и напряжений как на рис. 1.10. Определяем реактивное сопротивление ХС емкости C на частоте ω = 314с -1 :
.
Полное сопротивление цепи:
.
– тока i: ;
– напряжения на резисторе R: ;
– напряжения на емкости С: .
Угол сдвига фаз между напряжением u и током i:
.
Начальная фаза тока i определяется из соотношения . Откуда,
.
Мгновенные значения тока и напряжений на участках цепи:
;
;
.
; ; .
Задача 1.3. Для пассивного двухполюсника (рис. 1.5) экспериментально определены:
Найти полное и эквивалентные активное и реактивное сопротивления двухполюсника.
Решение. Имеем по определению:
;
;
.
Задача 1.4 По цепи по схеме рис. 1.10 действующие значения тока i на частотах
Определить параметры цепи R и C, если на этих частотах напряжение на входе U = 100 В.
Решение. По определению на частотах f1 и f2 имеем:
; .
Непосредственно по схеме цепи рис. 1.10 находим:
Значения параметров R и С найдем из решения системы уравнений
Программа расчета в пакете MathCAD.
U:=100 f1:=500 f2:=1000 I1:=1 I2:=1.8 | ←Присвоение переменным заданных условием задачи величин. |
←Расчет полных сопротивлений на частотах f1 и f2. | |
←Расчет угловой частоты. | |
←Задание приближенных значений параметров R и C цепи. | |
Giver | |
←Решение системы нелинейных уравнений. Для набора «=» нажмите [Ctrl]=. | |
←Присвоение вектору RC найденных значений параметров R и C цепи. | |
← |
Значения параметров цепи: .
Задача 1.5. Вычислить действующее значение тока и активную мощность на входе пассивного двухполюсника с эквивалентными активной проводимостью
G = 0,011 Ом -1 и реактивной проводимостью B = 0,016 Ом -1 . Напряжение на входе двухполюсника U = 30 В.
Решение. Полная проводимость
.
Действующее значение тока
.
.
Задача 1.6. Действующее значение синусоидального тока ветви с резистором R равно 0, 1 А (рис. 1.11). Найти действующие значения напряжения u, и токов iL и i, если R = 430 Ом; XL = 600 Ом. Чему равна активная, реактивная и полная мощности этого двухполюсника?
Решение. Положительные направления напряжения и токов указаны на рис. 1.11.
Действующее значение тока IR = 0,1 А.
.
.
Действующее значение тока I можно вычислить, определив полную проводимость Y цепи. По виду схемы имеем
.
.
; , .
Выполняется соотношение .
Задача 1.7. Действующее значение синусоидального напряжения на емкости С в цепи со схемой рис. 1.10 UС = 24 В. Найти действующее значение напряжения u и тока i, если XC = 12 Ом; R = 16 Ом.
Решение. Определяем действующее значение тока i
.
Полное сопротивление цепи
.
Определяем действующее значение напряжения u
.
Задача 1.8. Для определения эквивалентных параметров пассивного двухполюсника в цепи синусоидального тока были сделаны измерения действующих значений напряжения, тока и активной мощности (рис. 1.12).
Для определения характера реактивного сопротивления (проводимости) параллельно двухполюснику была включена емкость С (ВС ? Вэк). При этом показания амперметра уменьшились. Рассчитать эквивалентные сопротивления и проводимости двухполюсника.
Решение.
Действующее значение: I = 0,5 A, U = 100 B. Активная мощность, потребляемая двухполюсником, P = 30 Вт. Полное сопротивление двухполюсника
.
Эквивалентное активное сопротивление
.
Эквивалентное реактивное сопротивление
.
Характер реактивного сопротивления индуктивный (Хэк = ХL, φ > 0). После включения параллельно двухполюснику емкости С, ток I’ ? I. Этому случаю соответствует векторная диаграмма рис. 1.13 а. Емкостному характеру соответствует векторная диаграмма рис. 1.13 б.
Полная проводимость двухполюсника
.
Эквивалентная активная проводимость
.
Эквивалентная реактивная проводимость
.
Следует обратить внимание, что треугольники сопротивлений и проводимостей для одного и того же двухполюсника подобны (рис. 1.4). Поэтому,
и .
; .
1.3. Задачи и вопросы для самоконтроля
1. Какими параметрами описываются синусоидальные токи в электрических цепях?
2. Как связаны между собой круговая частота ω и период Т синусоидального тока?
3. Что такое действующее значение переменного тока?
4. Запишите формулы для вычисления индуктивного и емкостного сопротивлений.
5. Объясните, как определить напряжение на участке цепи, если заданы и r и x.
6. Нарисуйте треугольник сопротивлений и треугольник проводимостей с необходимыми обозначениями.
7. Запишите формулы для вычисления активной и реактивной мощностей.
8. Напряжение на индуктивности L = 0,1 Гн в цепи синусоидального тока изменяется по закону . Найти мгновенное значение тока и индуктивности.
9. Ток в емкости С = 0,1 мкФ равен . Найти мгновенное значение напряжения на емкости.
10. На участке цепи с последовательно включенными активным сопротивлением R = 160 Ом и емкостью С = 26,54 мкФ мгновенное значение синусоидального тока . Найти мгновенные значения напряжений на емкости и на всем участке цепи. Чему равны действующие значения этих величин?
Дата добавления: 2016-01-29 ; просмотров: 102122 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Однофазные цепи синусоидального тока
Содержание:
Основные определения, понятия и законы в теории электрических цепей:
Электрическая цепь – это совокупность устройств, предназначенных для передачи, распределения и взаимного преобразования электрической энергии, если процессы, протекающие в этих устройствах, могут быть определены с помощью понятий ЭДС, тока и напряжения, которые могут быть как постоянными
Электрическая схема – это изображение электрической цепи с помощью условных обозначений. Несмотря на всё многообразие цепей, каждая из них содержит элементы двух основных типов – это источники и потребители.
Источники энергии (см. рис. 1.1) могут быть двух типов: источники ЭДС (напряжения) и источники тока.
Рис. 1.1. Реальные источник ЭДС (a) и источник тока (b)
Источник тока характеризуется величиной тока и внутренней проводимостью
Источник напряжения характеризуется двумя основными параметрами: величиной ЭДС и величиной его внутреннего сопротивления Напряжение на зажимах источника в режиме холостого хода численно равно
Для источника ЭДС положительное направление указывается стрелкой, т.е., напряжение: убывает от точки с большим потенциалом к точке с меньшим потенциалом.
Если внутренним сопротивлением источника можно пренебречь реализуется классический вариант идеального источника ЭДС. Напряжение на зажимах такого источника не зависит от силы тока (см. В.А.Х. рис. 1.2,b).
Другим вариантом идеального источника энергии является источник тока, для которого (рис. 1.2,с). Ввиду того, что идеальный источник тока имеет бесконечное внутреннее сопротивление, то его ток, остается постоянным, а напряжение на зажимах может быть любым.
Рис. 1.2. Вольт-амперные характеристики а) реального источника ЭДС, b) идеального источника ЭДС, c) идеального источника тока
Поскольку физические свойства идеальных источников коренным образом различны, то прямая их замена друг на друга невозможна. Тем не менее, процедура преобразования одного реального источника в другой возможна и широко применяется в расчетах. Например, при замене реального источника тока в реальный источник ЭДС его параметры равны:
По своим физическим свойствам элементы электрических цепей могут характеризоваться такими параметрами, как сопротивление индуктивность емкость (рис. 1.3).
Рис. 1.3. Потребители в электрических цепях
Под идеализированным резистивным элементом цепи (в дальнейшем для краткости – сопротивление понимают параметр пассивного двухполюсника, равный отношению активной мощности, поглощаемой в этом двухполюснике, к квадрату действующего значения электрического тока через этот двухполюсник. Это такой элемент электрической цепи, в котором происходит необратимый процесс преобразования электрической энергии в неэлектрические виды энергии. Сопротивление на основании закона Ома выражается отношением:
Вольт-амперные характеристики (В.А.Х.) линейного (1) и нелинейного (2) сопротивлений изображены на рис. 1.4.
Рис. 1.4. Вольт-амперные характеристики линейного (1) и нелинейного (2) сопротивлений
Под идеализированным индуктивным элементом электрической цепи (в дальнейшем для краткости – индуктивность понимают такой элемент, в котором происходит процесс преобразования энергии источника ЭДС или тока в энергию магнитного поля. Индуктивность определяется отношением потокосцепления к току в ней:
где – индуктивность катушки, Гн; – потокосцепление, Вб; – магнитный поток, Вб; – число витков катушки.
Вебер-амперные характеристики линейной (1) и нелинейной (2) индуктивности представлены на рис. 1.5.
Рис. 1.5. Вебер-амперные характеристики линейной (1) и нелинейной (2) индуктивности
Под идеализированным емкостным элементом электрической цепи (в дальнейшем для краткости – емкость понимают такой элемент, в котором происходит процесс преобразования энергии источника ЭДС или тока в энергию электрического поля элемента. Емкость определяется отношением заряда к напряжению:
где – ёмкость элемента, – заряд, Кл, – напряжение,
Кулон-вольтные характеристики линейной (1) и нелинейной (2) емкости представлены на рис. 1 .6.
Рис. 1.6. Кулон-вольтные характеристики линейной (1) и нелинейной (2) емкости
Любая цепь характеризуется следующими основными топологическими понятиями.
Ветвь – это участок цепи, составленный из последовательно соединенных элементов цепи и расположенный между двумя узлами.
Узел – это точка цепи, где сходятся три или более ветвей.
Контур – это любой замкнутый путь (рис. 1.7.), проходящий по нескольким ветвям.
Рис. 1.7. Электрический контур
Контур называется независимым, если в его составе присутствует хотя бы одна новая ветвь, ранее не входившая в другие контуры. В схеме на рис 1.7 при замкнутом ключе имеем три контура, но лишь два из них независимы.
Закон Ома
Закон Ома для пассивного участка цепи при постоянных токах имеет вид:
Рассмотрим участок цепи с ЭДС (рис. 1.8).
Рис. 1.8. Линейный участок цепи, содержащий ЭДС
Из состава сложной электрической цепи выделим ветвь, содержащую источник энергии и потребитель. Для определенности примем, что направления тока и источника ЭДС совпадают.
При условно выбранных положительных направлениях тока и ЭДС в ветви имеем:
Вычтем из уравнения (1.5) уравнение (1.6) и тогда получим
Полученное выражение представляет собой закон Ома для участка цепи с ЭДС. В случае несовпадения направления тока в ветви с направлениями напряжения и ЭДС перед ними появляется знак «минус».
Законы Кирхгофа
Первый закон Кирхгофа – алгебраическая сумма токов в узле равна нулю:
где – номер ветви, – общее количество ветвей.
Второй закон Кирхгофа – алгебраическая сумма падений напряжений вдоль любого замкнутого контура равна алгебраической сумме ЭДС, действующих в этом контуре:
Уравнение баланса мощности:
где — ток источника тока; — напряжение на зажимах источника тока.
Уравнение баланса мощности является модификацией закона сохранения энергии для электрических цепей. Это базовое уравнение для проверки правильности выполненных расчетов тех или иных цепей. В левой части этого уравнения стоит арифметическая сумма мощностей, потребляемых приёмниками. В правой части – мощность, отданная источниками в цепь.
При этом возможна такая ситуация, когда одно из слагаемых суммы справа может оказаться отрицательным. Это будет означать, что в данной ситуации источник становится потребителем. Она возникает в случае, когда ток и ЭДС источника направлены встречно, например, зарядка аккумулятора.
Цепи однофазного синусоидального тока и напряжения
Рассмотренные выше источники энергии могут быть источниками постоянного или переменного напряжения (тока), причём закон изменения во времени источников переменного напряжения (тока) может носить как периодический, так и непериодический характер. Наибольшее практическое распространение получили источники, а, следовательно, и цепи, электромагнитные процессы в которых подчиняются периодическому закону.
Частным случаем таких цепей являются цепи однофазного синусоидального тока.
Мгновенное значение любой синусоидальной функции: напряжения, тока, ЭДС и т.д. может быть представлено выражением вида:
где — амплитуда – наибольшее значение функции за период (рис. 2 .1 ); – аргумент синуса – текущая фаза колебания, рад; – круговая (циклическая) частота колебания, рад/с; – время, с; – начальная фаза, которая показывает смещение синусоиды по оси абсцисс относительно начала координат вправо или влево рад.
Период и частота колебаний связаны между собой соотношением:
а круговая(циклическая) частота:
Рис. 2.1. График периодической функции напряжения
Среднее и действующее значения периодической функции (тока и напряжения)
Средней величиной переменного тока (ЭДС, напряжения) называется среднее арифметическое из всех мгновенных величин за полупериод. Согласно определению:
где – периодическая функция; – период функции
Ввиду симметричности синусоиды получаем, что среднее ее значение за период равно нулю, поэтому вводят понятие среднего значения за половину периода:
Например, для синусоидального тока, его среднее значение будет равно:
Значительно большее значение имеет понятие действующего значения периодических функций. Определим количество тепла, выделенное за период переменным током и постоянным током, равным
Для переменного тока:
Для постоянного тока:
Приравняв правые части уравнений, получим:
где -действующее (эффективное, среднеквадратичное) значение синусоидального тока.
На рис. 2.2. пунктирной линией изображено действующее значение синусоидального тока.
Рис. 2.2. Синусоидальная функция тока и ее действующее значение
Элементы R, L, C в цепях синусоидального тока
Синусоидальный ток в резистивном элементе:
Пусть ток в этом элементе изменяется по закону На рис. 2.3 показаны условно положительные направления тока и напряжения.
Рис. 2.3. Условно положительные направления тока и напряжения на сопротивлении
Определим напряжение, действующее на зажимах резистивного элемента на основании закона Ома:
Полученный результат показывает, что напряжение изменяется в фазе с током.
Определим мгновенную мощность, потребляемую сопротивлением
где – действующие значения напряжения и тока соответственно.
Из графика мгновенной мощности (рис. 2.4) следует, что она не отрицательна и меняется с удвоенной частотой.
Рис. 2.4. Графики мгновенных значений напряжения, тока и мощности на сопротивлении
Для оценки потребляемой приемником мощности вводят понятие средней мощности за период:
где – средняя мощность за период (активная мощность), Вт
Синусоидальный ток в индуктивном элементе
Пусть ток в этом элементе изменяется по закону:
На рис. 2.5 показаны условно положительные направления тока, напряжения и ЭДС самоиндукции.
Определим напряжения на индуктивности На основании закона электромагнитной индукции:
где – индуктивное сопротивление, Ом.
Рис. 2.5. Условно положительные направления тока, напряжения и ЭДС самоиндукции
Напряжение на индуктивности опережает ток на
Мгновенная мощность на индуктивности:
Среднее значение мощности за период:
Для оценки запасенной в индуктивности энергии магнитного поля вводят понятие реактивной (индуктивной) мощности
где – индуктивная (реактивная) мощность, вар.
Из графика мгновенной мощности (рис. 2.6) следует, что положительная полуволна мощности соответствует потреблению энергии из сети, а отрицательная – ее возврату в сеть.
Энергия, потребляемая индуктивностью, работы не совершает.
Рис. 2.6. Графики мгновенных значений напряжения, тока и мощности на индуктивности
Синусоидальный ток в емкостном элементе
Пусть ток в этом элементе изменяется по закону:
На рис. 2.7 показаны условные положительные направления тока и напряжения на емкости.
Рис. 2.7. Условно положительные направления тока и напряжения на емкости
где – заряд, накопленный емкостью, Кл.
Для линейной емкости следовательно
называется емкостным сопротивлением, Ом.
Ток в ёмкости опережает приложенное напряжение на угол 90°, также можно считать, что напряжение отстаёт от тока на 90°.
Определим мгновенную мощность:
Среднее значение мощности за период:
Таким образом, идеальная емкость не потребляет из сети активную мощность. Для оценки запасенной в емкости энергии электрического поля вводят понятие реактивной мощности:
Графики функций тока, напряжения и мгновенной мощности представлены на рис. 2.8. Если энергия идёт на создание электрического поля, при происходит возврат энергии в сеть.
Рис. 2.8. Графики мгновенных значений тока, напряжения и мощности на емкости
Изображение синусоидальных функций времени (напряжение, сила тока) векторами на комплексной плоскости
Расчет сложной разветвленной цепи может быть существенно упрощен, если представить синусоидальные токи и напряжения векторами, расположенными на комплексной плоскости. Такой метод получил название метода комплексных амплитуд.
В основе этого метода лежит формула Эйлера:
где – мнимая единица. Умножив обе части формулы (2.21) на некоторое число получим:
где – модуль комплексного числа; – аргумент комплексного числа; – вещественная составляющая комплексного числа – мнимая составляющая комплексного числа
Поскольку в формуле Эйлера угол может быть любым, сделаем его линейной функцией времени:
Полученный результат показывает (2.24), что синусоидальная функция времени есть мнимая часть некоторой комплексной функции представленной на рис. 2.9:
Рис. 2.9. Изображение вектора на комплексной плоскости – угловая частота вращения вектора
Положив, что получим:
Векторная диаграмма – диаграмма векторов на комплексной плоскости, построенная с учетом их взаимной ориентации по фазе.
Если векторы вращаются на плоскости с одинаковыми частотами то их взаимное положение не меняется. Это свойство позволяет исключить из рассмотрения сам факт их вращения, то есть принять при расчете
В качестве примера на рис. 2.10 изображена операция умножения некоторого вектора на оператор поворота
Рис. 2.10. Умножение вектора на и
Пусть модуль Его положение на комплексной плоскости зависит от значения аргумента. Значениям соответствуют комплексные числа
Основы символического (комплексного) метода расчета цепей синусоидального тока
Цепь, составленная из разнородных элементов, описывается системой дифференциальных уравнений, решение которой при синусоидальных токах и напряжениях затруднительно. Комплексный метод расчета позволяет перейти от тригонометрических уравнений, составленных для мгновенных токов, напряжений и других величин, к алгебраическим уравнениям, составленным для соответствующих им комплексным изображениям.
Последовательное соединение элементов R L C
На рис. 2.11 изображена схема с последовательным соединением активного индуктивного и емкостного сопротивлений.
Рис. 2.11. Последовательное соединение элементов
Схема (рис. 2.11) на основании второго закона Кирхгофа для мгновенных величин описывается уравнением:
Перейдем к комплексным изображениям. Пусть мгновенный ток и его комплексное изображение изменяются по закону:
Используя полученный комплекс тока, определим комплексы действующих значений падений напряжений на участках цепи: для сопротивления:
Найденные комплексы подставим в исходное уравнение:
Выражение (2.32) представляет собой закон Ома в комплексной форме. В знаменателе – комплексное сопротивление рассматриваемой цепи, которое имеет вещественную и мнимую составляющую:
На рис. 2.12 сопротивление показано как комплексной плоскости
Рис. 2.12. Изображение сопротивления на комплексной плоскости
Для комплексных амплитуд закон Ома запишется в следующем виде:
где – амплитуда напряжения.
Аргумент комплексного сопротивления:
Построим векторную диаграмму цепи (рис. 2.13), приняв для определенности, что
Рис. 2.13. Векторная диаграмма для последовательного колебательного контура
Полагая, что ток и напряжение изменяются по законам:
и, заменив их комплексными изображениями, начнем построение векторной диаграммы с вектора тока, т.к. он одинаков на всех участках цепи. На основании уравнений 2.28-2.30 вектор совпадает по фазе с током, вектор опережает ток на вектор отстает от тока на Суммарный вектор представляет собой комплексное изображение напряжения сети. Из построенной на комплексной плоскости векторной диаграммы можно выделить векторный треугольник напряжений, представленный на рис. 2.14.
Рис. 2.14. Векторный треугольник напряжений
Ниже на рис. 2.15 приведен треугольник сопротивлений.
Рис. 2.15. Скалярный треугольник сопротивлений
Угол сдвига фаз между током и напряжением можно определить из любого треугольника:
Резонанс напряжений
Резонансом в цепях переменного тока, содержащих индуктивные и емкостные элементы, называется явление совпадения по фазе векторов тока и напряжения на входе цепи или на участке цепи, при этом
Резонанс напряжений наблюдается в последовательном колебательном контуре. На рис. 2.16 приведена векторная диаграмма для этого режима.
Рис. 2.16. Векторная диаграмма резонансного режима
При резонансе реализуется равенство:
где – собственная циклическая частота последовательного колебательного контура при резонансе.
Резонанс достигается путем изменения одного из параметров при двух других фиксированных.
Определим индуктивное и емкостное сопротивления цепи при резонансе:
Величина называется волновым сопротивление контура.
Введем еще один важный параметр, характеризующий резонанс – добротность контура:
Добротность (коэффициент резонанса) – это отношение напряжения на индуктивности или на емкости при резонансе к входному напряжению цепи.
Рассмотрим энергетические соотношения в цепи при резонансе напряжений. Определим суммарную энергию, потребляемую реактивными элементами из сети:
Таким образом, суммарная энергия электрического и магнитного полей при резонансе остается величиной постоянной:
Частотные характеристики последовательного колебательного контура
Рассмотрим частотные характеристики цепи в последовательном колебательном контуре. Пусть к данной электрической цепи подведено синусоидальное напряжение с частотой которая меняется от 0 до При этом частотно-зависимые параметры цепи, а именно ее реактивное и полное сопротивления, будут меняться, что вызовет соответствующие изменения тока и напряжений на отдельных ее участках. Будем при этом полагать, что напряжение сети во всем диапазоне изменения частот остается неизменным и активное сопротивление не зависит от частоты.
Построим функции названных выше сопротивлений в одних координатных осях (рис. 2.17).
Рис. 2.17. Зависимости сопротивлений цепи от частоты
Исходя из построений, можно заключить, что в дорезонансной области частот цепь имеет емкостной характер, в зарезонансной области – индуктивный, а в точке резонанса характер нагрузки активный. На рис. 2.18 представлены зависимости падений напряжения, тока и фазы последовательного колебательного контура от частоты.
Рис. 2.18. Кривые изменений напряжений, тока и фазы от частоты
На нулевой частоте (источник постоянной ЭДС) индуктивность заменяется короткозамкнутым проводником, а емкость – разрывом; на бесконечной частоте свойства указанных элементов меняются местами.
Значения функции не существуют при и
Оценим влияние параметров цепи на форму резонансной кривой тока. Решение этого вопроса начнем с сопротивления последовательного колебательного контура, выполнив с ним следующие преобразования:
Используя полученное выражение для входного сопротивления определим ток:
где – максимальное значение тока в цепи при резонансе.
Резонансные кривые в соответствии с (2.42) приведены на рис. 2.19 в относительные единицах:
Рис. 2.19. Резонансные кривые
Построенные зависимости показывают, что чем больше добротность тем более заостренной получается зависимость тока от частоты. Эта особенность последовательного контура используется в радиоприемниках для поиска несущей частоты соответствующей радиостанции.
Параллельное соединение элементов R L C
Рассмотрим параллельное соединение активного индуктивного и емкостного сопротивлений (рис. 2.20).
Рис. 2.20. Схема параллельного соединения элементов
Пусть на вход цепи подано напряжение тогда по первому закону Кирхгофа относительно комплексных токов получим уравнение:
Комплексное изображение входного напряжения:
Для определения комплекса общего тока найдем его составляющие:
тогда комплекс общего тока:
Построим векторную диаграмму на комплексной плоскости для параллельного соединения (рис. 2.21).
Рис. 2.21. Векторная диаграмма параллельного соединения разнородных элементов
Пусть тогда что соответствует активно-индуктивному характеру нагрузки.
Выражение в скобках (2.43) имеет размерность 1/Ом или См (сименс) и носит название комплексной проводимости цепи:
где – модуль комплексной проводимости; – угол сдвига фаз между током и напряжением.
Комплексная амплитуда общего тока:
Мгновенное значение общего тока:
Под комплексной проводимостью любой цепи понимается величина, обратная ее полному комплексному сопротивлению:
где – активная проводимость данной цепи, См; – суммарная реактивная проводимость, См.
где и — индуктивная и емкостная проводимости соответственно.
Из векторной диаграммы рис. 2.21 можно выделить треугольник токов (рис. 2.22).
Рис. 2.22. Векторный треугольник токов
Разделив стороны векторного треугольника токов на вектор напряжения, получим скалярный треугольник проводимостей (рис. 2.23).
Рис. 2.23. Скалярный треугольник проводимостей
В качестве примера для ветви, изображенной на рис. 2.24, определим ее активную и реактивную проводимости.
Рис. 2.24. Участок цепи с активно-индуктивным сопротивлением
В полученном выражении проводимости ветви имеем: – активная составляющая, – соответственно индуктивная составляющая проводимости ветви.
Резонанс токов
Резонансный режим, возникающий при параллельном соединении элементов и называется резонансом токов. В отличие от рассмотренного ранее режима резонанса напряжений, данный режим не столь однозначен.
Рис. 2.25. Цепь с параллельным соединением разнородных приемников
В цепи по рис. 2.25 режим резонанса токов возникает при условии равенства нулю результирующей реактивной проводимости этой цепи, т.е.:
Реактивные проводимости ветвей соответственно равны:
Подставим выражения и в (2.48):
и после преобразования получим резонансную частоту:
Анализ полученного уравнения показывает, что существует четыре возможных варианта значений частоты
1. Если то
2. Если то
С физической точки зрения это означает, что входное сопротивление данного контура равно ее волновому сопротивлению, которое не зависит от частоты, а значит, резонанс будет иметь место при любой частоте источника. Для доказательства этого положения определим входное сопротивление цепи:
3. Если и или и то под корнем получилось отрицательное число, т.е. резонансной частоты не существует для данных параметров
4. Если или то подкоренное число положительное, тогда получаем единственную резонансную частоту
Частотные характеристики параллельного колебательного контура
Для простоты рассмотрим идеальный контур, то есть контур без потерь (рис. 2.26).
Рис. 2.26. Параллельный колебательный контур
На рис. 2.27 построены частотные характеристики реактивных проводимостей и а также суммарной проводимости цепи
Рис. 2.27. Частотные характеристики параллельного колебательного контура
При изменении частоты от нуля до бесконечности параллельный колебательный контур имеет индуктивный характер до резонансной частоты и ёмкостный характер в послерезонансном диапазоне частот.
Ток в неразветвленной части цепи:
График тока (рис. 2.28), изображенный сплошной линией, говорит о том, что при резонансе общий ток, потребляемый цепью, равен нулю, несмотря на наличие токов в ветвях, что, в свою очередь, подтверждается векторной диаграммой (рис. 2.29).
Рис. 2.28. График зависимости тока в неразветвленной части цепи от частоты
Рис. 2.29. Векторная диаграмма для резонансного режима идеального параллельного контура
При учете сколь угодно малого активного сопротивления цепи ток при резонансе не равен нулю. Пунктирная кривая изображает реальный ток в цепи.
Мощность в цепи синусоидального тока
Рассчитаем мощность произвольного приемника, представленного на рис. 2.30 в виде пассивного двухполюсника
Рис. 2.30. Пассивный двухполюсник
Пусть подводимое напряжение, — ток двухполюсника,
Тогда мгновенная мощность, потребляемая двухполюсником будет:
Построим график полученной функции (рис. 2.31).
Рис. 2.31. Зависимость мгновенных значений тока, напряжения и мощности пассивного двухполюсника
Полученный график говорит о том, что функция мгновенной мощности знакопеременна, причем амплитуда положительной полуволны больше амплитуды отрицательной полуволны. Это значит, что двухполюсник имеет активно-реактивный характер. Если бы двухполюсник не содержал реактивных элементов, то график полностью бы лежал над осью Найдем среднее значение мгновенной мощности за период:
Эта мощность называется активной мощностью. Наряду с активной вводится понятие полной мощности:
Единица измерения полной мощности – вольт-ампер
Разность полной и активной мощности, обусловленная наличием реактивных (индуктивных и емкостных) элементов, называется реактивной мощностью:
Единица измерения реактивной мощности – вольт-ампер реактивный [вар]. Мощности связаны между собой соотношением:
Треугольник мощностей (рис. 2.32.а) можно получить из векторной диаграммы напряжений (см. рис. 2.14), умножив все стороны треугольника напряжений на вектор тока
В этом треугольнике:
сторона
сторона
сторона
Рис. 2.32. Треугольники мощностей на основе векторной диаграммы напряжений (а) и векторной диаграммы токов (b)
Аналогичный треугольник мощностей по рис. 2.32. b можно получить из векторной диаграммы токов (рис. 2.22), умножив все стороны треугольника токов на вектор
сторона
сторона
сторона
Выражение мощности в комплексной форме
Пусть на входе некоторого двухполюсника известны комплексные изображения напряжения и тока:
Мощность в комплексной форме выражается в виде произведения:
где – сопряженный комплекс тока
При умножении комплекса напряжения на сопряженный комплекс тока аргумент мощности получится равным
Передача энергии от активного двухполюсника к пассивному
При работе любой электрической цепи должен иметь место баланс мощностей, т.е. алгебраические суммы активных и реактивных мощностей, развиваемых генераторами, должны равняться алгебраическим суммам активных и реактивных мощностей, потребляемых во всех пассивных элементах цепи, включая и внутренние сопротивления генераторов.
Полная мощность, развиваемая генератором:
Полная мощность, потребляемая любым приемником:
Тогда уравнение баланса мощностей:
где и – соответственно внутренние активные и реактивные сопротивления генераторов.
Пусть в электрической цепи работает один источник энергии. Оценим условия, при которых в нагрузке будет выделяться максимальная мощность. Ток в цепи:
Реактивное сопротивление цепи должно равняться нулю:
т.е. цепь должна работать в резонансном режиме, и, следовательно, и должны быть равными по величине и противоположными по характеру (индуктивное и емкостное сопротивления). В итоге имеем:
Найдем соотношение между сопротивлениями и Для этого определим мощность приемника:
и, полагая, что сопротивление нагрузки переменно, исследуем функцию на экстремум:
Следовательно, для получения максимальной мощности в нагрузке необходимо, чтобы:
т.е., сопротивления генератора и нагрузки должны быть комплексно сопряженными величинами. Режим работы цепи при этом условии называется согласованным режимом. КПД источника при этом условии:
При столь низком КПД согласованный режим работы используется только в слаботочных цепях, таких, например, как телефонные линии связи, линии автоматики и управления и т.д., где важна величина полезного сигнала по сравнению с помехами.
Коэффициент мощности
Наибольшие действующие значения напряжения и тока, допускаемые для генераторов и трансформаторов, производящих и, соответственно, преобразующих электрическую энергию, зависят от их конструкции, а наибольшая мощность, которую они могут развивать, не подвергаясь опасности быть поврежденными, определяется произведением этих значений. Поэтому рациональное использование электрических машин и трансформаторов может быть достигнуто лишь в том случае, когда приёмники электрической энергии обладают высоким коэффициентом мощности
Подавляющее большинство потребителей энергии носит активноиндуктивный характер, т.е. т.к. наиболее широко используемые асинхронные двигатели потребляют из сети реактивный (индуктивный) ток для создания магнитного поля в машине.
Для улучшения (увеличения) группы приемников параллельно им включают конденсаторы. Покажем, как рассчитать емкость, необходимую для повышения до некоторой необходимой величины.
Пусть суммарная активная мощность приемников:
При увеличении и неизменном напряжении сети:
Следовательно,
Проиллюстрируем расчет необходимой величины емкости для повышения коэффициента мощности до значения помощью векторной диаграммы, представленной на рис. 2.33.
Рис. 2.33. Векторная диаграмма, иллюстрирующая повышение коэффициента мощности
Рассчитаем необходимый емкостный ток по выражению:
Такую же роль, как конденсаторы, могут играть синхронные двигатели, работающие в «перевозбужденном» режиме. Они при этом потребляют из сети ток, реактивная составляющая которого носит емкостной характер.
Электрическая цепь однофазного синусоидального тока
Синусоидальные электрические величины:
Электромагнитный процесс в электрической цепи, при котором мгновенные значения напряжений и токов повторяются через равные промежутки времени, называется периодическим. Наименьшее время, по истечении которого мгновенные значения периодической величины повторяются, называется периодом. Если величину, являющуюся периодической функцией времени t, обозначить через F (t), то для любого положительного или отрицательного значения аргумента t справедливо равенство
Геометрически это значит, что ординаты двух произвольных точек графика F (t) с абсциссами, различающимися на Т, одинаковы.
Величина, обратная периоду, т. е. число периодов в единицу времени, называется частотой:
Единицей измерения частоты служит герц (Гц); частота равна 1 Гц, если период равен 1 с.
Преобладающим видом периодического процесса в электрических цепях является синусоидальный режим, характеризующийся тем, что все напряжения и токи являются синусоидальными функциями одинаковой частоты. Это возможно только при заданных синусоидальных э. д. с. и токах источников. Тем самым обеспечивается наиболее выгодный эксплуатационный режим работы электрических установок.
Как известно из курса математического анализа, синусоида является простейшей периодической функцией; всякие другие несинусоидальные периодические функции могут быть разложены в бесконечный ряд синусоид, имеющих кратные частоты. Поэтому для исследования процессов в цепях переменного тока в первую очередь необходимо изучить особенности цепей синусоидального тока.
На рис. 2-1 изображена синусоидальная функция
здесь — максимальное значение, или амплитуда; — скорость изменения аргумента (угла), называемая угловой частотой; она равна произведению частоты на и измеряется в радианах в секунду (рад/с),
— начальная фаза, определяемая смещением синусоиды относительно начала координат; она измеряется абсциссой точки перехода отрицательной полуволны в положительную.
Начальная фаза представляет собой алгебраическую величину. Угол положителен и отсчитывается вправо, к точке t=0, когда синусоидальная функция смещена влево относительно начала координат (рис. 2-1).
Косинусоида может рассматриваться как синусоида с начальной фазой Если функция задана-в косинусоидальной форме , то она может быть приведена к виду (2-1) путем замены . Поэтому к синусоидальным функциям (2-1) в общем еду чае причисляются и косинусоидальные функции.
За аргумент функции (2-1) может быть принято время t или соответственно угол . Аргументу t соответствует период Т, а аргументу — период Следует иметь в виду, что аргумент выражается в радианах, причем в тех же единицах выражается и начальная фаза.
Если угол вычисляется в градусах, то аргумент также переводится в градусы ; в этом случае период составляет 360°.
Величина определяющая стадию изменения синусоидальной величины (2-1), называется фазовым углом или фазой. С течением времени фаза возрастает, причем после увеличения фазы на цикл изменения синусоидальной величины повторяется.
Рассмотренные в данном параграфе понятия, характеризующие синусоидальные электрические величины, являются исходными при изучении электрических процессов в цепях переменного тока.
Генерирование синусоидальной э. д. с.
Наиболее распространенным в промышленности способом получения синусоидального тока является применение электромагнитных машин, так называемых синхронных генераторов, приводимых во вращение тепловыми, газовыми, гидравлическими или другими двигателями.
Генератор переменного тока состоит из двух частей — неподвижного статора и вращающегося ротора.
1 Напомним, что 1 рад = 57,3°.
На одном из них (чаще на роторе) располагаются полюсы, т. е. электромагниты, обмотка которых питается от источника постоянного напряжения, или постоянные магниты. На другом (обычно на статоре) располагается главная обмотка, в которой наводится переменная э. д. с.
Генератор может иметь одну или несколько пар полюсов. На рис. 2-2, а упрощенно показан явнополюсный генератор с двумя парами полюсов, размещенных на роторе. Указанному на рис. 2-2, а положению ротора относительно статора соответствует на рис. 2-2, б развернутая на плоскость схема расположения обмотки и полюсов.
В каждом проводе обмотки, находящемся в пазу статора, при вращении ротора наводится по закону Фарадея
Рис. 2-2, Принцип устройства синхронного генератора,
э. д. с. где В — магнитная индукция поля под проводом; l — длина провода; v — линейная скорость перемещения магнитного поля. В Международной системе В измеряется в теслах (Т), т. е. Вб/
При постоянных значениях закон изменения э. д. с. е (t) определяется законом распределения магнитной индукции В в воздушном зазоре машины. Благодаря специальной форме полюсных наконечников распределение магнитной индукции делается приблизительно синусоидальным ‘вдоль всей окружности зазора между ротором и статором; магнитная индукция максимальна против середин и постепенно убывает к краям полюсных наконечников.
В момент времени, которому соответствует указанное на рис. 2-2 положение ротора, магнитная индукция под проводом равна нулю и поэтому э. д. с. е также равна нулю.
После поворота ротора на одну восьмую часть полного оборота (половина полюсного шага) э. д. с. достигнет максимума и будет направлена от вывода 1 к выводу 2 (по правилу правой руки) Когда ротор повернется еще на половину полюсного шага, э. д. с. вновь обратится в нуль. При последующем вращении ротора еще на одну восьмую часть оборота э. д. с. достигнет максимума, но будет противоположно направлена — от вывода 2 к выводу 1 и т. д. Таким образом, на выводах генератора возникнет практически синусоидальная э. д. с.
При числе пар полюсов р и числе оборотов ротора в минуту п частота наводимой переменной э. д. с. в герцах равна:
В энергосистемах СССР и большинства других стран частота промышленного тока равна 50 Гц. В США принята частота 60 Гц.
В авиации с целью уменьшения массы оборудования применяются машины с повышенной частотой вращения. Частота / при этом получается повышенной (400 Гц). Например, генератор, имеющий р = 2 и n = 12 000 об/мин, генерирует синусоидальную э. д. с. с частотой
При большой окружной скорости > 50 м/с) крепление полюсов затруднено и для обеспечения механической прочности применяются неявнополюсные машины, у которых обмотка возбуждения укладывается в пазы цилиндрического ротора неравномерно, так чтобы форма поля была по возможности синусоидальной.
Проводная связь использует частоты порядка Гц, а радиотехника — еще более высокие частоты. Генерирование токов высокой частоты осуществляется с помощью электронных или полупроводниковых устройств.
На рис. 2-3 в виде примера показана одна из схем электронного генератора высокой частоты. Анод трехэлектродной лампы (триода) присоединен через контур LC к положительному полюсу источника постоянного напряжения, например аккумуляторной батареи. В контуpe LC, называемом резонансным, возникают незатухающие синусоидальные колебания тока, частота которых зависит от выбора параметров L и С.
Эго правило заключается в следующем: если вектор магнитной индукции входит в ладонь, а отогнутый большой палец показывает направление движения проводника относительно поля, то остальные четыре пальца указывают направление наводимой э. д. с.
Аналогично по правилу левой руки большой палец указывает направление силы, действующей на проводник с током.
Электрическая энергия, необходимая для поддержания этих колебаний, поступает от аккумуляторной батареи.
Работа электронных генераторов здесь не рассматривается. Процессам, происходящим в резонансных цепях5. Принцип действия электронных генераторов разобран во второй части курса. Приведенная выше схема электронного генератора предназначена для получения синусоидальных колебаний высокой частоты.
Начало практического внедрения переменного тока относится ко втррой половине XIX в., когда выдающийся русский электротехник Павел Николаевич Яблочков (1847—1894) стал применять на практике изобретенные им электрические свечи.
Среднее и действующее значения функции
Среднее значение периодической функции f (t) за период Т определяется по формуле
Отсюда видно, что среднее значение за период равно высоте прямоугольника с основанием Т, площадь которого равна площади, ограниченной функцией f (t) и осью абсцисс за один период.
В случае синусоидальной функции среднее значение за период равно нулю, так как площадь положительной полуволны компенсируется площадью отрицательной полуволны синусоиды. Поэтому здесь пользуются понятием среднего значения функции, взятой по абсолютному значению или, что то же, среднегополупериодного значения, соответствующего положительной полуволне синусоиды (рис. 2-4).
В соответствии с этим среднее значение синусоидального тока с амплитудой А — будет:
Аналогично среднее значение синусоидального напряжения
Измерительные приборы магнитоэлектрической системы реагируют на средние значения за период. Для измерения среднего полупериодного значения, соответствующего положительной полуволне, синусоидальный ток предварительно пропускается через выпрямительное устройство.
Тепловое действие тока, а также механическая сила взаимодействия двух проводников, по которым проходит один и тот же ток, пропорциональны квадрату тока. Поэтому о величине тока судят обычно по так называемому действующему (среднеквадратичному) значению за период.
Действующее значение периодической функции вычисляется по формуле
Из этой формулы следует, что величина F2 представляет собой.среднее значение функции за период Т, т. е. равна высоте прямоугольника с основанием Т, площадь которого равна площади, ограниченной функцией и осью абсцисс за один период (рис. 2-5).
Этим термином заменен применявшийся ранее в литературе и
ныне не рекомендуемый термин «эффективное» значение,
В соответствии с (2-7) действующий периодический ток
Возведя (2-8) в квадрат и умножив обе части полученного выражения на rТ, найдем:
Это равенство показывает, что действующий периодический ток равен такому постоянному току, который, проходя через неизменное сопротивление r, за период времени Т выделяет то же количество тепла, что и данный ток i.
Аналогично действующее периодическое напряжение
При синусоидальном токе
Следовательно, согласно (2-8)
Аналогично действующее синусоидальное напряжение
Номинальные токи и напряжения электротехнических устройств определяются, как правило, действующими значениями; поэтому действующие значения представляют наиболее распространенный электрический параметр.
Для измерения действующих значений применяются системы приборов тепловая, электромагнитная, электродинамическая и др.
Синусоидальный ток в сопротивлении
Если синусоидальное напряжение подвести к сопротивлению r (рис. 2-6, й), то через сопротивление пройдет синусоидальный ток
Следовательно, напряжение на выводах сопротивления и ток, проходящий через это сопротивление, имеют
одинаковую начальную фазу, или, как говорят, совпадают по фазе: они
одновременно достигают своих амплитудных значений и и соответственно одновременно проходят через нуль (рис. 2-6, б).
Разность начальных фаз двух синусоид, имеющих одинаковую частоту, называется фазовым сдвигом. В данном случае фазовый сдвиг между напряжением и и током i равен нулю:
При прохождении синусоидального тока через сопротивление г не только мгновенные напряжения на сопротивлении и тока в нем, но и амплитуды и соответственно действующие напряжение и ток связаны законом Ома:
Пользуясь величиной проводимости получаем:
Мгновенная мощность, поступающая в сопротивление:
изменяется с угловой частотой, удвоенной по сравнению с частотой напряжения и тока, и колеблется в пределах от 0 до 2UI (рис. 2-7).
Как видно из (2-10), кривая состоит из двух слагающих: постоянной слагающей UI и косинусоидальной функции, имеющей амплитуду UI и угловую частоту
Ввиду того что в рассматриваемом случае напряжение и ток совпадают по фазе, т. е. всегда имеют одинаковый знак (плюс или минус), их произведение всегда положительно.
Среднее значение мощности за период Р называется активной мощностью и измеряется в ваттах.
В рассматриваемом случае, как это видно из
выражения (2-10) и рис. 2-7, активная мощность Р Это следует также из определений, данных в предыдущем параграфе.
Сопротивление r в свою очередь может быть определено как отношение активной мощности к квадрату действующего значения тока:
Отмечалось, что сопротивление проводника при переменном токе больше, чем при постоянном токе, вследствие явлений поверхностного эффекта, возникновения вихревых токов и излучения электромагнитной энергии в пространство (при высоких частотах). В отличие от сопротивления при постоянном токе сопротивление проводника при переменном токе называется активным сопротивлением.
Синусоидальный ток в индуктивности
Пусть через индуктивность L (рис. 2-8, а) проходит ток
Электродвижущая сила самоиндукции определяется по формуле (1-3):
Значит, напряжение на индуктивности
Полученное выражение показывает, что напряжение на индуктивности опережает ток на угол, максимум напряжения смещен влево относительно максимума тока на (рис. 2-8, б), когда ток проходит через нуль, напряжение достигает положительного или отрицательного максимума, так как оно пропорционально скорости изменения тока которая в момент прохождения тока через нуль максимальна (синусоида тока в этот момент имеет наибольшую крутизну). Когда ток достигает максимума, скорость его изменения, а следовательно, и напряжение на индуктивности обращаются в нуль.
Под фазовым сдвигом тока относительно напряжения понимается разность начальных фаз напряжения и тока. Следовательно, в данном случае
Амплитуды, так же как и действующие значения напряжения и тока, связаны соотношением, подобным закону Ома:
Величина имеющая размерность сопротивления, называется индуктивным сопротивление м; обратная ей величина называется и н-дуктивной проводимостью.
Индуктивное сопротивление представляет собой расчетную величину, с помощью которой учитывается явление самоиндукции.
Мгновенная мощность, поступающая в индуктивность, будет:
Она колеблется по синусоидальному закону с угловой частотой имея амплитуду UI. Мгновенная мощность в данном случае равна скорости изменения энергии магнитного поля индуктивности.
Энергия магнитного поля индуктивности
изменяется периодически с угловой частотой в преде(рис. 2-9).
Поступая от источника, энергия временно запасается в магнитном поле индуктивности, затем возвращается в источник при исчезновении магнитного поля. Энергия магнитного поля достигает максимума в момент перехода тока в индуктивности через амплитудное значение, затем она убывает и обращается в нуль при токе, равном нулю.
Таким образом, происходит колебание энергии между источником и индуктивностью, причем активная мощность, поступающая в индуктивность, равна нулю.
Так как максимальная энергия, запасаемая в магнитном поле, равна то индуктивное сопротивление может быть определено как
Синусоидальный ток в емкости
Пусть напряжение на емкости С (рис. 2-10, а) синусоидально:
На основании (1-8)
Изменение электрического заряда происходит по синусоидальному закону в соответствии с приложенным напряжением u. При этом попеременное накапливание положительных и отрицательных электрических зарядов на пластинах емкости обусловливает прохождение в цепи синусоидального тока i. Он определяется скоростью изменения заряда на емкости
Выражение (2-11) показывает, что ток i опережает приложенное напряжение и на угол (рис. 2-10, б). Нулевым значениям тока соответствуют максимальные (положительные или отрицательные) значения напряжения u. Физически это объясняется тем, что когда электрический заряд q и соответственно напряжение и — q/C достигают максимального значения (положительного или отрицательного), ток i равен нулю.
Под фазовым сдвигом тока относительно напряжения здесь, как и раньше, подразумевается разность начальных фаз напряжения и тока, т. е.
Таким образом, в отличие от цепи с индуктивностью, где фазовый сдвиг тока относительно напряжения в случае емкости отрицателен
Амплитуды и соответственно действующие напряжение и ток связаны соотношением, подобным закону Ома
Величина имеющая размерность сопротивления, называется емкостным сопротивлением. Обратная ей величина называется емкостной проводимостью. Следовательно,
Следует заметить, что только в случае сопротивления г закон Ома применим к мгновенным значениям напряжения и тока; в остальных случаях отношение мгновенных величин u и i, имеющее размерность сопротивления, представляет собой некоторую функцию времени, не имеющую физического смысла и практического применения.
Мгновенная мощность, поступающая в емкость,
колеблется синусоидально с угловой частотой имея амплитуду, равную UP, выражение в рассматриваемом случае аналогично выражению для в
Мгновенная мощность, поступающая в емкость, равна скорости изменения энергии электрического поля емкости.
Энергия электрического поля емкости
изменяется периодически с угловой частотой в пределах от 0 до (рис. 2-11).
Поступая от источника, энергия временно запасается в электрическом поле емкости, а затем возвращается в источник при исчезновении электрического поля. Энергия электрического поля достигает максимума при амплитудном значении напряжения на емкости. Затем она убывает и обращается в нуль при напряжении, равном нулю.
Таким образом, так же как в случае индуктивности, происходит колебание энергии между источником и емкостью, причем активная мощность Р = 0.
Так как максимальная энергия, запасаемая в электрическом поле, равна Немане то емкостное сопротивление может быть определено как
Последовательное соединение
При прохождении синусоидального тока через электрическую цепь, состоящую из последовательно соединенных элементов г, L и С (рис. 2-12), на выводах этой цепи создается синусоидальное напряжение, равное алгебраической сумме синусоидальных напряжений на
отдельных элементах (второй закон Кирхгофа):
Напряжение на сопротивлении r совпадает
по фазе с током i, напряжение на индуктивности L опережает, а напряжение на емкости С отстает по фазе от (рис. 2-13). Следовательно, напряжение и на выводах всей цепи равно:
Уравнение (2-12) представляет собой тригонометрическую форму записи второго закона Кирхгофа для мгновенных напряжений. Входящая в него величина х =
называется реактивным сопротивлением цепи, которое в зависимости от знака может иметь индуктивный (х > 0) или емкостный (х 0; при этом ток отстает по фазе от напряжения и ф отсчитывается по оси абсцисс вправо от напряжения к току (рис. 2-14).
Этим термином заменен применявшийся ранее в литературе и ныне не рекомендуемый термин «кажущееся» сопротивление.
Угол ф отрицателен при емкостном характере цепи, т. е. при х 0) или емкостный (b 0; при этом ток отстает по фазе от напряжения.
Угол отрицателен при емкостном характере цепи, т. е. при b 0.
Аналогичная картина получается и в случае активноемкостной цепи
В электрических системах, в которых источниками электрической энергии являются генераторы переменного тока, мощность получается от первичных двигателей, приводящих генераторы во вращение. В радиотехнике и электронике, где синусоидальные колебания создаются с помощью электронных или полупроводниковых приборов, мощность получается от источников постоянного тока, питающих электронные генераторы или другого рода устройства.
Величина, равная произведению действующих тока и напряжения на цепи:
называется полной мощностью цепи и измеряется в вольт-амперах (ва). Следует заметить, что амплитуда синусоидальной составляющей мгновенной мощности (2-25) численно равна полной мощности.
На основании (2-26) и (2-27) коэффициент мощности равен отношению активной мощности к полной:
При расчетах электрических цепей и на практике в эксплуатации пользуются также понятием реактивная мощность, которая вычисляется по формуле
и является мерой потребления (или выработки) реактивного тока.
Эта мощность выражается в единицах, называемых вар.
Выражение реактивной мощности может быть преобразовано с учетом (2-17) и (2-23):
Реактивная мощность может быть также выражена через реактивную составляющую тока или напряжения
1 Терминами «активная», «реактивная» и «полная» мощности заменены применявшиеся ранее в литературе и ныне не рекомендуемые термины «ваттная», «безваттная» и «кажущаяся» мощности.
В соответствии с принятым ранее правилом знаков для угла реактивная мощность положительна при отстающем токе (индуктивная нагрузка) и отрицательна при опережающем токе (емкостная нагрузка).
Понятия активная (средняя), реактивная и полная мощности являются удобными определениями мощностей, которые прочно укоренились на практике.
Реактивные мощности, подводимые к индуктивности и емкости, могут быть представлены в следующем виде:
где — максимальные значения энергии, периодически запасаемой индуктивностью и емкостью.
Реактивная мощность цепи, содержащей индуктивность и емкость, пропорциональна разности максимальных значений энергии, запасаемой в магнитном и электрическом полях:
Предлагается читателям проверить и самостоятельно убедиться в том, что эта формула справедлива при любом соединении индуктивности и емкости: последовательном, параллельном или в какой-либо комбинации с сопротивлениями.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Законы и правила Кирхгофа для электрических цепей
- Линии с распределенными параметрами
- Идеализированные пассивные элементы
- Идеализированные активные элементы
- Энергия и мощность электрического тока
- Закон Джоуля — Ленца для тока
- Режимы работы электрических цепей
- Однофазные электрические цепи переменного тока
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
[spoiler title=”источники:”]
http://helpiks.org/6-68145.html
http://www.evkova.org/odnofaznyie-tsepi-sinusoidalnogo-toka
[/spoiler]
Задачи на Закон Ома с решениями
Формулы, используемые на уроках физики «Задачи на Закон Ома» в 8 классе, а также для подготовки к ОГЭ.
Название величины |
Обозначение |
Единица измерения |
Формула |
Сила тока |
I |
А |
I = U / R |
Напряжение |
U |
В |
U = IR |
Сопротивление |
R |
Ом |
R = U/I |
Решение задач на уроках физики в 10-11 классах и при подготовке к ЕГЭ смотрите в следующих конспектах:
ЕГЭ: Закон Ома для участка цепи
ЕГЭ: Закон Ома для всей цепи
Задачи на Закон Ома.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача № 1.
Какова сила тока в резисторе, если его сопротивление 12 Ом, а напряжение на нем 120 В?
Задача № 2.
Сопротивление проводника 6 Ом, а сила тока в нем 0,2 А. Определите напряжение на концах проводника.
Задача № 3.
Определите сопротивление проводника, если при напряжении 110 В сила тока в нем 2 А.
Задача № 4.
По графикам зависимости силы тока от напряжения определите сопротивление каждого проводника.
Решение:
Задача № 5.
Чему равна сила тока в электрической лампе карманного фонаря, если сопротивление нити накала 16,6 Ом и лампа подключена к батарейке напряжением 2,5 В?
Задача № 6.
Электрический утюг включен в сеть с напряжением 220 В. Какова сила тока в нагревательном элементе утюга, если сопротивление его равно 48,4 Ом?
Задача № 7.
При напряжении 110 В, подведенном к резистору, сила тока в нем равна 5 А. Какова будет сила тока в резисторе, если напряжение на нем увеличить на 10 В?
Задача № 8.
Чему равно сопротивление спирали электрической лампы в рабочем состоянии, у которой на цоколе написано 6,3 В, 0,22 А?
Задача № 9.
Показание вольтметра, присоединенного к горящей электрической лампе накаливания, равно 120 В, а амперметра, измеряющего силу тока в лампе, 0,5 А. Чему равно сопротивление лампы? Начертите схему включения лампы, вольтметра и амперметра.
Задача № 10.
ОГЭ
Источник постоянного тока с ЭДС E = 12 В и внутренним сопротивлением г = 1 Ом замкнут на внешнее сопротивление R = 9 Ом. Определить силу тока в цепи I, падение напряжения UR на внешнем участке и падение напряжения Ur на внутреннем участке цепи.
Краткая теория для решения Задачи на Закон Ома.
Это конспект по теме «ЗАДАЧИ на Закон Ома». Выберите дальнейшие действия:
- Перейти к теме: ЗАДАЧИ на сопротивление проводника
- Посмотреть конспект по теме Закон Ома. Соединение проводников
- Вернуться к списку конспектов по Физике.
- Проверить свои знания по Физике.